Effect of Synthetic Pregelatinized Starch-Modified C-S-H Particles on the Chemical Structure of C-A-S-H Generated from GGBS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Pregelatinized Corn-Starch/C-S-H Samples
2.2. Preparation of GGBS Mortar and Pastes
2.3. Testing Procedures
2.4. Characterization
3. Results and Discussion
3.1. Structure of Pregelatinized Starch/C-S-H Particles
3.1.1. XRD
3.1.2. FTIR
3.1.3. NMR
3.1.4. SEM
3.2. Effect of Pregelatinized Starch/C-S-H Particles on the C-A-S-H Nanostructure Formed from the Alkali Activated GGBS
3.2.1. Chemical Bond Analysis
3.2.2. Silicate Chain Nanostructure
3.3. Verification
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monteiro, P.J.M.; Miller, S.A.; Horvath, A. Towards sustainable concrete. Nat. Mater. 2017, 16, 698–699. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.C.; Siew, K.W.; Gimbun, J.; Cheng, C.K. Synthesis and characterisation of cement clinker-supported nickel catalyst for glycerol dry reforming. Chem. Eng. J. 2014, 255, 245–256. [Google Scholar] [CrossRef]
- Xu, S.; Chen, Z.; Zhang, B.; Yu, J.; Zhang, F.; Evans, D.G. Facile preparation of pure CaAl-layered double hydroxides and their application as a hardening accelerator in concrete. Chem. Eng. J. 2009, 155, 881–885. [Google Scholar] [CrossRef]
- Zou, F.; Zhang, M.; Hu, C.; Wang, F.; Hu, S. Novel C-A-S-H/PCE nanocomposites: Design, characterization and the effect on cement hydration. Chem. Eng. J. 2021, 412, 128569. [Google Scholar] [CrossRef]
- Kanchanason, V.; Plank, J. Effect of calcium silicate hydrate—Polycarboxylate ether (C-S-H–PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements. Cem. Concr. Res. 2019, 119, 44–50. [Google Scholar] [CrossRef]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Zhang, L.; Jia, Y.; Shu, H.; Zhang, L.; Lu, X.; Bai, F.; Zhao, Q.; Tian, D. The effect of basicity of modified ground granulated blast furnace slag on its denitration performance. J. Clean. Prod. 2021, 305, 126800. [Google Scholar] [CrossRef]
- McCaslin, E.R.; White, C.E. A parametric study of accelerated carbonation in alkali-activated slag. Cem. Concr. Res. 2021, 145, 106454. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, Y.; Hou, P.; Shao, Y.; Zuo, X.; Li, Q.; Xie, N.; Cheng, X. Comparison study on the sulfate attack resistivity of cement-based materials modified with nanoSiO2 and conventional SCMs: Mechanical strength and volume stability. Constr. Build. Mater. 2019, 211, 556–570. [Google Scholar] [CrossRef]
- Jiang, W.; Li, X.; Lv, Y.; Jiang, D.; Liu, Z.; He, C. Mechanical and hydration properties of low clinker cement containing high volume superfine blast furnace slag and nano silica. Constr. Build. Mater. 2020, 238, 117683. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Chen, H.; Zhou, Y. Influence of the initial moist curing time on the sulfate attack resistance of concretes with different binders. Constr. Build. Mater. 2017, 144, 541–551. [Google Scholar] [CrossRef]
- Güneyisi, E.; Özturan, T.; Gesoǧlu, M. Effect of initial curing on chloride ingress and corrosion resistance characteristics of concretes made with plain and blended cements. Build. Environ. 2007, 42, 2676–2685. [Google Scholar] [CrossRef]
