Aging Behavior and Mechanism Evolution of Nano-Al2O3/Styrene-Butadiene-Styrene-Modified Asphalt under Thermal-Oxidative Aging
Abstract
:1. Introduction
- To evaluate the influence of NA on the thermal-oxidative aging properties of SBS asphalt, and to carry out research on the aging characteristics of NA/SBS-modified asphalt under long-term thermal-oxidative aging conditions.
- To reveal the enhancement mechanism of NA/SBS under thermal-oxidative aging conditions from the perspective of chemical functional groups, molecular weight, and micromorphology.
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Experimental Methods
2.3.1. Aging Procedure
2.3.2. Viscosity Test
2.3.3. DSR Test
2.3.4. FTIR Test
2.3.5. GPC Test
2.3.6. AFM Test
2.4. Experimental Design
3. Results and Discussion
3.1. Rheological Property Test Results
3.1.1. Viscosity Test Results
3.1.2. DSR Test Results
3.2. Mechanism Analyzing Test Results
3.2.1. FTIR Test Results
3.2.2. GPC Test Results
3.2.3. AFM Test Results
3.2.4. Correlation Analysis between FTIR Indexes and Rheological Properties Indexes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ren, J.; Xue, B.; Zhang, L.; Liu, W.; Li, D.; Xu, Y. Characterization and prediction of rutting resistance of rock asphalt mixture under the coupling effect of water and high-temperature. Constr. Build. Mater. 2020, 254, 119316. [Google Scholar] [CrossRef]
- Zhang, Y.; Gu, Q.; Kang, A.; Ding, X.; Ma, T. Characterization of mesoscale fracture damage of asphalt mixtures with basalt fiber by environmental scanning electron microscopy. Constr. Build. Mater. 2022, 344, 128188. [Google Scholar] [CrossRef]
- Ren, J.; Zang, G.; Xu, Y. Formula and pavement properties of a composite modified bioasphalt binder considering performance and economy. J. Mater. Civil. Eng. 2019, 31, 04019243. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Zhang, Y. Aging mechanism and effective recycling ratio of SBS modified asphalt. Constr. Build. Mater. 2014, 70, 26–35. [Google Scholar] [CrossRef]
- Zhang, Z.; Han, S.; Han, X.; Cheng, X.; Yao, T. Comparison of SBS-modified asphalt rheological properties during simple-aging test. J. Mater. Civil. Eng. 2020, 32, 04020241. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, H.; Shi, C. Investigation of aging performance of SBS modified asphalt with various aging methods. Constr. Build. Mater. 2017, 145, 445–451. [Google Scholar] [CrossRef]
- Rivera, C.; Caro, S.; Arámbula-Mercado, E.; Sánchez, D.B.; Karki, P. Comparative evaluation of ageing effects on the properties of regular and highly polymer modified asphalt binders. Constr. Build. Mater. 2021, 302, 124163. [Google Scholar] [CrossRef]
- Zhu, J.; Birgisson, B.; Kringos, N. Polymer modification of bitumen: Advances and challenges. Eur. Polym. J. 2014, 54, 18–38. [Google Scholar] [CrossRef]
- Hao, G.; Huang, W.; Yuan, J.; Tang, N.; Xiao, F. Effect of aging on chemical and rheological properties of SBS modified asphalt with different compositions. Constr. Build. Mater. 2017, 156, 902–910. [Google Scholar] [CrossRef]
- Cortizo, M.S.; Larsen, D.O.; Bianchetto, H.; Alessandrini, J.L. Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts. Polym. Degrad. Stabil. 2004, 86, 275–282. [Google Scholar] [CrossRef]
- Wei, C.; Duan, H.; Zhang, H.; Chen, Z. Influence of SBS modifier on aging behaviors of SBS-modified asphalt. J. Mater. Civil. Eng. 2019, 31, 04019184. [Google Scholar] [CrossRef]
- Ruan, Y.; Davison, R.R.; Glover, C.J. The effect of long-term oxidation on the rheological properties of polymer modified asphalts. Fuel 2003, 82, 1763–1773. [Google Scholar] [CrossRef]
- Liu, G.; Nielsen, E.; Komacka, J.; Greet, L.; van de Ven, M. Rheological and chemical evaluation on the ageing properties of SBS polymer modified bitumen: From the laboratory to the field. Constr. Build. Mater. 2014, 51, 244–248. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, T.; Liu, P.; Oeser, M.; Wang, H. Improvements of developed graphite based composite anti-aging agent on thermal aging properties of asphalt. Materials 2020, 13, 4005. [Google Scholar] [CrossRef]
