Influence of Channel Surface with Ozone Annealing and UV Treatment on the Electrical Characteristics of Top-Gate InGaZnO Thin-Film Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication of Top-Gate IGZO TFTs including PL (TFT-A Types)
2.2. Fabrication of Top-Gate IGZO TFTs without PL (TFT-B Types)
2.3. Electrical and Optical Measurements of IGZO TFTs
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nomura, K. Recent progress of oxide-TFT-based inverter technology. J. Inf. Disp. 2021, 22, 211–229. [Google Scholar] [CrossRef]
- Hernández-Gutiérrez, C.A.; Avila-Avendano, C.; Solís-Cisneros, H.I.; Conde, J.; Sevilla-Camacho, P.Y.; Quevedo-López, M.A. Modeling and SPICE simulation of the CdS/CdTe neutron detectors integrated with Si-poly TFTs amplifiers. IEEE Trans. Nucl. Sci. 2022, 69, 1310–1315. [Google Scholar] [CrossRef]
- Kang, D.H.; Kang, I.; Ryu, S.H.; Jang, J. Self-aligned coplanar a-IGZO TFTs and application to high-speed circuits. IEEE Electron Device Lett. 2011, 32, 1385–1387. [Google Scholar] [CrossRef]
- Hara, Y.; Kikuchi, T.; Kitagawa, H.; Morinaga, J.; Ohgami, H.; Imai, H.; Daitoh, T.; Matsuo, T. IGZO-TFT technology for large-screen 8K display. J. Soc. Inf. Disp. 2018, 26, 169–177. [Google Scholar] [CrossRef]
- Jang, H.J.; Lee, J.Y.; Kwak, J.; Lee, D.; Park, J.-H.; Lee, B.; Noh, Y.Y. Progress of display performances: AR, VR, QLED, OLED, and TFT. J. Inf. Disp. 2019, 20, 1–8. [Google Scholar] [CrossRef]
- Pi, T.; Xiao, D.; Yang, H.; He, G.; Wu, X.; Liu, W.; Zhang, D.W.; Ding, S.-J. High-performance a-IGZO TFT fabricated with ultralow thermal budget via microwave annealing. IEEE Trans. Electron Devices 2021, 69, 156–159. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Wang, J.; Yang, H.; Zhou, X.; Chan, M.; Wang, X.; Lu, L.; Zhang, S. Near-ideal top-gate controllability of InGaZnO thin-film transistors by suppressing interface defects with an ultrathin atomic layer deposited gate insulator. ACS Appl. Mater. Interfaces 2023, 15, 8666–8675. [Google Scholar] [CrossRef]
- Peng, C.; Huang, H.; Xu, M.; Chen, L.; Li, X.; Zhang, J. A simple doping process achieved by modifying the passivation layer for self-aligned top-gate In-Ga-Zn-O thin-film transistors at 200 °C. Nanomaterials 2022, 12, 4021. [Google Scholar] [CrossRef]
- Park, J.; Kim, H.; Choi, P.; Jeon, B.; Lee, J.; Oh, C.; Kim, B.; Choi, B. Effect of ALD-and PEALD-grown Al2O3 gate insulators on electrical and stability properties for a-IGZO thin-film transistor. Electron. Mater. Lett. 2021, 17, 299–306. [Google Scholar] [CrossRef]
- Park, J.; Song, I.; Kim, S.; Kim, S.; Kim, C.; Lee, J.; Lee, H.; Lee, E.; Yin, H.; Kim, K.-K. Self-aligned top-gate amorphous gallium indium zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 053501. [Google Scholar] [CrossRef]
- Sato, A.; Abe, K.; Hayashi, R.; Kumomi, H.; Nomura, K.; Kamiya, T.; Hirano, M.; Hosono, H. Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor. Appl. Phys. Lett. 2009, 94, 133502. [Google Scholar] [CrossRef]
- Kim, H.W.; Kim, E.S.; Park, J.S.; Lim, J.H.; Kim, B.S. Influence of effective channel length in self-aligned coplanar amorphous-indium-gallium-zinc-oxide thin-film transistors with different annealing temperatures. Appl. Phys. Lett. 2018, 113, 022104. [Google Scholar] [CrossRef]
- Shiah, Y.-S.; Sim, K.; Shi, Y.; Abe, K.; Ueda, S.; Sasase, M.; Kim, J.; Hosono, H. Mobility–stability trade-off in oxide thin-film transistors. Nat. Electron. 2021, 4, 800–807. [Google Scholar] [CrossRef]
- Chung, J.-M.; Zhang, X.; Shang, F.; Kim, J.-H.; Wang, X.-L.; Liu, S.; Yang, B.; Xiang, Y. Enhancement of a-IGZO TFT device performance using a clean interface process via etch-stopper nano-layers. Nanoscale Res. Lett. 2018, 13, 164. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.-H.; Bae, S.-H.; Kwon, Y.H.; Seong, N.-J.; Yang, J.-H.; Kim, Y.-H.; Choi, K.-J.; Hwang, C.-S.; Yoon, S.-M. Combination of gate-stack process and cationic composition control for boosting the performance of thin-film transistors using In-Ga-Zn-O active channels prepared by atomic layer deposition. ACS Appl. Electron. Mater. 2021, 3, 4849–4858. [Google Scholar] [CrossRef]
