Numerical Study of Low-Velocity Impact Response of a Fiber Composite Honeycomb Sandwich Structure
Abstract
:1. Introduction
2. Numerical Simulation
2.1. Composite Honeycomb Sandwich Structure Design
2.2. Mesh Generation, Boundary, and Loading Conditions
2.3. Composite Honeycomb Sandwich Structure Material Design
3. Results and Discussion
3.1. Load–Displacement Curves
3.2. Stress and Strain Distribution
3.3. Face Sheet Deformation
3.4. Energy Absorption
4. Conclusions
- (1)
- The load–displacement curves of several material types as composite HSS are studied, and it is demonstrated that fiber-reinforced PEEK material significantly increases the overall structure’s impact resistance. It is discovered that GF-PEEK is better suited as a face sheet for the composite honeycomb sandwich construction; under the same impact energy, its damage degree is 1.05% and 3.20% lower than those of PEEK and CF-PEEK as panel materials, respectively;
- (2)
- By comparing the plastic deformation of the honeycomb core and the stress and strain distribution of the composite honeycomb sandwich mechanism after low-velocity impact, it is observed that the CF-PEEK face sheet causes more visible damage to the honeycomb core, resulting in more obvious plastic deformation;
- (3)
- The disturbance caused by fiber-reinforced material is compared to the deflection caused by low-velocity dynamic impact, and the use of fiber-reinforced PEEK material results in the minimum front panel deflection, while the use of PEEK material results in a maximum deflection of 4.29 mm. It is more noticeable when the face sheet and honeycomb core of the HSS are made of the same fiber-reinforced PEEK material. The maximum deflection is 4.05 mm and 4.40 mm for GF-PEEK and GF-PEEK, respectively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rong, Y.; Liu, J.; Luo, W.; He, W. Effects of geometric configurations of corrugated cores on the local impact and planar compression of sandwich panels. Compos. B Eng. 2018, 152, 324–335. [Google Scholar] [CrossRef]
- Farshidi, A.; Berggreen, C.; Schäuble, R. Numerical fracture analysis and model validation for disbonded honeycomb core sandwich composites. Compos. Struct. 2019, 210, 231–238. [Google Scholar] [CrossRef]
- Wang, Z. Recent advances in novel metallic honeycomb structure. Compos. B Eng. 2019, 166, 731–741. [Google Scholar]
- Zhang, D.; Fei, Q.; Liu, J.; Jiang, D.; Li, Y. Crushing of vertex-based hierarchical honeycombs with triangular substructures. Thin-Walled Struct. 2020, 146, 106436. [Google Scholar] [CrossRef]
- Sun, G.; Chen, D.; Huo, X.; Zheng, G.; Li, Q. Experimental and numerical studies on indentation and perforation characteristics of honeycomb sandwich panels. Compos. Struct. 2018, 184, 110–124. [Google Scholar] [CrossRef]
- Foo, C.C.; Seah, L.K.; Chai, G.B. Low-velocity impact failure of aluminium honeycomb sandwich panels. Compos. Struct. 2008, 85, 20–28. [Google Scholar] [CrossRef]
- Xue, X.; Zhang, C.; Chen, W.; Wu, M.; Zhao, J. Study on the impact resistance of honeycomb sandwich structures under low-velocity/heavy mass. Compos. Struct. 2019, 226, 111223. [Google Scholar] [CrossRef]
- Sun, G.; Chen, D.; Wang, H.; Hazell, P.J.; Li, Q. High-velocity impact behaviour of aluminium honeycomb sandwich panels with different structural configurations. Int. J. Impact. Eng. 2018, 122, 119–136. [Google Scholar] [CrossRef]
