Metal Particle Pencil Beam Spray-Coating Method for High-Density Polymer–Resin Composites: Evaluation of Radiation-Shielding Sheet Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Li, S.; Liu, M.; Li, J.; Zhou, X. Review on shielding mechanism and structural design of electromagnetic interference shielding composites. Macromol. Mater. Eng. 2021, 306, 2100032. [Google Scholar] [CrossRef]
- Pei, X.; Zhao, M.; Li, R.; Lu, H.; Yu, R.; Xu, Z.; Li, D.; Tang, Y.; Xing, W. Porous network carbon nanotubes/chitosan 3D printed composites based on ball milling for electromagnetic shielding. Compos. A Appl. Sci. Manuf. 2021, 145, 106363. [Google Scholar] [CrossRef]
- Li, X.; Wu, J.; Tang, C.; He, Z.; Yuan, P.; Sun, Y.; Lau, W.; Zhang, K.; Mei, J.; Huang, Y. High temperature resistant polyimide/boron carbide composites for neutron radiation shielding. Compos. B Eng. 2019, 159, 355–361. [Google Scholar] [CrossRef]
- Chen, Y.; Li, J.; Li, T.; Zhang, L.; Meng, F. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184. [Google Scholar] [CrossRef]
- Abbasi, H.; Antunes, M.; Velasco, J.I. Recent advances in carbon-based polymer nanocomposites for electromagnetic interference shielding. Prog. Mater. Sci. 2019, 103, 319–373. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, P.; Zhang, C.; Wang, Y.; Chang, H.; Rao, W. Porous and anisotropic liquid metal composites with tunable reflection ratio for low-temperature electromagnetic interference shielding. Appl. Mater. Today 2020, 19, 100612. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, Y.; Xiong, Y.; Zhang, L.; Xu, W.; Duan, G.; Mei, C.; Jiang, S.; Rui, Z.; Zhang, K. Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today 2021, 38, 101204. [Google Scholar] [CrossRef]
- Ahmed, A.; Adak, B.; Bansala, T.; Mukhopadhyay, S. Green solvent processed cellulose/graphene oxide nanocomposite films with superior mechanical, thermal, and ultraviolet shielding properties. ACS Appl. Mater. Interfaces 2019, 12, 1687–1697. [Google Scholar] [CrossRef]
- Paul, M.B.; Ankan, A.D.; Deb, H.; Ahasan, M.M. A Monte Carlo simulation model to determine the effective concrete materials for fast neutron shielding. Radiat. Phys. Chem. 2023, 202, 110476. [Google Scholar] [CrossRef]
- Ma, X.; Shen, B.; Zhang, L.; Liu, Y.; Zhai, W.; Zheng, W. Porous superhydrophobic polymer/carbon composites for lightweight and self-cleaning EMI shielding application. Compos. Sci. Technol. 2018, 158, 86–93. [Google Scholar] [CrossRef]
- Wang, J.; Kang, H.; Ma, H.; Liu, Y.; Xie, Z.; Wang, Y.; Fan, Z. Super-fast fabrication of MXene film through a combination of ion induced gelation and vacuum-assisted filtration. Eng. Sci. 2021, 15, 57–66. [Google Scholar] [CrossRef]
- Monaco, M.G.L.; Carta, A.; Tamhid, T.; Porru, S. Anti-X apron wearing and musculoskeletal problems among healthcare workers: A systematic scoping review. Int. J. Environ. Res. Public Health 2020, 17, 5877. [Google Scholar] [CrossRef]
- Matharu, R.K.; Ciric, L.; Ren, G.; Edirisinghe, M. Comparative study of the antimicrobial effects of tungsten nanoparticles and tungsten nanocomposite fibres on hospital acquired bacterial and viral pathogens. Nanomaterials 2020, 10, 1017. [Google Scholar] [CrossRef]
- Wang, F.; Luo, G.-N.; Huang, J.; Liu, Y. Properties improvement of atmospheric plasma sprayed tungsten coating by annealing. Surf. Coat. Technol. 2019, 358, 276–281. [Google Scholar] [CrossRef]