- Yoon, S.-M.; Seong, N.-J.; Choi, K.; Seo, G.-H.; Shin, W.-C. Effects of deposition temperature on the device characteristics of oxide thin-film transistors using In–Ga–Zn–O active channels prepared by atomic-layer deposition. ACS Appl. Mater. Interfaces 2017, 9, 22676–22684. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.W.; Kim, Y.B.; Kim, K.S.; Yoon, Y.D.; Kang, W.J.; Lee, W.; Cho, H.K.; Kim, Y.H. The pH-dependent corrosion behavior of ternary oxide semiconductors and common metals and its application for solution-processed oxide thin film transistors circuit integration. J. Alloys Compd. 2017, 714, 572–582. [Google Scholar] [CrossRef]
- Chung, Y.; Lee, C.-W. Electrochemistry of gallium. J. Electrochem. Sci. Technol. 2013, 4, 1–18. [Google Scholar] [CrossRef]
- Lee, J.-S.; Song, S.-M.; Lee, S.-Y.; Kim, Y.-H.; Kwon, J.-Y.; Han, M.-K. Effects of composition ratio on solution-processed InGaZnO thin-film transistors. ECS Trans. 2013, 53, 197–202. [Google Scholar] [CrossRef]
- Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22. [Google Scholar] [CrossRef]
- Zhong, W.; Li, G.; Lan, L.; Li, B.; Chen, R. Effects of annealing temperature on properties of InSnZnO thin film transistors prepared by Co-sputtering. RSC Adv. 2018, 8, 34817–34822. [Google Scholar] [CrossRef]
- Oh, C.; Jung, H.; Park, S.H.; Kim, B.S. Enhanced electrical properties of In-Ga-Sn-O thin films at low-temperature annealing. Ceram. Int. 2022, 48, 9817–9823. [Google Scholar] [CrossRef]
- Miyakawa, M.; Nakata, M.; Tsyji, H.; Fujisaki, Y. Simple and reliable direct patterning method for carbon-free solution-processed metal oxide TFTs. Sci. Rep. 2018, 8, 12825. [Google Scholar] [CrossRef]
- Thakur, A.; Yoo, H.; Kang, S.-J.; Baik, J.Y.; Lee, I.-J.; Lee, H.-K.; Kim, K.; Kim, B.; Jung, S.; Park, J. Effects of substrate temperature on structural, electrical and optical properties of amorphous In-Ga-Zn-O thin films. ECS J. Solid State Sci. Technol. 2012, 1, Q11. [Google Scholar] [CrossRef]
- Kim, W.-G.; Tak, Y.J.; Du Ahn, B.; Jung, T.S.; Chung, K.-B.; Kim, H.J. High-pressure gas activation for amorphous indium-gallium-zinc-oxide thin-film transistors at 100 °C. Sci. Rep. 2016, 6, 23039. [Google Scholar] [CrossRef]
- Kim, H.W.; Oh, C.; Jang, H.; Kim, M.Y.; Kim, B.S. Influence of oxygen-related defects on In-Ga-Sn-O semiconductor due to plasma-enhanced atomic layer deposition of Al2O3 for low-temperature thin-film transistor in terms of electrical properties. J. Alloys Compd. 2022, 918, 165649. [Google Scholar] [CrossRef]
- Raja, J.; Jang, K.; Balaji, N.; Hussain, S.Q.; Velumani, S.; Chatterjee, S.; Kim, T.; Yi, J. Aging effects on the stability of nitrogen-doped and un-doped InGaZnO thin-film transistors. Mater. Sci. Semicond. Process. 2015, 37, 129–134. [Google Scholar] [CrossRef]
- Chien, T.C.; Yang, Y.C.; Tsao, Y.C.; Chiang, H.C.; Chou, M. Hydrogen as a cause of abnormal subchannel formation under positive bias temperature stress in a-InGaZnO thin-film transistors. IEEE Trans. Device 2019, 66, 2954–2959. [Google Scholar] [CrossRef]
- Choi, Y.; Park, J.; Shin, H. New simulation method for dependency of device degradation on bending direction and channel length. Materials 2021, 14, 6167. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Kim, M.Y.; Kim, H.Y.; Oh, C.; Lee, H.K.; Kim, B.S. Investigating an abnormal hump phenomenon in top gate a-InGaZnO thin-film transistors due to mobile sodium diffusion. Sci. Rep. 2023, 13, 13714. [Google Scholar] [CrossRef] [PubMed]
- Tsao, T.C.; Chang, T.C.; Huang, S.P.; Tsai, Y.L.; Chien, Y.C.; Tai, M.C.; Tu, H.Y.; Huang, J.W. Reliability test integrating electrical and mechanical stress at high temperature for a-InGaZnO thin film transistors. IEEE Trans. Device Mater. Reliab. 2019, 19, 433–436. [Google Scholar] [CrossRef]
- Im, H.; Song, H.; Jeong, J.; Hong, Y.; Hong, Y. Effects of defect creation on bidirectional behavior with hump characteristics of InGaZnO TFTs under bias and thermal stress. Jpn. J. Appl. Phys. 2015, 54, 03CB03. [Google Scholar] [CrossRef]
- Gu, C.; Lee, J.-S. Patterning of amorphous-InGaZnO thin-film transistors by stamping of surface-modified polydimethylsiloxane. RSC Adv. 2016, 6, 43147–43151. [Google Scholar] [CrossRef]
- Farina, F.E.; Azmi, W.S.B.; Harafuji, K. Ultraviolet-ozone anode surface treatment and its effect on organic solar cells. Thin Solid Films 2017, 623, 72–83. [Google Scholar] [CrossRef]
- So, S.; Choi, W.; Cheng, C.; Leung, L.; Kwong, C. Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Appl. Phys. A Mater. Sci. Process. 1999, 68, 447–450. [Google Scholar] [CrossRef]
- Sugiyama, K.; Ishii, H.; Ouchi, Y.; Seki, K. Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. J. Appl. Phys. 2000, 87, 295–298. [Google Scholar] [CrossRef]
- Djurišić, A.; