The Development of a High-Strength Mg-10.3Gd-4.4Y-0.9Zn-0.7Mn Alloy Subjected to Large Differential-Thermal Extrusion and Isothermal Aging
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussion
3.1. Microstructural Evolution of VWZM10411 Alloy during LDTE Process
3.2. Microstructure of as-Extruded VWZM10411 Alloys
3.3. Tensile Properties of as-Extruded VWZM10411 Alloys
3.4. Microstructure and Tensile Properties of Peak-Aged VWZM10411 Alloys
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yang, H.; Chen, X.; Huang, G.; Song, J.; She, J.; Tan, J.; Zheng, K.; Jin, Y.; Jiang, B.; Pan, F. Microstructures and mechanical properties of titanium-reinforced magnesium matrix composites: Review and perspective. J. Magnes. Alloys 2022, 10, 2311–2333. [Google Scholar] [CrossRef]
- Wang, K.; Wang, X.; Huang, S.; Peng, X.; Dang, C.; Wang, J.; Liu, M.; Wang, J. Extrusion weld seam and mechanical properties of high-strength Mg-Gd-Y-Zn-Mn alloy hollow profile fabricated via porthole die extrusion. Vacuum 2023, 214, 112243. [Google Scholar] [CrossRef]
- Cao, F.; Guo, H.; Guo, N.; Kong, S.; Liang, J. Room-Temperature Strengthening, Portevin-Le Chatelier Effect, High-Temperature Tensile Deformation Behavior, and Constitutive Modeling in a Lightweight Mg-Gd-Al-Zn Alloy. Materials 2023, 16, 1639. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Wan, Y.; Liu, C.; Wang, J. Age-hardening and age-softening in nanocrystalline Mg-Gd-Y-Zr alloy. Mater. Charact. 2019, 156, 109841. [Google Scholar] [CrossRef]
- Wu, X.; Wang, Y.; Chen, Y.; Qiao, L.; She, J. Effect of annealing on microstructure and tensile properties of as-extruded Mg-5Gd-4Y-0.5Zn-0.5Zr alloy. J. Mater. Res. Technol 2022, 21, 929–942. [Google Scholar] [CrossRef]
- Sasek, S.; Minarik, P.; Straska, J.; Hosova, K.; Vesely, J.; Kubasek, J.; Kral, R.; Krajnak, T.; Vojtech, D. Novel Ultrafine-Grain Mg-Gd/Nd-Y-Ca Alloys with an Increased Ignition Temperature. Materials 2023, 16, 1299. [Google Scholar] [CrossRef]
- Gu, X.-F.; Furuhara, T.; Kiguchi, T.; Konno, T.J.; Chen, L.; Yang, P. On the atomic structure of γ″ phase in Mg-Zn-Gd alloy. Scr. Mater. 2018, 146, 64–67. [Google Scholar] [CrossRef]
- Tane, M.; Kimizuka, H.; Hagihara, K.; Suzuki, S.; Mayama, T.; Sekino, T.; Nagai, Y. Effects of stacking sequence and short-range ordering of solute atoms on elastic properties of Mg–Zn–Y alloys with long-period stacking ordered structures. Acta Mater. 2015, 96, 170–188. [Google Scholar] [CrossRef]
- Koizumi, T.; Egami, M.; Yamashita, K.; Abe, E. Platelet precipitate in an age-hardening Mg-Zn-Gd alloy. J. Alloys Compd. 2018, 752, 407–411. [Google Scholar] [CrossRef]
- Zeng, Z.; Stanford, N.; Davies, C.H.J.; Nie, J.-F.; Birbilis, N. Magnesium extrusion alloys: A review of developments and prospects. Int. Mater. Rev. 2018, 64, 27–62. [Google Scholar] [CrossRef]