- Liu, L.; Meng, P.; Wang, H.; Guan, Z. The flatwise compressive properties of Nomex honeycomb core with debonding imperfections in the double cell wall. Compos. B Eng. 2015, 76, 122–132. [Google Scholar] [CrossRef]
- Tao, Y.; Li, W.; Wei, K.; Duan, S.; Wen, W.; Chen, L.; Pei, Y.; Fang, D. Mechanical properties and energy absorption of 3D printed square hierarchical honeycombs under in-plane axial compression. Compos. B Eng. 2019, 176, 107219. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, F.; Zang, Y.; Feng, W. Experimental and numerical investigation on damage behavior of honeycomb sandwich panel subjected to low-velocity impact. Compos. Struct. 2020, 236, 111882. [Google Scholar] [CrossRef]
- Wang, Z.; Tian, H.; Lu, Z.; Zhou, W. High-speed axial impact of aluminum honeycomb—Experiments and simulations. Compos. B Eng. 2014, 56, 1–8. [Google Scholar] [CrossRef]
- Ivanez, I.; Fernandez-Cañadas, L.M.; Sanchez-Saez, S. Compressive deformation and energy-absorption capability of aluminium honeycomb core. Compos. Struct. 2017, 174, 123–133. [Google Scholar] [CrossRef]
- Habib, F.N.; Iovenitti, P.; Masood, S.H.; Nikzad, M. Cell geometry effect on in-plane energy absorption of periodic honeycomb structures. Int. J. Adv. Manuf. Technol. 2018, 94, 2369–2380. [Google Scholar] [CrossRef]
- Wang, Z.; Lu, Z.; Tian, H.; Yao, S.; Zhou, W. Theoretical assessment methodology on axial compressed hexagonal honeycomb’s energy absorption capability. Mech. Adv. Mater. Struct. 2016, 23, 503–512. [Google Scholar] [CrossRef]
- Sabah, S.H.A.; Kueh, A.B.H.; Al-Fasih, M.Y. Bio-inspired vs. conventional sandwich beams: A low-velocity repeated impact behavior exploration. Constr. Build. Mater. 2018, 169, 193–204. [Google Scholar] [CrossRef]
- He, W.; Yao, L.; Meng, X.; Sun, G.; Xie, D.; Liu, J. Effect of structural parameters on low-velocity impact behavior of aluminum honeycomb sandwich structures with CFRP face sheets. Thin-Walled Struct. 2019, 137, 411–432. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; He, Z.; Zong, Z.; Fang, J. Dynamic impact response of aluminum honeycombs filled with Expanded Polypropylene foam. Compos. B Eng. 2019, 156, 17–27. [Google Scholar] [CrossRef]
- Gunes, R.; Arslan, K. Development of numerical realistic model for predicting low-velocity impact response of aluminium honeycomb sandwich structures. J. Sandwich Struct. Mater. 2016, 18, 95–112. [Google Scholar] [CrossRef]
- Crupi, V.; Kara, E.; Epasto, G.; Guglielmino, E.; Aykul, H. Theoretical and experimental analysis for the impact response of glass fibre reinforced aluminium honeycomb sandwiches. J. Sandwich Struct. Mater. 2018, 20, 42–69. [Google Scholar] [CrossRef]
- Sun, G.; Wang, E.; Zhang, J.; Li, S.; Zhang, Y.; Li, Q. Experimental study on the dynamic responses of foam sandwich panels with different facesheets and core gradients subjected to blast impulse. Int. J. Impact. Eng. 2020, 135, 103327. [Google Scholar] [CrossRef]
- Hussein, R.D.; Ruan, D.; Lu, G.; Sbarski, I. Axial crushing behaviour of honeycomb-filled square carbon fibre reinforced plastic (CFRP) tubes. Compos. Struct. 2016, 140, 166–179. [Google Scholar] [CrossRef]
- Liu, Q.; Mo, Z.; Wu, Y.; Ma, J.; Tsui, G.C.P.; Hui, D. Crush response of CFRP square tube filled with aluminum honeycomb. Compos. B Eng. 2016, 98, 406–414. [Google Scholar] [CrossRef]