- Ye, H.; Chen, Z.; Huang, L. Mechanism of sulfate attack on alkali-activated slag: The role of activator composition. Cem. Concr. Res. 2019, 125, 105868. [Google Scholar] [CrossRef]
- Nuno, C.; João, C.; Tiago, M.; Ángel, P.; Ana, F. Alkali activated composites—An innovative concept using iron and steel slag as both precursor and aggregate. Cem. Concr. Compos. 2019, 103, 11–21. [Google Scholar]
- Sajedi, F.; Razak, H.A. The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Constr. Build. Mater. 2010, 24, 1944–1951. [Google Scholar] [CrossRef]
- Li, Y.-H.; Chang, F.-M.; Huang, B.; Song, Y.-P.; Zhao, H.-Y.; Wang, K.-J. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel 2020, 266, 117053. [Google Scholar] [CrossRef]
- Dung, N.T.; Hooper, T.J.N.; Unluer, C. Improving the carbonation resistance of Na2CO3-activated slag mixes via the use of reactive MgO and nucleation seeding. Cem. Concr. Compos. 2021, 115, 103832. [Google Scholar] [CrossRef]
- Bernal, S.A.; Provis, J.L.; Myers, R.J.; San Nicolas, R.; van Deventer, J.S.J. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater. Struct. 2014, 48, 517–529. [Google Scholar] [CrossRef]
- Garcia-Lodeiro, I.; Palomo, A.; Fernández-Jiménez, A.; Macphee, D.E. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cem. Concr. Res. 2011, 41, 923–931. [Google Scholar] [CrossRef]
- Engelhardt, G. Multinuclear solid-state NMR in silicate and zeolite chemistry. TrAC Trends Anal. Chem. 1989, 8, 343–347. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- García-Lodeiro, I.; Cherfa, N.; Zibouche, F.; Fernández-Jimenez, A.; Palomo, A. The role of aluminium in alkali-activated bentonites. Mater. Struct. 2014, 48, 585–597. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Zhou, Y.; Wei, Y.; She, A. Synthesis and structure of calcium silicate hydrate (C-S-H) modified by hydroxyl-terminated polydimethylsiloxane (PDMS). Constr. Build. Mater. 2021, 267, 120731. [Google Scholar] [CrossRef]
- Beaudoin, J.J.; Raki, L.; Alizadeh, R. A 29Si MAS NMR study of modified C–S–H nanostructures. Cem. Concr. Compos. 2009, 31, 585–590. [Google Scholar] [CrossRef]
- Schneider, J.; Cincotto, M.A.; Panepucci, H. 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem. Concr. Res. 2001, 31, 993–1001. [Google Scholar] [CrossRef]
- Fernández-Jiménez, A.; Puertas, F.; Sobrados, I.; Sanz, J. Structure of Calcium Silicate Hydrates Formed in Alkaline-Activated Slag: Influence of the Type of Alkaline Activator. J. Am. Ceram. Soc. 2003, 86, 1389–1394. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium silicate-based, alkali-activated slag mortars: Part I. Strength, hydration and microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Dung, N.T.; Hooper, T.J.N.; Unluer, C. Accelerating the reaction kinetics and improving the performance of Na2CO3-activated GGBS mixes. Cem. Concr. Res. 2019, 126, 105927. [Google Scholar] [CrossRef]
- Matsuyama, H.; Young, J.F. Synthesis of calcium silicate hydrate/polymer complexes: Part I. Anionic and nonionic polymers. J. Mater. Res. 1999, 14, 3379–3388. [Google Scholar] [CrossRef]
