Design of V2O5 Blocks Decorated with Garlic Peel Biochar Nanoparticles: A Sustainable Catalyst for the Degradation of Methyl Orange and Its Antioxidant Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Garlic Peel Biochar (GPB)
2.2. Preparation of V2O5/Garlic Peel Biochar (VO/GPB) Composite
2.3. Characterization Technique
2.4. Photocatalytic Experiments
2.5. Antioxidant Activity by DPPH Assay
3. Results and Discussion
3.1. XRD Analysis
3.2. Morphological Analysis
3.3. Optical Properties
3.4. Photoluminescence Studies
3.5. Estimation of the Photodegradation Process
3.5.1. The Effectiveness of the Diverse Catalyst
3.5.2. The Effectiveness of Catalyst Dosage
3.5.3. The Effectiveness of Pollutant Concentration
3.5.4. Effect of pH
3.5.5. Kinetic Studies
3.5.6. ROS Study
3.5.7. Plausible Mechanism of the Photodegradation
3.5.8. Reusability Test
3.6. Antioxidant Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitra, M.; Aziz, H.Y. Decoration of Fe3O4 and CoWO4 nanoparticles over graphitic carbon nitride: Novel visible-light-responsive photocatalysts with exceptional photocatalytic performances. Mater. Res. Bull. 2018, 105, 159–171. [Google Scholar]
- Akbar, M.; Kshipra, K.; Shaikh, M.M. Improved Photocatalytic Degradation of Organic Dyes by ZnO-Nanoflowers. ChemistrySelect 2016, 1, 3483–3490. [Google Scholar]
- Cheng, C.; Zhang, J.; Zhang, C.; Liu, H.; Liu, W. Preparation and characterization of charcoal from feathers and its application in trimethoprim adsorption. Desalination Water Treat. 2014, 52, 5401–5412. [Google Scholar] [CrossRef]
- Teng, Z.; Han, K.; Li, J.; Gao, Y.; Li, M.; Ji, T. Ultrasonic-assisted preparation and characterization of hierarchical porous carbon derived from garlic peel for high-performance supercapacitors. Ultrason. Sonochem. 2020, 60, 104756. [Google Scholar] [CrossRef] [PubMed]
- Ashtaputrey, P.D.; Ashtaputrey, S.D. Preparation and characterization of activated charcoal derived from wood apple fruit shell. J. Sci. Res. 2020, 64, 336–340. [Google Scholar] [CrossRef]
- Rotami, M.; Hamadanian, M.; Nasrabadi, M.R.; Ganjali, R. Sol–gel preparation of metal and nonmetal-codoped TiO2-graphene nanophotocatalyst for photodegradation of MO under UV and visible-light irradiation. Ionics 2019, 25, 1869–1878. [Google Scholar] [CrossRef]
- Jung, E.L.; Young, K.P. Applications of modified biochar-based materials for the removal of environment pollutants: A Mini Review. Sustainability 2020, 12, 6112. [Google Scholar]
- Fadhil, O.H.; Eisa, M.Y. Removal of methyl orange from aqueous solutions by adsorption using corn leaves as adsorbent material. J. Eng. 2019, 25, 55–69. [Google Scholar] [CrossRef]
- Hasanpour, M.; Motahari, S.; Jing, D.; Hatami, M. Statistical analysis and optimization of photodegradation efficiency of methyl orange from aqueous solution using cellulose/zinc oxide hybrid aerogel by response surface methodology (RSM). Arab. J. Chem. 2021, 14, 103401. [Google Scholar] [CrossRef]
- Kalyani, P.; Anitha, A. Refuse derived energy—Tea derived boric acid activated carbon as an electrode material for electrochemical capacitors. Port. Electrochim. Acta 2013, 31, 165–174. [Google Scholar] [CrossRef]
