A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-Band
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Munk, B.A. Frequency Selective Surfaces: Theory and Design; John Wiley & Sons: Hoboken, NJ, USA, 2005. [Google Scholar]
- Arceneaux, W.S.; Akins, R.D.; May, W.B. Absorptive/Transmissive Radome. U.S. Patent 5,400,043, 21 March 1995. [Google Scholar]
- Munk, B.A. Metamaterials: Critique and Alternatives; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Kiani, G.I.; Esselle, K.P.; Ford, K.L.; Weily, A.R.; Panagamuwa, C. Angle and polarization-independent bandstop frequency selective surface for indoor wireless systems. Microw. Opt. Technol. Lett. 2008, 50, 2315–2317. [Google Scholar] [CrossRef]
- Kiani, G.I.; Ford, K.L.; Esselle, K.P.; Weily, A.R.; Panagamuwa, C.J. Oblique incidence performance of a novel frequency selective surface absorber. IEEE Trans. Antennas Propag. 2007, 55, 2931–2934. [Google Scholar] [CrossRef]
- Kiani, G.I.; Weily, A.R.; Esselle, K.P. Frequency selective surface absorber using resistive cross-dipoles. In Proceedings of the 2006 IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, USA, 9–14 July 2006; pp. 4199–4202. [Google Scholar]
- Motevasselian, A.; Jonsson, B.L.G. Design of a wideband rasorber with a polarisation-sensitive transparent window. IET Microw. Antennas Propag. 2012, 6, 747–755. [Google Scholar] [CrossRef]
- Motevasselian, A.; Jonsson, B.L.G. Partially transparent Jaumann-like absorber applied to a curved structure. Int. J. Antennas Propag. 2011, 2011, 708987. [Google Scholar] [CrossRef]
- Omar, A.A.; Huang, H.; Shen, Z. Absorptive frequency-selective reflection/transmission structures: A review and future perspectives. IEEE Antennas Propag. Mag. 2019, 62, 62–74. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A. A frequency selective radome with wideband absorbing properties. IEEE Trans. Antennas Propag. 2012, 60, 2740–2747. [Google Scholar] [CrossRef]
- Costa, F.; Monorchio, A. Absorptive frequency selective radome. In Proceedings of the 2011 XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 13–20 August 2011; pp. 1–4. [Google Scholar]
- Chen, X.; Li, Y.; Fu, Y.; Yuan, N. Design and analysis of lumped resistor loaded metamaterial absorber with transmission band. Opt. Express 2012, 20, 28347–28352. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, L.; Chen, L.; Bai, J.; Fu, Y. Absorptive frequency selective surface using parallel LC resonance. Electron. Lett. 2016, 52, 418–419. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, S.; Bai, J.; Fu, Y. Design of absorptive/transmissive frequency-selective surface based on parallel resonance. IEEE Trans. Antennas Propag. 2017, 65, 4897–4902. [Google Scholar] [CrossRef]
- Yu, W.; Luo, G.Q.; Yu, Y.; Pan, Y.; Cao, W.; Shen, Z. Dual-Polarized Band-Absorptive Frequency Selective Rasorber Using Meander-Line and Lumped Resistors. IEEE Trans. Antennas Propag. 2018, 67, 1318–1322. [Google Scholar] [CrossRef]
- Yu, S.; Kou, N.; Ding, Z.; Zhang, Z. Harmonic-Suppressed Frequency Selective Rasorber Using Resistive-Film Sheet and Square-Loops Resonator. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 292–296. [Google Scholar] [CrossRef]
- Bakshi, S.C.; Mitra, D.; Ghosh, S. A frequency selective surface based reconfigurable rasorber with switchable transmission/reflection band. IEEE Antennas Wirel. Propag. Lett. 2018, 18, 29–33. [Google Scholar] [CrossRef]