- Lü, L.; Ping, B.; He, Y.; He, L.; Wu, X.; Hu, S. Effect of polymer on morphology and structure of calcium silicate hydrate prepared via precipitation method. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2014, 29, 504–506. [Google Scholar] [CrossRef]
- Pelisser, F.; Gleize, P.J.P.; Mikowski, A. Structure and micro-nanomechanical characterization of synthetic calcium–silicate–hydrate with Poly(Vinyl Alcohol). Cem. Concr. Compos. 2014, 48, 1–8. [Google Scholar] [CrossRef]
- Beaudoin, J.J.; Dramé, H.; Raki, L.; Alizadeh, R. Formation and properties of C-S-H–PEG nano-structures. Mater. Struct. 2009, 42, 1003–1014. [Google Scholar] [CrossRef]
- Zhou, Y.; She, W.; Hou, D.; Yin, B.; Chang, H.; Jiang, J.; Li, J. Modification of incorporation and in-situ polymerization of aniline on the nano-structure and meso-structure of calcium silicate hydrates. Constr. Build. Mater. 2018, 182, 459–468. [Google Scholar] [CrossRef]
- Mojumdar, S.C.; Raki, L. Preparation, thermal, spectral and microscopic studies of calcium silicate hydrate–poly(acrylicacid) nanocomposite materials. J. Therm. Anal. Calorim. 2006, 85, 99–105. [Google Scholar] [CrossRef]
- Khoshnazar, R.; Beaudoin, J.; Raki, L.; Alizadeh, A. Volume Stability of Calcium-Silicate-Hydrate/Polyaniline Nanocomposites in Aqueous Salt Solutions. ACI Mater. J. 2014, 111, 623–632. [Google Scholar]
- Li, H.; Xue, Z.; Liang, G.; Wu, K.; Dong, B.; Wang, W. Effect of C-S-Hs-PCE and sodium sulfate on the hydration kinetics and mechanical properties of cement paste. Constr. Build. Mater. 2021, 266, 121096. [Google Scholar] [CrossRef]
- Xu, C.; Li, H.; Yang, X.; Dong, B.; Wang, W. Action of the combined presence of C-S-Hs-PCE and triethanolamine on the performances of cement paste/mortar. Constr. Build. Mater. 2021, 269, 121345. [Google Scholar] [CrossRef]
- Kapeluszna, E.; Kotwica, Ł.; Różycka, A.; Gołek, Ł. Incorporation of Al in C-A-S-H gels with various Ca/Si and Al/Si ratio: Microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr. Build. Mater. 2017, 155, 643–653. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Zhou, Y.; Chen, Y.; Zhou, L.; She, A. Evaluation of the nanostructure of calcium silicate hydrate based on atomic force microscopy-infrared spectroscopy experiments. Nanotechnol. Rev. 2021, 10, 807–818. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, H.; Ju, C.; Yang, Y. Novel selection of environment-friendly cementitious materials for winter construction: Alkali-activated slag/Portland cement. J. Clean. Prod. 2020, 258, 120592. [Google Scholar] [CrossRef]
- Zhu, X.; Qian, C.; He, B.; Chen, Q.; Jiang, Z. Experimental study on the stability of C-S-H nanostructures with varying bulk CaO/SiO2 ratios under cryogenic attack. Cem. Concr. Res. 2020, 135, 106114. [Google Scholar] [CrossRef]
- Higl, J.; Hinder, D.; Rathgeber, C.; Ramming, B.; Lindén, M. Detailed in situ ATR-FTIR spectroscopy study of the early stages of C-S-H formation during hydration of monoclinic C3S. Cem. Concr. Res. 2021, 142, 106367. [Google Scholar] [CrossRef]