- Rasheed, R.T.; Mansoor, H.S.; Abdullah, T.A.; Tatjana, J.; Noor, A.J.; Ali, D.S.; Rasha, R.S. Synthesis, characterization of V2O5 nanoparticles and determination of catalase mimetic activity by new colorimetric method. J. Therm. Anal. Calorim. 2021, 145, 297–307. [Google Scholar] [CrossRef]
- Subhash, C.; Pravin, J.; Isha, M.; Ashwani, K.T.; Mattia, B.; Antonio, D.N.; Fabrizio, O. Biochar-supported TiO2-based nanocomposites for the photocatalytic degradation of sulfamethoxazole in water—A review. Toxics 2021, 9, 313. [Google Scholar]
- Liu, X.; Zeng, J.; Yang, H.; Zhou, K.; Pan, D. V2O5-Based nanomaterials: Synthesis and their applications. RSC Adv. 2018, 8, 4014–4031. [Google Scholar] [CrossRef]
- Guillaume, S.; Brice, B.; Issam, M.; Manuel, G.; Aline, R. Polyol Synthesis of Ti-V2O5 nanoparticles and their use as electrochromic films. Inorg. Chem. 2016, 55, 9838–9847. [Google Scholar]
- Huang, X.; Zhu, S.; Zhang, H.; Huang, Y.; Wang, X.; Wang, Y.; Chen, D. Biochar nanoparticles induced distinct biological effects on freshwater algae via oxidative stress, membrane damage, and nutrient depletion. ACS Sustain. Chem. Eng. 2021, 9, 10761–10770. [Google Scholar] [CrossRef]
- Chen, X.; Duan, M.; Zhou, B.; Cui, L. Effects of biochar nanoparticles as a soil amendment on the structure and hydraulic characteristics of a sandy loam soil. Soil Use Manag. 2022, 38, 836–849. [Google Scholar] [CrossRef]
- Tan, X.-F.; Liu, Y.-G.; Gu, Y.-L.; Xu, Y.; Zeng, G.-M.; Hu, X.-J.; Liu, S.-B.; Wang, X.; Liu, S.-M.; Li, J. Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresour. Technol. 2016, 212, 318–333. [Google Scholar] [CrossRef] [PubMed]
- Patryk, O.; Wiesława, C.B.; Aleksandra, B.; Ewa, S.; Yong, S.O. Characterization of nanoparticles of biochars from different biomass. J. Anal. Appl. Pyrolysis 2016, 121, 165–172. [Google Scholar]
- Neha, C.; Jyoti, S.; Ram, P. Nanobiochar and biochar-based nanocomposites: Advances and applications. J. Sci. Food Agric. 2021, 5, 100191. [Google Scholar]
- Zhu, K.; Meng, Y.; Qiu, H.; Gao, Y.; Wang, C.; Du, F.; Wei, Y.; Chen, G.; Wang, C.; Chen, G. Facile synthesis of V2O5 nanoparticles as a capable cathode for high energy lithium-ion batteries. J. Alloys Compd. 2015, 50, 370–373. [Google Scholar] [CrossRef]
- Karthik, K.; Dhanuskodi, S.; Gobinath, C. Dielectric and antibacterial studies of microwave assisted calcium hydroxide nanoparticles. J. Mater. Sci. Mater. Electron. 2015, 28, 16509–16518. [Google Scholar] [CrossRef]
- Revathi, V.; Karthik, K. Physico-chemical properties and antibacterial activity of Hexakis (Thiocarbamide) Nickel(II) nitrate single crystal. Chem. Data Collect. 2019, 21, 100229. [Google Scholar] [CrossRef]
- Kannan, K.; Radhika, D.; Nesaraj, A.S.; Sadasivuni, K.K.; Krishna, L.S. Facile synthesis of NiO-CYSO nanocomposite for photocatalytic and antibacterial applications. Inorg. Chem. Commun. 2020, 122, 108307. [Google Scholar] [CrossRef]