- Lee, J.; Lee, D.M.; Jung, Y.; Park, J.; Lee, H.S.; Kim, Y.K.; Park, C.R.; Jeong, H.S.; Kim, S.M. Direct spinning and densification method for high-performance carbon nanotube fibers. Nat. Commun. 2019, 10, 2962. [Google Scholar] [CrossRef]
- AbuAlRoos, N.J.; Azman, M.N.; Amin, N.A.B.; Zainon, R. Tungsten-based material as promising new lead-free gamma radiation shielding material in nuclear medicine. Phys. Med. Eur. J. Med. Phys. 2020, 78, 48–57. [Google Scholar] [CrossRef]
- Maghrabi, H.A.; Vijayan, A.; Deb, P.; Wang, L. Bismuth oxide-coated fabrics for X-ray shielding. Text. Res. J. 2016, 86, 649–658. [Google Scholar] [CrossRef]
- Liu, C.; Wang, L.; Liu, S.; Tong, L.; Liu, X. Fabrication strategies of polymer-based electromagnetic interference shielding materials. Adv. Ind. Eng. Polym. Res. 2020, 3, 149–159. [Google Scholar] [CrossRef]
- Gholamzadeh, L.; Asari-Shik, N.; Aminian, M.K.; Ghasemi-Nejad, M. A study of the shielding performance of fibers coated with high-Z oxides against ionizing radiations. Nucl. Instrum. Methods Phys. Res. A Accel. Spectrom. Detect. Assoc. Equip. 2020, 973, 164174. [Google Scholar] [CrossRef]
- Xing, D.; Lu, L.; Teh, K.S.; Wan, Z.; Xie, Y.; Tang, Y. Highly flexible and ultra-thin Ni-plated carbon-fabric/polycarbonate film for enhanced electromagnetic interference shielding. Carbon 2018, 132, 32–41. [Google Scholar] [CrossRef]
- Pranata, M.P.; González-Buesa, J.; Chopra, S.; Kim, K.; Pietri, Y.; Ng, P.K.W.; Matuana, L.M.; Almenar, E. Egg white protein film production through extrusion and calendering processes and its suitability for food packaging applications. Food Bioprocess Technol. 2019, 12, 714–727. [Google Scholar] [CrossRef]
- Ali, R.; Iannace, S.; Nicolais, L. Effects of processing conditions on the impregnation of glass fibre mat in extrusion/calendering and film stacking operations. Compos. Sci. Technol. 2003, 63, 2217–2222. [Google Scholar] [CrossRef]
- Maghrabi, H.A.; Vijayan, A.; Mohaddes, F.; Deb, P.; Wang, L. Evaluation of X-ray radiation shielding performance of barium sulphate-coated fabrics. Fibers Polym. 2016, 17, 2047–2054. [Google Scholar] [CrossRef]
- Kakino, R.; Nakamura, M.; Hu, N.; Iramina, H.; Tanaka, H.; Sakurai, Y.; Mizowaki, T. Photoneutron-induced damage reduction for cardiac implantable electronic devices using neutron-shielding sheets in high-energy X-ray radiotherapy: A phantom study. Phys. Med. Eur. J. Med. Phys. 2021, 89, 151–159. [Google Scholar] [CrossRef]
- Rosdi, M.A.A.; Goh, P.S.; Idris, F.; Shalbi, S.; Sarkawi, M.S.; Ali, N.S.M.; Jamsari, N.L.; Ramli, A.S.; Azman, A. Neutron and gamma ray fluences measurement at radial Beam Port 1 of TRIGA MARK II PUSPATI research reactor. IOP Conf. Ser. Mater. Sci. Eng. 2018, 298, 012033. [Google Scholar] [CrossRef]
- Malekzadeh, R.; Mehnati, P.; Sooteh, M.Y.; Mesbahi, A. Influence of the size of nano- and microparticles and photon energy on mass attenuation coefficients of bismuth–silicon shields in diagnostic radiology. Radiol. Phys. Technol. 2019, 12, 325–334. [Google Scholar] [CrossRef]
- Sayyadi, A.; Mohammadi, Y.; Adlparvar, M.R. Mechanical, durability, and gamma ray shielding characteristics of heavyweight concrete containing serpentine aggregates and lead waste slag. Adv. Civ. Eng. 2023, 2023, 7873637. [Google Scholar] [CrossRef]