- Zengin, H.; Ari, S.; Turan, M.E.; Hassel, A.W. Evolution of Microstructure, Mechanical Properties, and Corrosion Resistance of Mg-2.2Gd-2.2Zn-0.2Ca (wt%) Alloy by Extrusion at Various Temperatures. Materials 2023, 16, 3075. [Google Scholar] [CrossRef] [PubMed]
- Xiao, L.; Yang, G.; Pei, R.; Zhen, Z.; Jie, W. Effects of extrusion ratio and subsequent heat treatment on the tension-compression yield asymmetry of Mg-4.58Zn-2.6Gd-0.18Zr alloys. Mater. Sci. Eng. A 2021, 810, 141021. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Fan, G.H.; Li, X.W.; Tang, G.Z.; Geng, L.; Kamado, S. Microstructure and mechanical properties of extruded Mg–Gd–Y–Zn alloy with Mn or Zr addition. J. Mater. Sci. 2019, 54, 10473–10488. [Google Scholar] [CrossRef]
- Wang, K.; Wang, J.; Huang, S.; Dou, X.; Wang, J.; Wang, C. Formation of an abnormal texture in Mg-Gd-Y-Zn-Mn alloy and its effect on mechanical properties by altering extrusion parameters. Mater. Sci. Eng. A 2021, 831, 142270. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, Z.; Yan, Z.; Zhang, Z.; Wang, Q.; Xue, Y. Preparation of ultra-high strength Mg-Gd-Y-Zn-Zr alloy by pre-ageing treatment prior to extrusion. J. Alloys Compd. 2021, 894, 162490. [Google Scholar] [CrossRef]
- Dong, B.; Zhang, Z.; Yu, J.; Meng, M.; Xue, Y.; Zhang, H.; Zhao, X.; Ren, X.; Bai, S. Microstructure evolution and mechanical properties of industrial scale samples of Mg–Gd–Y–Zn–Zr alloy after repetitive upsetting-extrusion process. J. Mater. Res. Technol. 2022, 21, 2013–2027. [Google Scholar] [CrossRef]
- Xu, C.; Nakata, T.; Qiao, X.G.; Jiang, H.S.; Sun, W.T.; Chi, Y.C.; Zheng, M.Y.; Kamado, S. Effect of extrusion parameters on microstructure and mechanical properties of Mg-7.5Gd-2.5Y-3.5Zn-0.9Ca-0.4Zr (wt%) alloy. Mater. Sci. Eng. A 2017, 685, 159–167. [Google Scholar] [CrossRef]
- Nie, J.-F. Precipitation and Hardening in Magnesium Alloys. Metall. Mater. Trans. A 2012, 43, 3891–3939. [Google Scholar] [CrossRef]
- Gröbner, J.; Zhu, S.; Nie, J.-F.; Gibson, M.A.; Schmid-Fetzer, R. Metastable phase formation in ternary Mg–Gd–Zn alloys. J. Alloys Compd. 2016, 675, 149–157. [Google Scholar] [CrossRef]
- Honma, T.; Ohkubo, T.; Kamado, S.; Hono, K. Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater. 2007, 55, 4137–4150. [Google Scholar] [CrossRef]
- Shi, F.; Piao, N.; Wang, H.; Wang, J.; Zang, Q.; Guo, Y.; Chen, C.; Zhang, L. Investigation of microstructure and mechanical properties of ZK60 magnesium alloy achieved by extrusion-shearing process. J. Mater. Res. Technol. 2023, 25, 799–811. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, Q.; Li, Q.; Wang, L.; Li, Q.; Liu, D. A simultaneous enhancement of both strength and ductility by a novel differential-thermal ECAP process in Mg-Sn-Zn-Zr alloy. J. Alloys Compd. 2021, 899, 161653. [Google Scholar] [CrossRef]
- Zhou, T.; Guo, F.; Zhang, Q.; Liu, D. Offsetting strength-ductility tradeoff in Mg-Sn-Zn-Zr alloy by a novel differential-thermal ECAP process. Mater. Lett. 2021, 305, 130764. [Google Scholar] [CrossRef]