- Xiao, Y.; Hu, Y.; Zhang, J.; Song, C.; Liu, Z.; Yu, J. Dynamic bending responses of CFRP thin-walled square beams filled with aluminum honeycomb. Thin-Walled Struct. 2018, 132, 494–503. [Google Scholar] [CrossRef]
- Luo, H.; Chen, F.; Wang, X.; Dai, W.; Xiong, Y.; Yang, J.; Gong, R. A novel two-layer honeycomb sandwich structure absorber with high-performance microwave absorption. Compos. Part A Appl. Sci. Manuf. 2019, 119, 1–7. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Lu, Z.; Hui, D. Mechanical behavior of composited structure filled with tandem honeycombs. Compos. B Eng. 2017, 114, 128–138. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J. Mechanical performance of honeycomb filled with circular CFRP tubes. Compos. B Eng. 2018, 135, 232–241. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J. Numerical and theoretical analysis of honeycomb structure filled with circular aluminum tubes subjected to axial compression. Compos. B Eng. 2019, 165, 626–635. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, B.; Pugno, N.; Wang, B.; Ding, Q. In-plane stiffness of the anisotropic multifunctional hierarchical honeycombs. Compos. Struct. 2015, 131, 616–624. [Google Scholar] [CrossRef]
- Han, Q.; Qin, H.; Liu, Z.; Han, Z.; Zhang, J.; Niu, S.; Zhang, W.; Sun, Y.; Shi, S. Experimental investigation on impact and bending properties of a novel dactyl-inspired sandwich honeycomb with carbon fiber. Constr. Build. Mater. 2020, 253, 119161. [Google Scholar] [CrossRef]
- Florence, A.; Jaswin, M.A.; Pandi, A.P. Drop-Weight Impact Behaviour of Hybrid Fiber/Epoxy Honeycomb Core Sandwich Composites under Hemi-Spherical Impactor. Fibers Polym. 2020, 21, 1152–1162. [Google Scholar] [CrossRef]
- Liu, L.; Feng, H.; Tang, H.; Guan, Z. Impact resistance of Nomex honeycomb sandwich structures with thin fibre reinforced polymer facesheets. J. Sandwich Struct. Mater. 2018, 20, 531–552. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Müller, W.D.; Rumjahn, A.; Schmidt, F.; Schwitalla, A.D. Mechanical properties of fused filament fabricated PEEK for biomedical applications depending on additive manufacturing parameters. J. Mech. Behav. Biomed. Mater. 2021, 115, 104250. [Google Scholar] [CrossRef]
- Wang, B.; Yu, S.; Mao, J.; Wang, Y.; Li, M.; Li, X. Effect of basalt fiber on tribological and mechanical properties of polyether-ether-ketone (PEEK) composites. Compos. Struct. 2021, 266, 113847. [Google Scholar] [CrossRef]
- Gummadi, S.K.; Saini, A.; Owusu-Danquah, J.S.; Sikder, P. Mechanical Properties of 3D-Printed Porous Poly-ether-ether-ketone (PEEK) Orthopedic Scaffolds. JOM 2022, 74, 3379–3391. [Google Scholar] [CrossRef]
- Arif, M.F.; Alhashmi, H.; Varadarajan, K.M.; Koo, J.H.; Hart, A.J.; Kumar, S. Multifunctional performance of carbon nanotubes and graphene nanoplatelets reinforced PEEK composites enabled via FFF additive manufacturing. Compos. B Eng. 2020, 184, 107625. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Zhang, W.; Su, P.; Han, B.; Guo, S. Metallic tube-reinforced aluminum honeycombs: Compressive and bending performances. Compos. B Eng. 2019, 171, 192–203. [Google Scholar] [CrossRef]
- Xu, M.M.; Huang, G.Y.; Dong, Y.X.; Feng, S.S. An experimental investigation into the high velocity penetration resistance of CFRP and CFRP/aluminium laminates. Compos. Struct. 2018, 188, 450–460. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Ismail, S.O. Mechanical performances of hip implant design and fabrication with PEEK composite. Polymer 2021, 227, 123865. [Google Scholar] [CrossRef]