- Majid, F.; Nilofar, A. Chemical synthesis of vanadium oxide (V2O5) nanoparticles prepared by sodium metavanadate. J. Nanomed. Res. 2017, 5, 00103. [Google Scholar]
- Zahra, A.H.; Rashed, T.R. Preparation of V2O5 and SnO2 Nanoparticles and their application as pollutant removal. J. Nanotechnol. 2021, 1, 69–80. [Google Scholar]
- Karthik, K.; Maria, P.N.; Anukorn, P.; Pushpa, S.; Revathi, V.; Subbulakshmi, M. Ultrasound-assisted synthesis of V2O5 nanoparticles for photocatalytic and antibacterial studies. Mater. Res. Innov. 2020, 24, 229–234. [Google Scholar] [CrossRef]
- Shreenivasa, L.; Yogeeshwari, R.T.; Viswanatha, R.; Sriram, G.; Kalegowda, Y.; Kurkuri Mahaveer, D.; Ashoka, S. An introduction of new nanostructured Zn0.29V2O5 cathode material for lithium ion battery: A detailed studies on synthesis, characterization and lithium uptake. Mater. Res. Exp. 2019, 6, 115035. [Google Scholar] [CrossRef]
- Salam, A.M.; Lamya, A.A.; Emad, Y.; Ali, A.A.; Fazal, M.; Hazim, F.A.; Sausan, A. Synthesis of NiO:V2O5 nanocomposite and its photocatalytic efficiency for methyl orange degradation. Heliyon 2018, 4, 00581. [Google Scholar]
- Guo, F.; Bao, L.; Wang, H.; Larson, S.L.; Ballard, J.H.; Knotek-Smith, H.M.; Zhang, Q.; Su, Y.; Wang, X.; Han, F. A simple method for the synthesis of biochar nanodots using hydrothermal reactor. MethodsX 2020, 7, 101022. [Google Scholar] [CrossRef]
- Hunge, Y.M.; Yadav, A.A.; Mathe, V.L. Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem. 2018, 45, 116–122. [Google Scholar] [CrossRef]
- Babu, S.G.; Vinoth, R.; Kumar, D.P.; Shankar, M.V.; Chou, H.L.; Vinodgopal, K.; Neppolian, B. The influence of electron storing, transferring and shuttling on reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production. Nanoscale 2015, 7, 7849–7857. [Google Scholar] [CrossRef] [PubMed]
- Sivaganesh, D.; Saravanakumar, S.; Sivakumar, V.; Rajajeyaganthan, R.; Arunpandian, M.; Nandha Gopal, J.; Thirumalaisamy, T.K. Surfactants-assisted synthesis of ZnWO4 nanostructures: A view on photocatalysis, photoluminescence and electron density distribution analysis. Mater. Charact. 2020, 159, 110035. [Google Scholar] [CrossRef]
- Tan, X.F.; Liu, Y.G.; Zeng, G.; Wang, X.; Hu, X.; Gu, Y.; Yang, Z. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere 2015, 125, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Gao, B.; Chen, J.; Yang, L. Engineered biochar reclaiming phosphate from aqueous solutions: Mechanisms and potential application as a slowrelease fertilizer. Environ. Sci. Technol. 2013, 47, 8700–8708. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Gao, B.; Inyang, M.; Zimmerman, A.R.; Cao, X.; Pullammanappallil, P.; Yang, L. Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresour. Technol. 2011, 102, 6273–6278. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, B.; Varnoosfaderani, S.; Hebard, A.; Yao, Y.; Inyang, M. Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour. Technol. 2013, 130, 457–462. [Google Scholar] [CrossRef]