- Rong, W.; Zhang, Y.; Wu, Y.; Chen, Y.; Tang, T.; Peng, L.; Li, D. Fabrication of high-strength Mg-Gd-Zn-Zr alloys via differential-thermal extrusion. Mater. Charact. 2017, 131, 380–387. [Google Scholar] [CrossRef]
- Robson, J.D.; Stanford, N.; Barnett, M.R. Effect of particles in promoting twin nucleation in a Mg–5wt.% Zn alloy. Scr. Mater. 2010, 63, 823–826. [Google Scholar] [CrossRef]
- Liu, H.; Ju, J.; Yang, X.; Yan, J.; Song, D.; Jiang, J.; Ma, A. A two-step dynamic recrystallization induced by LPSO phases and its impact on mechanical property of severe plastic deformation processed Mg 97 Y 2 Zn 1 alloy. J. Alloys Compd. 2017, 704, 509–517. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Q.; Zhang, L.; Li, T.; Yuan, J.; Shi, G.; Wang, X.; Zhang, K.; Li, Y. Comparison of Thermal Deformation Behavior and Characteristics of Mg-Gd-Y-Zn Alloys with and without Bulk LPSO Phase. Materials 2023, 16, 5943. [Google Scholar] [CrossRef]
- Gao, J.; Fu, J.; Zhang, N.; Chen, Y. Structural features and mechanical properties of Mg-Y-Zn-Sn alloys with varied LPSO phases. J. Alloys Compd. 2018, 768, 1029–1038. [Google Scholar] [CrossRef]
- Liu, J.; Yang, L.; Zhang, C.; Zhang, B.; Zhang, T.; Li, Y.; Wu, K.; Wang, F. Significantly improved corrosion resistance of Mg-15Gd-2Zn-0.39Zr alloys: Effect of heat-treatment. J. Mater. Sci. Technol. 2019, 35, 1644–1654. [Google Scholar] [CrossRef]
- Yang, Z.; Nakata, T.; Xu, C.; Wang, G.; Geng, L.; Kamado, S. Preparation of high-performance Mg-Gd-Y-Mn-Sc alloy by heat treatment and extrusion. J. Alloys Compd. 2023, 934, 167906. [Google Scholar] [CrossRef]
- Wu, J.; Ikeda, K.-I.; Shi, Q.; Chiu, Y. Kink boundaries and their role in dynamic recrystallisation of a Mg-Zn-Y alloy. Mater. Charact. 2019, 148, 233–242. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, H.; Xiao, J.; Jiang, B.; Luo, X.; Xie, W.; Li, W.; Dong, Z.; Song, J.; Xu, J.; et al. Optimizing LPSO phase to achieve superior heat resistance of Mg–Gd–Y–Zn–Zr alloys by regulating the Gd/Y ratios. J. Mater. Res. Technol. 2023, 25, 4658–4673. [Google Scholar] [CrossRef]
- Najafi, S.; Mahmudi, R. Enhanced microstructural stability and mechanical properties of the Ag-containing Mg–Gd–Y alloys. J. Magnes. Alloys 2020, 8, 1109–1119. [Google Scholar] [CrossRef]
- Zhou, X.; Yang, X.; Lu, X.; Zhang, J.; Yu, S.; Chen, X.; Lu, L. Effect of LPSO orientation on the compression behavior and workability of the Mg-5Gd-3Y–1Zn-0.5Zr alloy. Mater. Sci. Eng. A 2022, 857, 144115. [Google Scholar] [CrossRef]
- SLuan, S.; Zhang, L.; Chen, L.; Li, W.; Wang, J.; Jin, P. The influence of the LPSO on the deformation mechanisms and tensile properties at elevated temperatures of the Mg-Gd-Zn-Mn alloys. J. Mater. Res. Technol. 2023, 23, 6216–6229. [Google Scholar]