- Chen, Q.; Sang, D.; Guo, M.; Fu, Y. Miniaturized frequency-selective rasorber with a wide transmission band using circular spiral resonator. IEEE Trans. Antennas Propag. 2018, 67, 1045–1052. [Google Scholar] [CrossRef]
- Malekara, A.; Khalilzadegan, A.; Ghobadi, C.; Nourinia, J. Wide-angle, dual-polarized frequency selective rasorber based on the electric field coupled resonator using characteristic mode analysis. J. Appl. Phys. 2023, 133, 164504. [Google Scholar] [CrossRef]
- Parameswaran, A.; Kundu, D.; Sonalikar, H.S. A Dual-Polarized Wideband Frequency-Selective Rasorber With Low in-Band Insertion Loss and High Oblique Incidence Stability. IEEE Trans. Electromagn. Compat. 2021, 63, 1820–1828. [Google Scholar] [CrossRef]
- Guo, M.; Sang, D.; Yuan, F.; Guo, T.; Zheng, Y.; Chen, Q.; Fu, Y. Broadband Absorptive Frequency-Selective Rasorber Based on Multilayer Resistive Sheets Using Multilayer Resonator. IEEE Trans. Antennas Propag. 2021, 70, 2009–2022. [Google Scholar] [CrossRef]
- Zargar, M.M.; Rajput, A.; Saurav, K.; Koul, S.K. Frequency-Selective Rasorber Based on High-Q Minkowski Fractal-Shaped Resonator for Realizing a Low Radar Cross-Section Radiating System. IEEE Trans. Electromagn. Compat. 2022, 64, 1574–1584. [Google Scholar] [CrossRef]
- Omar, A.A.; Shen, Z. Tunable absorptive frequency-selective transmission structure. In Proceedings of the 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 8–13 July 2018; pp. 2063–2064. [Google Scholar]
- Guo, M.; Lin, Y.; Guo, T.; Chen, Q.; Zheng, Y.; Fu, Y. Frequency-selective rasorber with two low insertion loss transmission bands. Int. J. RF Microw. Comput.-Aided Eng. 2020, 30, e22044. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Q.; Bai, T.; Wei, K.; Fu, Y. Wide transmission band frequency-selective rasorber based on convoluted resonator. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 846–850. [Google Scholar] [CrossRef]
- Mias, C. Varactor-tunable frequency selective surface with resistive-lumped-element biasing grids. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 570–572. [Google Scholar] [CrossRef]
- Huang, X.G.; Shen, Z.; Feng, Q.Y.; Li, B. Tunable 3-D bandpass frequency-selective structure with wide tuning range. IEEE Trans. Antennas Propag. 2015, 63, 3297–3301. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Withayachumnankul, W.; Al-Sarawi, S.F.; Abbott, D. Higher-order tunable frequency selective surface with miniaturized elements. In Proceedings of the 2015 IEEE 15th Mediterranean Microwave Symposium (MMS), Lecce, Italy, 30 November–2 December 2015; pp. 1–4. [Google Scholar]
- Ebrahimi, A.; Shen, Z.; Withayachumnankul, W.; Al-Sarawi, S.F.; Abbott, D. Varactor-tunable second-order bandpass frequency-selective surface with embedded bias network. IEEE Trans. Antennas Propag. 2016, 64, 1672–1680. [Google Scholar] [CrossRef]
- Wu, L.; Zhong, S.; Huang, J.; Liu, T. Broadband frequency-selective rasorber with varactor-tunable interabsorption band transmission window. IEEE Trans. Antennas Propag. 2019, 67, 6039–6050. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, S.S.; Shen, Z.; Wu, W. Tunable frequency-selective rasorber based on varactor-embedded square-loop array. IEEE Access 2019, 7, 115552–115559. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, Z.; Su, J.; Li, Z. Dual-polarization absorptive/transmissive frequency-selective surface with tunable passband. IEEE Trans. Electromagn. Compat. 2021, 63, 1347–1356. [Google Scholar] [CrossRef]