- Jacobs, O.; Jaskulka, R.; Yan, C.; Wu, W. On the effect of counterface material and aqueous environment on the sliding wear of various PEEK compounds. Tribol. Lett. 2005, 18, 359–372. [Google Scholar] [CrossRef]
- Wang, P.; Zou, B.; Ding, S.; Li, L.; Huang, C. Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin. J. Aeronaut. 2021, 34, 236–246. [Google Scholar]
- Zhao, W.; Lin, S.; Wang, W.; Yang, Y.; Yan, X.; Yang, H. Study on Dynamic Mechanical Properties of Carbon Fiber-Reinforced Polymer Laminates at Ultra-Low Temperatures. Materials 2023, 16, 2654. [Google Scholar] [CrossRef] [PubMed]
- Alphonse, M.; Raja, V.B.; Krishna, V.G.; Kiran, R.S.U.; Subbaiah, B.V.; Chandra, L.V.R. Mechanical behavior of sandwich structures with varying core material—A review. Mater. Today 2021, 44, 3751–3759. [Google Scholar] [CrossRef]
- Zuhri, M.Y.M.; Guan, Z.W.; Cantwell, W.J. The mechanical properties of natural fibre based honeycomb core materials. Compos. Part B-Eng. 2014, 58, 1–9. [Google Scholar] [CrossRef]
- Hong, H.; Hu, M.; Dai, L. Dynamic mechanical behavior of hierarchical resin honeycomb by 3D printing. Polymers 2020, 13, 19. [Google Scholar] [CrossRef] [PubMed]
- Bakar, M.S.A.; Cheang, P.; Khor, K.A. Mechanical properties of injection molded hydroxyapatite-polyetheretherketone biocomposites. Compos. Sci. Technol. 2003, 63, 421–425. [Google Scholar] [CrossRef]
- Liu, J.; Zhu, X.; Li, T.; Zhou, Z.; Wu, L.; Ma, L. Experimental study on the low velocity impact responses of all-composite pyramidal truss core sandwich panel after high temperature exposure. Compos. Struct. 2014, 116, 670–681. [Google Scholar] [CrossRef]
- Arbaoui, J.; Schmitt, Y.; Pierrot, J.L.; Royer, F.X. Effect of core thickness and intermediate layers on mechanical properties of polypropylene honeycomb multi-layer sandwich structures. Arch. Metall. Mater. 2014, 59, 11–16. [Google Scholar] [CrossRef] [Green Version]
- Dogan, A.; Arikan, V. Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites. Compos. Part B-Eng. 2017, 127, 63–69. [Google Scholar] [CrossRef]
Material Property | PEEK | CF-PEEK | GF-PEEK |
---|---|---|---|
ρ (g/cm3) | 1.36 | 1.60 | 1.51 |
E (GPa) | 3.85 | 22 | 14.2 |
v | 0.30 | 0.33 | 0.298 |
Yield strength (MPa) | 107 | 94 | 87 |
Specimen Number | Face Sheet Material | Honeycomb Core Material |
---|---|---|
Specimen 1 | PEEK | PEEK |
Specimen 2 | CF-PEEK | |
Specimen 3 | GF-PEEK | |
Specimen 4 | CF-PEEK | CF-PEEK |
Specimen 5 | PEEK | |
Specimen 6 | GF-PEEK | |
Specimen 7 | GF-PEEK | GF-PEEK |
Specimen 8 | PEEK | |
Specimen 9 | CF-PEEK |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, Z.; Li, M. Numerical Study of Low-Velocity Impact Response of a Fiber Composite Honeycomb Sandwich Structure. Materials 2023, 16, 5482. https://doi.org/10.3390/ma16155482
Wen Z, Li M. Numerical Study of Low-Velocity Impact Response of a Fiber Composite Honeycomb Sandwich Structure. Materials. 2023; 16(15):5482. https://doi.org/10.3390/ma16155482
Chicago/Turabian StyleWen, Zhou, and Ming Li. 2023. "Numerical Study of Low-Velocity Impact Response of a Fiber Composite Honeycomb Sandwich Structure" Materials 16, no. 15: 5482. https://doi.org/10.3390/ma16155482
APA StyleWen, Z., & Li, M. (2023). Numerical Study of Low-Velocity Impact Response of a Fiber Composite Honeycomb Sandwich Structure. Materials, 16(15), 5482. https://doi.org/10.3390/ma16155482