- Aldhuhaibat, M.J.R.; Amana, M.S.; Jubier, N.J.; Salim, A.A. Improved gamma radiation shielding traits of epoxy composites: Evaluation of mass attenuation coefficient, effective atomic and electron number. Radiat. Phys. Chem. 2021, 179, 109183. [Google Scholar] [CrossRef]
- Harish, V.; Nagaiah, N.; Prabhu, T.N.; Varughese, K.T. Preparation and characterization of lead monoxide filled unsaturated polyester-based polymer composites for gamma radiation shielding applications. J. Appl. Polym. Sci. 2009, 112, 1503–1508. [Google Scholar] [CrossRef]
- Chen, B.; Guo, Y.; Li, S.; Liu, G. Experimental study on laser ablation texture-assisted grinding of tungsten alloy. Materials 2022, 15, 7028. [Google Scholar] [CrossRef]
- Lu, T.; Chen, C.; Li, P.; Zhang, C.; Han, W.; Zhou, Y.; Suryanarayana, C.; Guo, Z. Enhanced mechanical and electrical properties of in situ synthesized nano-tungsten dispersion-strengthened copper alloy. Mater. Sci. Eng. A 2021, 799, 140161. [Google Scholar] [CrossRef]
- Rashad, M.; Tekin, H.O.; Zakaly, H.M.H.; Pyshkina, M.; Issa, S.A.M.; Susoy, G. Physical and nuclear shielding properties of newly synthesized magnesium oxide and zinc oxide nanoparticles. Nucl. Eng. Technol. 2020, 52, 2078–2084. [Google Scholar] [CrossRef]
- Vartanian, S.; Yang-Scharlotta, J.; Allen, G.R.; Daniel, A.C.; Costanzo, D.; Mancoff, F.B.; Symalla, D.; Olsen, A. Total Ionizing Dose and Reliability Evaluation of the ST-DDR4 Spin-transfer Torque Magnetoresistive Random Access Memory (STT-MRAM). In Proceedings of the 2022 IEEE Radiation Effects Data Workshop (REDW) (in Conjunction with 2022 NSREC), Provo, UT, USA, 18–22 July 2022. [Google Scholar] [CrossRef]
- Kaur, T.; Sharma, J.; Singh, T. Experimental evaluation of gamma rays shielding parameters for Zn-Cd-Sn-Pb quaternary alloy. Radiat. Phys. Chem. 2019, 156, 193–198. [Google Scholar] [CrossRef]
- Hubbell, J.H. Photon mass attenuation and energy absorption coefficients from 1 keV to 20 MeV. Int. Appl. Radiat. Isot. 1982, 33, 1269–1290. [Google Scholar] [CrossRef]
- Al-Ghamdi, H.; Hemily, H.M.; Saleh, I.H.; Ghataas, Z.F.; Abdel-Halim, A.A.; Sayyed, M.I.; Yasmin, S.; Almuqrin, A.H.; Elsafi, M. Impact of WO3-nanoparticles on silicone rubber for radiation protection efficiency. Materials 2022, 15, 5706. [Google Scholar] [CrossRef]
- Mishra, S.; Katti, P.; Kumar, S.; Bose, S. Macroporous epoxy-carbon fiber structures with a sacrificial 3D printed polymeric mesh suppresses electromagnetic radiation. Chem. Eng. J. 2019, 357, 384–394. [Google Scholar] [CrossRef]
- Mansour, A.; Sayyed, M.I.; Mahmoud, K.A.; Şakar, E.; Kovaleva, E.G. Modified halloysite minerals for radiation shielding purposes. J. Radiat. Res. Appl. Sci. 2020, 13, 94–101. [Google Scholar] [CrossRef]
- Mansouri, E.; Mesbahi, A.; Malekzadeh, R.; Mansouri, A. Shielding characteristics of nanocomposites for protection against X- and gamma rays in medical applications: Effect of particle size, photon energy and nano-particle concentration. Radiat. Environ. Biophys. 2020, 59, 583–600. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, P.; Wang, Q.; Li, L.; Dong, S.; Liu, J.; Rao, W. Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. J. Mater. Chem. C 2019, 7, 10331–10337. [Google Scholar] [CrossRef]