- Inyang, M.; Gao, B.; Zimmerman, A.; Zhang, M.; Chen, H. Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem. Eng. J. 2014, 236, 39–46. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Kermanshahi-Pour, A.; Verma, M.; Surampalli, R.Y. Pinewood nanobiochar: A unique carrier for the immobilization of crude laccase by covalent bonding. Int. J. Biol. Macromol. 2018, 115, 563–571. [Google Scholar] [CrossRef]
- Younas, U.; Gulzar, A.; Ali, F.; Pervaiz, M.; Ali, Z.; Khan, S.; Saeed, Z.; Ahmed, M.; Alothman, A.A. Antioxidant and Organic Dye Removal Potential of Cu-Ni Bimetallic Nanoparticles Synthesized Using Gazania rigens Extract. Water 2021, 13, 2653. [Google Scholar] [CrossRef]
- Younas, U.; Hassan, S.T.; Ali, F.; Hassan, F.; Saeed, Z.; Pervaiz, M.; Khan, S.; Jannat, F.T.; Bibi, S.; Sadiqa, A.; et al. Radical Scavenging and Catalytic Activity of Fe-Cu Bimetallic Nanoparticles Synthesized from Ixora finlaysoniana Extract. Coatings 2021, 11, 813. [Google Scholar] [CrossRef]
- Imran, M.; Saeed, Z.; Pervaiz, M.; Mehmood, K.; Ejaz, R.; Younas, U.; Nadeem, H.A.; Hussain, S. Enhanced visible light photocatalytic activity of TiO2 co-doped with Fe, Co, and S for degradation of Cango red. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 255, 119644. [Google Scholar] [CrossRef] [PubMed]
- Kosta, I.; Navone, C.; Bianchin, A.; García-Lecina, E.; Grande, H.; Ihou Mouko, H.; Azpeitia, J.; García, I. Influence of vanadium oxides nanoparticles on thermoelectric properties of an N-type Mg2Si0.888Sn0.1Sb0.012 alloy. J. Alloys Compd. 2021, 856, 158069. [Google Scholar] [CrossRef]
- Mahalingam, S.; Ali, A.; Abdulaziz, A.; Ramasamy, J. Enhanced photocatalytic performance of the graphene-V2O5 nanocomposite in the degradation of methylene blue dye under direct sunlight. Appl. Mater. Interfaces 2015, 7, 14905–14911. [Google Scholar]
- Martha, S.; Das, D.P.; Biswala, N.; Parida, K.M. Facile synthesis of visible light responsive V2O5/N, S-TiO2 composite photocatalyst: Enhanced hydrogen production and phenol degradation. J. Mater. Chem. 2012, 22, 10695–10703. [Google Scholar] [CrossRef]
- Mandal, R.K.; Kundu, S.; Sain, S.; Pradhan, S.K. Enhanced photocatalytic performance of V2O5-TiO2 nanocomposites synthesized by mechanical alloying with morphological hierarchy. New J. Chem. 2019, 43, 2804–2816. [Google Scholar] [CrossRef]
- Liao, Y.; Jia, L.; Chen, R.; Gu, O.; Sakurai, M.; Kameyama, H.; Zhou, L.; Ma, H.; Guo, Y. Charcoal-supported catalyst with enhanced thermal-stability for the catalytic combustion of volatile organic compounds. Appl. Catal. A Gen. 2016, 522, 32–39. [Google Scholar] [CrossRef]
- Tuokko, S.; Pihko, P.M. Palladium on charcoal as a catalyst for stoichiometric chemo- and stereoselective hydrosilylations and hydrogenations with triethylsilane. Org. Process Res. Dev. 2014, 18, 1740–1751. [Google Scholar] [CrossRef]
- Wu, F.; Liu, W.; Qiu, J.; Li, J.; Zhou, W.; Fang, Y.; Zhang, S.; Li, X. Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Appl. Surf. Sci. 2015, 358, 425–435. [Google Scholar] [CrossRef]