- Wang, Z.; Zheng, J.; Jia, L.; Liu, W.; Huang, Y.; Yan, Z.; Zhang, Z.; Xue, Y. Abnormal texture formation and mechanical anisotropy of pre-aging extruded Mg-Gd-Y-Zn-Zr alloy with large-scale. J. Mater. Res. Technol. 2022, 20, 2771–2783. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, C.; Jiang, S.; Gao, Y.; Wan, Y.; Chen, Z. Analysis of Abnormal Texture and Strengthening Mechanisms of Extruded Mg–Gd–Y–Nd–Zr Alloy. Adv. Eng. Mater. 2022, 25, 2201046. [Google Scholar] [CrossRef]
- Rong, W.; Zhang, Y.; Wu, Y.; Chen, Y.; Sun, M.; Chen, J.; Peng, L. The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg-Gd-Zn-Zr alloys. Mater. Sci. Eng. A 2019, 740–741, 262–273. [Google Scholar] [CrossRef]
- Pan, H.; Qin, G.; Huang, Y.; Ren, Y.; Sha, X.; Han, X.; Liu, Z.-Q.; Li, C.; Wu, X.; Chen, H.; et al. Development of low-alloyed and rare-earth-free magnesium alloys having ultra-high strength. Acta Mater. 2018, 149, 350–363. [Google Scholar] [CrossRef]
- Schmid-Fetzer, R.; Zhang, F. The light alloy Calphad databases PanAl and PanMg. Calphad Comput. Coupling Phase Diagr. Thermochem. 2018, 61, 246–263. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, C.; Huang, Y.; Jiang, S.; Gao, Y.; Wan, Y.; Chen, Z. Effect of extrusion parameters on microstructure, mechanical properties and damping capacities of Mg-Y-Zn-Zr alloy. J. Alloys Compd. 2023, 935, 168122. [Google Scholar] [CrossRef]
- Zeng, Z.R.; Zhu, Y.M.; Xu, S.W.; Bian, M.Z.; Davies, C.H.J.; Birbilis, N.; Nie, J.F. Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater. 2016, 105, 479–494. [Google Scholar] [CrossRef]
- Hagihara, K.; Li, Z.; Yamasaki, M.; Kawamura, Y.; Nakano, T. Nakano, Strengthening mechanisms acting in extruded Mg-based long-period stacking ordered (LPSO)-phase alloys. Acta Mater. 2019, 163, 226–239. [Google Scholar] [CrossRef]
- Hagihara, K.; Yamasaki, M.; Kawamura, Y.; Nakano, T. Strengthening of Mg-based long-period stacking ordered (LPSO) phase with deformation kink bands. Mater. Sci. Eng. A 2019, 763, 138163. [Google Scholar] [CrossRef]
- Xu, S.; Liu, C.; Gao, Y.; Jiang, S.; Wan, Y.; Chen, Z. Influence of Long-Period Stacked Ordered Phases on Inductive Impedance of Mg-Gd-Y-Zn-Zr-Ag Alloys. Materials 2023, 16, 640. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, X.; Yu, S.; Zhang, J.; Lu, X.; Shu, X.; Su, Z. Effects of heat treatment on mechanical properties of an extruded Mg-4.3Gd-3.2Y-1.2Zn-0.5Zr alloy and establishment of its Hall–Petch relation. J. Magnes. Alloys 2022, 10, 501–512. [Google Scholar] [CrossRef]
- Wang, D.; Fu, P.; Peng, L.; Wang, Y.; Ding, W. Development of high strength sand cast Mg–Gd–Zn alloy by co-precipitation of the prismatic β′ and β1 phases. Mater. Charact. 2019, 153, 157–168. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Zhao, P.; Yu, L.; Pei, Z.; Zhou, B.; Hao, Y.; Zhou, N.; Zeng, X. Atomic-scale characterization of the precipitates in a Mg-Gd-Y-Zn-Mn alloy using scanning transmission electron microscopy. Vacuum 2023, 207, 111668. [Google Scholar] [CrossRef]