- Sun, L.; Xin, X.; Ren, J. Inorganic nanoparticle-modified asphalt with enhanced performance at high temperature. J. Mater. Civil. Eng. 2017, 29, 04016227. [Google Scholar] [CrossRef]
- Sun, L.; Xin, X.; Ren, J. Asphalt modification using nano-materials and polymers composite considering high and low temperature performance. Constr. Build. Mater. 2017, 133, 358–366. [Google Scholar] [CrossRef]
- Ren, J.; Zang, G.; Wang, S.; Shi, J.; Wang, Y. Investigating the pavement performance and aging resistance of modified bio-asphalt with nano-particles. PLoS ONE 2020, 15, e0238817. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Rheological and adhesive properties of nanocomposite bitumen binders based on hydrophilic or hydrophobic silica and modified with bio-oil. Constr. Build. Mater. 2022, 342, 127946. [Google Scholar] [CrossRef]
- Yadykova, A.Y.; Ilyin, S.O. Bitumen improvement with bio-oil and natural or organomodified montmorillonite: Structure, rheology, and adhesion of composite asphalt binders. Constr. Build. Mater. 2023, 364, 129919. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, H.; Zhu, C.; Zhao, B. Rheological examination of aging in bitumen with inorganic nanoparticles and organic expanded vermiculite. Constr. Build. Mater. 2015, 101, 884–891. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, Z.; Zhang, H.; Wei, C. Rheological and anti-aging performance of SBS modified asphalt binders with different multi-dimensional nanomaterials. Constr. Build. Mater. 2018, 188, 409–416. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, C.; Chen, Z. Influence of multi-dimensional nanomaterials on the aging behavior of bitumen and SBS modified bitumen. Petrol. Sci. Technol. 2017, 35, 1931–1937. [Google Scholar] [CrossRef]
- Xu, X.; Guo, H.; Wang, X.; Zhang, M.; Wang, Z.; Yang, B. Physical properties and anti-aging characteristics of asphalt modified with nano-zinc oxide powder. Constr. Build. Mater. 2019, 224, 732–742. [Google Scholar] [CrossRef]
- Li, R.; Pei, J.; Sun, C. Effect of nano-ZnO with modified surface on properties of bitumen. Constr. Build. Mater. 2015, 98, 656–661. [Google Scholar] [CrossRef]
- Wang, R.; Yue, M.; Xiong, Y.; Yue, J. Experimental study on mechanism, aging, rheology and fatigue performance of carbon nanomaterial/SBS-modified asphalt binders. Constr. Build. Mater. 2021, 268, 121189. [Google Scholar] [CrossRef]
- Al-Mansob, R.A.; Ismail, A.; Rahmat, R.A.O.; Borhan, M.N.; Alsharef, J.M.; Albrka, S.I.; Karim, M.R. The performance of epoxidised natural rubber modified asphalt using nano-alumina as additive. Constr. Build. Mater. 2017, 155, 680–687. [Google Scholar] [CrossRef]
- Ali, S.I.A.; Ismail, A.; Karim, M.R.; Yusoff, N.I.M.; Al-Mansob, R.A.; Aburkaba, E. Performance evaluation of Al2O3 nanoparticle-modified asphalt binder. Road. Mater. Pavement 2017, 18, 1251–1268. [Google Scholar] [CrossRef]
- Shafabakhsh, G.; Aliakbari Bidokhti, M.; Divandari, H. Evaluation of the performance of SBS/Nano-Al2O3 composite-modified bitumen at high temperature. Road. Mater. Pavement 2021, 22, 2523–2537. [Google Scholar] [CrossRef]
- Bhat, F.S.; Mir, M.S. A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder. Constr. Build. Mater. 2021, 271, 121499. [Google Scholar] [CrossRef]
- Mallakpour, S.; Khadem, E. Recent development in the synthesis of polymer nanocomposites based on nano-alumina. Prog. Polym. Sci. 2015, 51, 74–93. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, X.Y.; Ma, Y.M.; Ke, Y.C.; Zhang, J.K.; Wang, F.S. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE) composites. Express. Polym. Lett. 2011, 5, 581–590. [Google Scholar] [CrossRef]
- Cong, P.; Guo, X.; Mei, L. Investigation on rejuvenation methods of aged SBS modified asphalt binder. Fuel 2020, 279, 118556. [Google Scholar] [CrossRef]
- Nagabhushanarao, S.S.; Vijayakumar, A.S. Chemical and rheological characteristics of accelerate aged asphalt binders using rolling thin film oven. Constr. Build. Mater. 2021, 272, 121995. [Google Scholar] [CrossRef]