- Li, M.; Huang, H.; Yu, S.; Tian, N.; Dong, F.; Du, X.; Zhang, Y. Simultaneously promoting charge separation and photoabsorption of BiOX (X = Cl, Br) for efficient visible-light photocatalysis and photosensitization by compositing low-cost biochar. Appl. Surf. Sci. 2016, 386, 285–295. [Google Scholar] [CrossRef]
- Pi, L.; Jiang, R.; Zhou, W.; Zhu, H.; Xiao, W.; Wang, D.; Mao, X. g-C3N4 Modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants. Appl. Surf. Sci. 2015, 358, 231–239. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, G.; Li, W.; Zhang, L.; Guo, B.; Ding, L.; Li, X. Photocatalytic Activity of Magnetic Nano-β-FeOOH/Fe3O4/Biochar Composites for the Enhanced Degradation of Methyl Orange Under Visible Light. Nanomaterials 2021, 11, 526. [Google Scholar] [CrossRef] [PubMed]
- Mian, M.M.; Liu, G. Sewage Sludge-Derived TiO2/Fe/Fe3C-Biochar Composite as an Efficient Heterogeneous Catalyst for Degradation of Methylene Blue. Chemosphere 2019, 215, 101–114. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.L.; Li, F.; Chen, H.; Wang, H.; Li, G. Fe2O3/TiO2 Functionalized Biochar as a Heterogeneous Catalyst for Dyes Degradation in Water under Fenton Processes. J. Environ. Chem. Eng. 2020, 8, 103905. [Google Scholar] [CrossRef]
- Xie, X.; Li, S.; Zhang, H.; Wang, Z.; Huang, H. Promoting Charge Separation of Biochar-Based Zn-TiO2/PBC in the Presence of ZnO for Efficient Sulfamethoxazole Photodegradation under Visible Light Irradiation. Sci. Total Environ. 2019, 659, 529–539. [Google Scholar] [CrossRef]
- Gala, V.; Lopez-Penalver, J.J.; Sanchez-Polo, M.; Rivera-Utrilla, J. Activated carbon as photocatalyst of reactions in aqueous phase. Appl. Catal. B 2013, 142–143, 694–704. [Google Scholar] [CrossRef]
- Bhosale, T.T.; Shinde, H.M.; Gavade, N.L.; Babar, S.B.; Gawade, V.V.; Sabale, S.R.; Kamble, R.J.; Shirke, B.S.; Garadkar, K.M. Biosynthesis of SnO2 nanoparticles by aqueous leaf extract of Calotropis gigantea for photocatalytic applications. J. Mater. Sci. Mater. Electron. 2018, 29, 6826–6834. [Google Scholar] [CrossRef]
- Blinov, A.V.; Kachanov, M.D.; Gvozdenko, A.A.; Nagdalian, A.A.; Blinova, A.A.; Rekhman, Z.A.; Golik, A.B.; Vakalov, D.S.; Maglakelidze, D.G.; Nagapetova, A.G.; et al. Synthesis and Characterization of Zinc Oxide Nanoparticles Stabilized with Biopolymers for Application in Wound-Healing Mixed Gels. Gels 2023, 9, 57. [Google Scholar] [CrossRef]
- Abdollahi, Z.; Zare, E.N.; Salimi, F.; Goudarzi, I.; Tay, F.R.; Makvandi, P. Bioactive Carboxymethyl Starch-Based Hydrogels Decorated with CuO Nanoparticles: Antioxidant and Antimicrobial Properties and Accelerated Wound Healing In Vivo. Int. J. Mol. Sci. 2021, 22, 2531. [Google Scholar] [CrossRef]
- Gvozdenko, A.A.; Siddiqui, S.A.; Blinov, A.V.; Golik, A.B.; Nagdalian, A.A.; Maglakelidze, D.G.; Statsenko, E.N.; Pirogov, M.A.; Blinova, A.A.; Sizonenko, M.N.; et al. Synthesis of CuO nanoparticles stabilized with gelatin for potential use in food packaging applications. Sci. Rep. 2022, 12, 12843. [Google Scholar] [CrossRef]
- Jyoti, P.S.; Samrat, P.; Bolin, K.K.; Sanjoy, K.S. Ultrasonication: Enhances the antioxidant activity of metal oxide nanoparticles. Colloids Surf. B Biointerfaces 2010, 79, 521–523. [Google Scholar]