- Chen, X.; Li, Q.; Zhou, Y.; Chen, P. Creep behavior and creep mechanism of Mg-Gd-Y-Sm-Zr alloy. Vacuum 2023, 212, 112009. [Google Scholar] [CrossRef]
- Wang, F.; Bhattacharyya, J.J.; Agnew, S.R. Effect of precipitate shape and orientation on Orowan strengthening of non-basal slip modes in hexagonal crystals, application to magnesium alloys. Mater. Sci. Eng. A 2016, 666, 114–122. [Google Scholar] [CrossRef]
- Nie, J. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys. Scr. Mater. 2003, 48, 1009–1015. [Google Scholar] [CrossRef]
- Ji, Z.K.; Qiao, X.G.; Yuan, L.; Cong, F.G.; Wang, G.J.; Zheng, M.Y. Exceptional fracture toughness in a high-strength Mg alloy with the synergetic effects of bimodal structure, LPSO, and nanoprecipitates. Scr. Mater. 2023, 236, 115675. [Google Scholar] [CrossRef]
Designation | Thermal Condition | |||
---|---|---|---|---|
Ingot Temperature (°C) | Die Temperature (°C) | Ram Speed (mm/s) | Extrusion Ratio | |
E1 | 510 | 390 | 1.5 | 11:1 |
E2 | 510 | 390 | 2.0 | 11:1 |
E3 | 450 | 450 | 0.3 | 11:1 |
E4 | 450 | 450 | 2.0 | 11:1 |
E5 | 510 | 450 | 0.3 | 11:1 |
E6 | 510 | 450 | 2.0 | 11:1 |
Alloys | UTS (MPa) | TYS (MPa) | EL (%) |
---|---|---|---|
As-extruded E2 sample | 378 | 298 | 13.1 |
As-extruded E3 sample | 417 | 336 | 11.5 |
Peak-aged E2 sample | 488 | 344 | 9.7 |
Peak-aged E3 sample | 507 | 419 | 7.7 |
Alloys | ∆τPS | |||
---|---|---|---|---|
As-extruded E2 sample | 114 | 60 | 78 | - |
As-extruded E3 sample | 109 | 66 | 115 | - |
Peak-aged E2 sample | 78 | 60 | 78 | 82 |
Peak-aged E3 sample | 78 | 66 | 115 | 114 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wang, X.; Wang, J.; Dang, C.; Dou, X.; Huang, S.; Liu, M.; Wang, J. The Development of a High-Strength Mg-10.3Gd-4.4Y-0.9Zn-0.7Mn Alloy Subjected to Large Differential-Thermal Extrusion and Isothermal Aging. Materials 2023, 16, 6103. https://doi.org/10.3390/ma16186103
Wang K, Wang X, Wang J, Dang C, Dou X, Huang S, Liu M, Wang J. The Development of a High-Strength Mg-10.3Gd-4.4Y-0.9Zn-0.7Mn Alloy Subjected to Large Differential-Thermal Extrusion and Isothermal Aging. Materials. 2023; 16(18):6103. https://doi.org/10.3390/ma16186103
Chicago/Turabian StyleWang, Kui, Xinwei Wang, Jinxing Wang, Cong Dang, Xiaoxu Dou, Song Huang, Manping Liu, and Jingfeng Wang. 2023. "The Development of a High-Strength Mg-10.3Gd-4.4Y-0.9Zn-0.7Mn Alloy Subjected to Large Differential-Thermal Extrusion and Isothermal Aging" Materials 16, no. 18: 6103. https://doi.org/10.3390/ma16186103
APA StyleWang, K., Wang, X., Wang, J., Dang, C., Dou, X., Huang, S., Liu, M., & Wang, J. (2023). The Development of a High-Strength Mg-10.3Gd-4.4Y-0.9Zn-0.7Mn Alloy Subjected to Large Differential-Thermal Extrusion and Isothermal Aging. Materials, 16(18), 6103. https://doi.org/10.3390/ma16186103