- Ye, W.; Jiang, W.; Li, P.; Yuan, D.; Shan, J.; Xiao, J. Analysis of mechanism and time-temperature equivalent effects of asphalt binder in short-term aging. Constr. Build. Mater. 2019, 215, 823–838. [Google Scholar] [CrossRef]
- Yu, H.; Mo, L.; Zhang, Y.; Qi, C.; Wang, Y.; Li, X. Laboratory Investigation of Storage Stability and Aging Resistance of Slightly SBS-Modifified Bitumen Binders. Materials 2023, 16, 2564. [Google Scholar] [CrossRef]
- Ibrahim, B.; Wiranata, A.; Malik, A. The Effect of Addition of Antioxidant 1,2-dihydro-2,2,4-trimethyl-quinoline on Characteristics of Crepe Rubber Modified Asphalt in Short Term Aging and Long Term Aging Conditions. Appl. Sci. 2020, 10, 7236. [Google Scholar] [CrossRef]
- Siddiqui, M.N.; Ali, M.F. Studies on the aging behavior of the Arabian asphalts. Fuel 1999, 78, 1005–1015. [Google Scholar] [CrossRef]
- Adhikari, R.; Henning, S.; Lebek, W.; Godehardt, R.; Ilisch, S.; Michler, G.H. Structure and properties of nanocomposites based on SBS block copolymer and alumina. In Macromolecular Symposia; Wiley-VCH Verlag: Weinheim, Germany, 2005; Volume 231, pp. 116–124. [Google Scholar]
- Charvani, S.; Reddy, S.S.K.; Narendar, G.; Reddy, C.G. Preparation characterisation of alumina nanocomposites. Mater. Today Proc. 2018, 5, 26817–26822. [Google Scholar] [CrossRef]
- ASTM D2872-19; Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test). ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D4402-06; Standard Test Method for Viscosity apparent Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer. ASTM International: West Conshohocken, PA, USA, 2006.
- AASHTO T 315; Standard Method of Test for Determining the Rheological Properties of Asphalt Binder Using a Dynamic Shear Rheometer (DSR). American Association of State Highway and Transportation Officials (AASHTO): Washington, DC, USA, 2016.
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Q.; Wang, J.; Meng, Y.; Zhou, Z. Aging behavior of high-viscosity modified asphalt binder based on infrared spectrum test. Materials. 2022, 15, 2778. [Google Scholar] [CrossRef]
- Zhang, S.; Hong, H.; Zhang, H.; Chen, Z. Investigation of anti-aging mechanism of multi-dimensional nanomaterials modified asphalt by FTIR, NMR and GPC. Constr. Build. Mater. 2021, 305, 124809. [Google Scholar] [CrossRef]
- Ying, G.; Fan, G.U.; Zhao, Y. Thermal oxidative aging characterization of sbs modified asphalt. J. Wuhan Univ. Technol.-Mater. Sci. 2013, 28, 88–91. [Google Scholar]
- Daly, W.H.; Negulescu, I.; Balamurugan, S.S. Implementation of GPC Characterization of Asphalt Binders at Louisiana Materials Laboratory; Department of Transportation and Development: Louisiana, LA, USA, 2013.
- Xu, M.; Yi, J.; Pei, Z.; Feng, D.; Huang, Y.; Yang, Y. Generation and evolution mechanisms of pavement asphalt aging based on variations in surface structure and micromechanical characteristics with AFM. Mater. Today. Commun. 2017, 12, 106–118. [Google Scholar]
- Fini, E.H.; Hajikarimi, P.; Rahi, M.; Nejad, F.M. Physiochemical, Rheological, and Oxidative Aging Characteristics of Asphalt Binder in the Presence of Mesoporous Silica Nanoparticles. J. Mater. Civil Eng. 2016, 28, 04015133. [Google Scholar] [CrossRef]
- Yunus, K.N.M.; Abdullah, M.E.; Ahmad, M.K.; Kamaruddin, N.H.M.; Tami, H.; Haryati, Y. Physical and rheological properties of nano zinc oxide modified asphalt binder. MATEC Web Conferences 2018, 250, 02004. [Google Scholar] [CrossRef]
- Al-Sabaeei, A.M.; Napiah, M.B.; Sutanto, M.H.; Alaloul, W.S.; Usman, A. Influence of nanosilica particles on the high-temperature performance of waste denim fibre-modified bitumen. Int. J. Pavement Eng. 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Lin, P.; Jing, R.; Erkens, S. Toward the long-term aging influence and novel reaction kinetics models of bitumen. Int. J. Pavement Eng. 2022. [Google Scholar] [CrossRef]