- Krautwurst, N.; Nicoleau, L.; Dietzsch, M.; Lieberwirth, I.; Labbez, C.; Fernandez-Martinez, A.; Van Driessche, A.E.S.; Barton, B.; Leukel, S.; Tremel, W. Two-Step Nucleation Process of Calcium Silicate Hydrate, the Nanobrick of Cement. Chem. Mater. 2018, 30, 2895–2904. [Google Scholar] [CrossRef]
- Murgier, S.; Zanni, H.; Gouvenot, D. Blast furnace slag cement: A 29Si and 27Al NMR study. C. R. Chim. 2004, 7, 389–394. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Z.; Zhou, Y.; Chen, Y.; Wu, K. Nanoscale determination of calcium silicate hydrate (C-S-H) precursors crystallized at extreme early stage. Measurement 2022, 199, 111489. [Google Scholar] [CrossRef]
- Xu, Z.; Gao, J.; Zhao, Y.; Li, S.; Guo, Z.; Luo, X.; Chen, G. Promoting utilization rate of ground granulated blast furnace slag (GGBS): Incorporation of nanosilica to improve the properties of blended cement containing high volume GGBS. J. Clean. Prod. 2022, 332, 130096. [Google Scholar] [CrossRef]
CaO | SiO2 | Al2O3 | MgO | MgO | Fe2O3 | TiO2 | K2O | Na2O |
---|---|---|---|---|---|---|---|---|
50.8 | 24.5 | 15.0 | 4.8 | 1.7 | 0.5 | 0.9 | 0.3 | 0.2 |
Sample | Q1 (%) | Q2b (%) | Q2p (%) | Q3 (%) | ||||
---|---|---|---|---|---|---|---|---|
Chemical Shift /ppm | Content /% | Chemical Shift /ppm | Content /% | Chemical Shift /ppm | Content /% | Chemical Shift /ppm | Content /% | |
C-S-H | - | - | −84.5 | 45.3 | −89.5 | 50.4 | −96.3 | 4.3 |
STACSH01 | −81.4 | 3.1 | −85.1 | 39.6 | −89.9, | 47.9 | −96.8 | 9.5 |
STACSH03 | −81.0 | 5.7 | −85.0 | 39.2 | −89.9 | 50.7 | −97.4 | 4.4 |
No. | Q0 | Q1 | Q2(0Al) | Q2(1Al) | Q3(0Al) | Q3(1Al) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Shift /ppm | Content /% | Shift /ppm | Content /% | Shift /ppm | Content /% | Shift /ppm | Content /% | Shift /ppm | Content /% | Shift /ppm | Content /% | |
G0 | −72.3 | 10.4 | −79.5 | 4.1 | −84.1 | 7.1 | −86.8 | 29.1 | −90.8 | 46.0 | −96.9 | 3.3 |
PCSH0 | −75.8 | 2.9 | −80.6 | 2.3 | −83.2 | 11.1 | −85.3 | 29.1 | −89.8 | 47.1 | −96.7 | 7.3 |
CSH01 | −74.3 | 0.5 | −79.0 | 1.0 | −82.6 | 7.3 | −85.0 | 27.0 | −89.9 | 51.9 | −96.9 | 12.2 |
CSH03 | −73.5 | 3.1 | −79.1 | 3.0 | −83.5 | 22.2 | −85.7 | 11.2 | −89.9 | 54.8 | −98.0 | 5.6 |
Samples | MCL | Al/Si Ratio |
---|---|---|
G0 | 50.8 | 0.162 |
PCSH0 | 96.9 | 0.150 |
CSH01 | 225.8 | 0.136 |
CSH03 | 68.2 | 0.058 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hao, W.; Zhu, Z. Effect of Synthetic Pregelatinized Starch-Modified C-S-H Particles on the Chemical Structure of C-A-S-H Generated from GGBS. Materials 2023, 16, 5736. https://doi.org/10.3390/ma16175736
Hao W, Zhu Z. Effect of Synthetic Pregelatinized Starch-Modified C-S-H Particles on the Chemical Structure of C-A-S-H Generated from GGBS. Materials. 2023; 16(17):5736. https://doi.org/10.3390/ma16175736
Chicago/Turabian StyleHao, Weijie, and Zheyu Zhu. 2023. "Effect of Synthetic Pregelatinized Starch-Modified C-S-H Particles on the Chemical Structure of C-A-S-H Generated from GGBS" Materials 16, no. 17: 5736. https://doi.org/10.3390/ma16175736
APA StyleHao, W., & Zhu, Z. (2023). Effect of Synthetic Pregelatinized Starch-Modified C-S-H Particles on the Chemical Structure of C-A-S-H Generated from GGBS. Materials, 16(17), 5736. https://doi.org/10.3390/ma16175736