- Sandhya, J.; Kalaiselvam, S. Biogenic synthesis of magnetic iron oxide nanoparticles using inedible borassusflabellifer seed coat: Characterization, antimicrobial, antioxidant activity andin vitrocytotoxicity analysis. Mater. Res. Express 2020, 7, 015045. [Google Scholar] [CrossRef]
- Ekpete, O.A.; Marcus, A.C.; Osi, V. Preparation and Characterization of Activated Carbon Obtained from Plantain (Musa paradisiaca) Fruit Stem. J. Chem. 2017, 2017, 8635615. [Google Scholar] [CrossRef]
- Burcu, S.T.; Tugce, F.; Pelin, T.; Bijen, K.; Besra, O.Y.; Cagla, K.; Sunde, Y.S.; Cumhur, G. Structural characterization, antioxidant and cytotoxic effects of iron nanoparticles synthesized using Asphodelus aestivus brot. aqueous extract. Green Synth. Catal. 2020, 9, 153–163. [Google Scholar]
S. No | Catalyst | Weight of Catalyst (g/L) | Organic Pollutant | Irradiation Light | % of Degradation | Time (min) | Source |
---|---|---|---|---|---|---|---|
1 | TiO2–bamboo | 0.05 | MB | UV light | 90 | 120 | [48] |
2 | BiOX (X = Cl or Br)–biochar | 0.05 | MO | Visible light | 82 | 150 | [49] |
3 | g-C3N4–biochar | 0.45 | MB | LED light | 91 | 240 | [50] |
4 | Nano-β-FeOOH/Fe3O4/Biochar | 0.1 | MO | Xenon lamp | 98 | 90 | [51] |
5 | TiO2/Fe/Fe3C/biochar | 1.00 | MB | UV light | 89.2 | 300 | [52] |
6 | Fe2O3/TiO2/biochar | 2.00 | MB Rh BMO | Visible light | 75 60 40 | 60 | [53] |
7 | Zn/TiO2/biochar | 1.25 | Sulfamethoxazole | Visible light | 80.0 | 180 | [54] |
8 | VO/GPB | 0.04 | MO | Visible light | 84 | 30 | This work |
Concentration (mg/L) | Vitamin C (%) | VO/GPB (%) |
---|---|---|
20 | 80.11 | 88.25 |
30 | 85.68 | 91.15 |
40 | 92.43 | 93.86 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarojini, P.; Leeladevi, K.; Kavitha, T.; Gurushankar, K.; Sriram, G.; Oh, T.H.; Kannan, K. Design of V2O5 Blocks Decorated with Garlic Peel Biochar Nanoparticles: A Sustainable Catalyst for the Degradation of Methyl Orange and Its Antioxidant Activity. Materials 2023, 16, 5800. https://doi.org/10.3390/ma16175800
Sarojini P, Leeladevi K, Kavitha T, Gurushankar K, Sriram G, Oh TH, Kannan K. Design of V2O5 Blocks Decorated with Garlic Peel Biochar Nanoparticles: A Sustainable Catalyst for the Degradation of Methyl Orange and Its Antioxidant Activity. Materials. 2023; 16(17):5800. https://doi.org/10.3390/ma16175800
Chicago/Turabian StyleSarojini, Perumal, Karuppasamy Leeladevi, Thavuduraj Kavitha, Krishnamoorthy Gurushankar, Ganesan Sriram, Tae Hwan Oh, and Karthik Kannan. 2023. "Design of V2O5 Blocks Decorated with Garlic Peel Biochar Nanoparticles: A Sustainable Catalyst for the Degradation of Methyl Orange and Its Antioxidant Activity" Materials 16, no. 17: 5800. https://doi.org/10.3390/ma16175800
APA StyleSarojini, P., Leeladevi, K., Kavitha, T., Gurushankar, K., Sriram, G., Oh, T. H., & Kannan, K. (2023). Design of V2O5 Blocks Decorated with Garlic Peel Biochar Nanoparticles: A Sustainable Catalyst for the Degradation of Methyl Orange and Its Antioxidant Activity. Materials, 16(17), 5800. https://doi.org/10.3390/ma16175800