- Hofko, B.; Porot, L.; Cannone, A.F.; Poulikakos, L.; Huber, L.; Lu, X. Ftir spectral analysis of bituminous binders: Reproducibility and impact of ageing temperature. Mater Struct. 2018, 51, 45. [Google Scholar] [CrossRef]
- Kambham, B.S.; Ram, V.V.; Raju, S. Investigation of laboratory and field aging of bituminous concrete with and without anti-aging additives using FESEM and FTIR. Constr. Build. Mater. 2019, 222, 193–202. [Google Scholar] [CrossRef]
- Yan, C.Y.; Huang, W.; Xiao, F.; Wang, L.; Li, Y. Proposing a new infrared index quantifying the aging extent of SBS-modified asphalt. Road. Mater. Pavement 2018, 19, 1406–1421. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, S.; Wang, Q.; Yao, H. Rheological and structural evolution of SBS modified asphalts under natural weathering. Fuel 2016, 184, 242–247. [Google Scholar] [CrossRef]
- Yan, Z.; Junda, C.; Kai, Z.; Qinghai, G.; Hongmei, G.; Peng, X. Study on aging performance of modified asphalt binders based on characteristic peaks and molecular weights. Constr. Build. Mater. 2019, 225, 1077–1085. [Google Scholar]
- Zhang, H.; Wang, Y.; Yu, T.; Liu, Z. Microstructural characteristics of differently aged asphalt samples based on atomic force microscopy (AFM). Constr. Build. Mater. 2020, 255, 119388. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wang, H.C.; Yu, J.Y. Effect of aging on morphology of organo-montmorillonite modified bitumen by atomic force microscopy. J. Micros-Oxford. 2011, 242, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Yang, Y.; Ran, M.; Zhou, X.; Guo, M. Application of infrared spectroscopy in prediction of asphalt aging time history and fatigue life. Coating 2020, 10, 959. [Google Scholar] [CrossRef]
Material | Physical Property Index | Unit | Value or Characteristic |
---|---|---|---|
Base asphalt | Penetration (25 °C) | mm | 6.7 |
Softening point | °C | 47 | |
Viscosity (135 °C) | Pa·s | 0.52 | |
Ductility (10 °C) | mm | 190 | |
Nano-Al2O3 | Grain size | nm | 30 |
Specific Surface Area | m2/g | 40–60 | |
Appearance | / | White powder solid | |
SBS | Appearance | / | Linear leaf |
Average molecule weight | g/mol | 110,000 | |
Styrene content | wt% | 30 |
Asphalt Type | Aging Level | Code |
---|---|---|
SBS modified asphalt | Unaged | SBSAB |
Aging for 85 min | SR85 | |
Aging for 170 min | SR170 | |
Aging for 255 min | SR255 | |
Aging for 340 min | SR340 | |
Aging for 425 min | SR425 | |
Nano-Al2O3/SBS composite modified asphalt | Unaged | NASBS |
Aging for 85 min | NSR85 | |
Aging for 170 min | NSR170 | |
Aging for 255 min | NSR255 | |
Aging for 340 min | NSR340 | |
Aging for 425 min | NSR425 |
Aging Time | IB/S | VAI | CAI | RFAI | |
---|---|---|---|---|---|
SBSAB | 85 min | 1.5 | 1.53 | 2.15 | 2.19 |
170 min | 1.47 | 2.00 | 3.27 | 3.4 | |
255 min | 1.38 | 2.5 | 3.94 | 4.14 | |
340 min | 1.313 | 2.93 | 4.3 | 4.56 | |
425 min | 1.32 | 3.26 | 4.9 | 5.37 | |
NASBS | 85 min | 1.56 | 1.47 | 1.53 | 1.38 |
170 min | 1.46 | 1.73 | 1.81 | 1.63 | |
255 min | 1.45 | 1.97 | 2.04 | 1.82 | |
340 min | 1.44 | 2.13 | 2.37 | 2.11 | |
425 min | 1.41 | 2.21 | 2.61 | 2.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.; Wu, X.; Zhang, Y.; Milani, G. Aging Behavior and Mechanism Evolution of Nano-Al2O3/Styrene-Butadiene-Styrene-Modified Asphalt under Thermal-Oxidative Aging. Materials 2023, 16, 5866. https://doi.org/10.3390/ma16175866
Ji Z, Wu X, Zhang Y, Milani G. Aging Behavior and Mechanism Evolution of Nano-Al2O3/Styrene-Butadiene-Styrene-Modified Asphalt under Thermal-Oxidative Aging. Materials. 2023; 16(17):5866. https://doi.org/10.3390/ma16175866
Chicago/Turabian StyleJi, Zhiyuan, Xing Wu, Yao Zhang, and Gabriele Milani. 2023. "Aging Behavior and Mechanism Evolution of Nano-Al2O3/Styrene-Butadiene-Styrene-Modified Asphalt under Thermal-Oxidative Aging" Materials 16, no. 17: 5866. https://doi.org/10.3390/ma16175866
APA StyleJi, Z., Wu, X., Zhang, Y., & Milani, G. (2023). Aging Behavior and Mechanism Evolution of Nano-Al2O3/Styrene-Butadiene-Styrene-Modified Asphalt under Thermal-Oxidative Aging. Materials, 16(17), 5866. https://doi.org/10.3390/ma16175866