- Bakshi, S.C.; Mitra, D.; Teixeira, F.L. FSS-based fully reconfigurable rasorber with enhanced absorption bandwidth and simplified bias network. IEEE Trans. Antennas Propag. 2020, 68, 7370–7381. [Google Scholar] [CrossRef]
- Bakshi, S.C.; Mitra, D.; Teixeira, F.L. Multifunctional frequency selective rasorber with dual mode and continuous tunability. IEEE Trans. Antennas Propag. 2021, 69, 5704–5715. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Z.; Su, J.; Yang, L.Y.; Song, J. Dual-polarization absorptive/transmissive frequency selective surface based on tripole elements. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 961–965. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Q.; Sun, Z.; Sang, D.; Fu, Y. Design of dual-band frequency-selective rasorber. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 841–845. [Google Scholar] [CrossRef]
- Zhao, W.; Jiang, T.; Chen, K.; Zhao, J.; Feng, Y. Design of a Tunable Frequency Selective Rasorber with Capability of High Frequency Selectivity. In Proceedings of the 2022 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Harbin, China, 12–15 August 2022; pp. 1–3. [Google Scholar]
- Wu, Z.; Zhou, Q.; Liu, P.; Lin, M. Active Frequency Selective Rasorber With Switchable Transmission Band and Tunable Absorption Band. IEEE Microw. Wirel. Technol. Lett. 2023, 33, 1247–1250. [Google Scholar] [CrossRef]
- Yu, D.; Dong, Y.; Zhang, Z.; Lin, M.; Han, L. High-Selectivity Frequency-Selective Rasorber With Tunable Absorptivity. IEEE Trans. Antennas Propag. 2023, 71, 3620–3630. [Google Scholar] [CrossRef]
- Danila, O. Polyvinylidene fluoride-based metasurface for high-quality active switching and spectrum shaping in the terahertz g-band. Polymers 2021, 13, 1860. [Google Scholar] [CrossRef]
- Dănilă, O.; Mănăilă-Maximean, D.; Bărar, A.; Loiko, V.A. Non-layered gold-silicon and all-silicon frequency-selective metasurfaces for potential mid-infrared sensing applications. Sensors 2021, 21, 5600. [Google Scholar] [CrossRef]
Ref. | Realization of Lossy FSS | Tunable Range (GHz) | Insertion Loss (dB) | Oblique Performance | Polarization | |
---|---|---|---|---|---|---|
[30] | metallic loops, extended metallic parts | 1.6–3.3 | 3.4–9.3 | 95.9% | 45° | dual |
[31] | a square-loop structure | 3.8–5.2 | 0.59–2.5 | 93.1% | 30° | single |
[32] | cross, meander lines | 2.8–4.2 | 1.7–6.5 | 98.9% | 30° | dual |
[33] | a square loop, metallic strips | Discrete Freq. 4.01 GHz, 6.05 GHz, 13.1 GHz | 0.55–1.01 | - | 30° | dual |
[34] | a square loop, outer metallic patch | 4.17–4.71 | 0.62–0.95 | - | 45° | dual |
This work | a cross-shaped structure, metal strips | 8–12 | 0.4–1.4 | 104.7% | 48° | dual |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, S.; Chai, Z.; Zhang, S.; Shi, Y.; Zhang, Y. A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-Band. Materials 2023, 16, 5787. https://doi.org/10.3390/ma16175787
Shi S, Chai Z, Zhang S, Shi Y, Zhang Y. A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-Band. Materials. 2023; 16(17):5787. https://doi.org/10.3390/ma16175787
Chicago/Turabian StyleShi, Shengnan, Zizhao Chai, Shan Zhang, Yanpeng Shi, and Yifei Zhang. 2023. "A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-Band" Materials 16, no. 17: 5787. https://doi.org/10.3390/ma16175787
APA StyleShi, S., Chai, Z., Zhang, S., Shi, Y., & Zhang, Y. (2023). A Tunable Frequency Selective Rasorber with Broad Passband and Low Transmission Loss at X-Band. Materials, 16(17), 5787. https://doi.org/10.3390/ma16175787