- Wei, B.; Zhang, L.; Yang, S. Polymer composites with expanded graphite network with superior thermal conductivity and electromagnetic interference shielding performance. Chem. Eng. J. 2021, 404, 126437. [Google Scholar] [CrossRef]
- Gu, J.; Hu, S.; Ji, H.; Feng, H.; Zhao, W.; Wei, J.; Li, M. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 2020, 31, 185303. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, J.; Guo, B.-H.; Guo, Z.-X.; Yu, J. Electrical conductivity of carbon nanotube-filled miscible poly(phenylene oxide)/polystyrene blends prepared by melt compounding. Compos. B Eng. 2019, 176, 107213. [Google Scholar] [CrossRef]
- Mamunya, Y.; Matzui, L.; Vovchenko, L.; Maruzhenko, O.; Oliynyk, V.; Pusz, S.; Kumanek, B.; Szeluga, U. Influence of conductive nano- and microfiller distribution on electrical conductivity and EMI shielding properties of polymer/carbon composites. Compos. Sci. Technol. 2019, 170, 51–59. [Google Scholar] [CrossRef]
Sample | Weight | Thickness (mm) | Density | |
---|---|---|---|---|
W75 | Calender | 1.084 ± 0.039 | 0.545 ± 0.011 | 2.019 ± 0.004 |
Pencil spray | 1.152 ± 0.039 | 0.532 ± 0.032 | 2.248 ± 0.012 | |
W80 | Calender | 1.257 ± 0.052 | 0.525 ± 0.064 | 2.301 ± 0.025 |
Pencil spray | 1.324 ± 0.052 | 0.522 ± 0.015 | 2.321 ± 0.015 | |
W85 | Calender | 1.402 ± 0.052 | 0.499 ± 0.011 | 2.524 ± 0.035 |
Pencil spray | 1.454 ± 0.033 | 0.488 ± 0.021 | 2.642 ± 0.021 |
Radiation Type | Effective X-ray Energy (keV) | Mean of Exposure (μR) | Shielding Rate (%) | |||||
---|---|---|---|---|---|---|---|---|
Nothing | W75 | W80 | W85 | W75 | W80 | W85 | ||
X-ray | 22.5 | 198.92 | 40.162 | 29.957 | 14.839 | 79.81 | 84.94 | 92.54 |
24.3 | 450.24 | 108.283 | 89.012 | 57.451 | 75.95 | 80.23 | 87.24 | |
30.2 | 904.56 | 253.186 | 227.497 | 124.739 | 72.01 | 74.85 | 86.21 | |
46.5 | 1524.12 | 450.987 | 408.312 | 235.629 | 70.41 | 73.21 | 84.54 | |
53.8 | 1874.25 | 595.824 | 520.854 | 329.118 | 68.21 | 72.21 | 82.44 |
Radiation Type | Effective X-ray Energy (keV) | Mean of Exposure (μR) | Shielding Rate (%) | |||||
---|---|---|---|---|---|---|---|---|
Nothing | W75 | W80 | W85 | W75 | W80 | W85 | ||
X-ray | 22.5 | 198.92 | 48.198 | 35.527 | 19.872 | 75.77 | 82.14 | 90.01 |
24.3 | 450.24 | 124.176 | 89.553 | 57.226 | 72.42 | 80.11 | 87.29 | |
30.2 | 904.56 | 286.655 | 218.270 | 139.845 | 68.31 | 75.87 | 84.54 | |
46.5 | 1524.12 | 547.007 | 438.337 | 270.684 | 64.11 | 71.24 | 82.24 | |
53.8 | 1874.25 | 648.303 | 558.339 | 370.914 | 65.41 | 70.21 | 80.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, S.-C. Metal Particle Pencil Beam Spray-Coating Method for High-Density Polymer–Resin Composites: Evaluation of Radiation-Shielding Sheet Properties. Materials 2023, 16, 6092. https://doi.org/10.3390/ma16186092
Kim S-C. Metal Particle Pencil Beam Spray-Coating Method for High-Density Polymer–Resin Composites: Evaluation of Radiation-Shielding Sheet Properties. Materials. 2023; 16(18):6092. https://doi.org/10.3390/ma16186092
Chicago/Turabian StyleKim, Seon-Chil. 2023. "Metal Particle Pencil Beam Spray-Coating Method for High-Density Polymer–Resin Composites: Evaluation of Radiation-Shielding Sheet Properties" Materials 16, no. 18: 6092. https://doi.org/10.3390/ma16186092
APA StyleKim, S. -C. (2023). Metal Particle Pencil Beam Spray-Coating Method for High-Density Polymer–Resin Composites: Evaluation of Radiation-Shielding Sheet Properties. Materials, 16(18), 6092. https://doi.org/10.3390/ma16186092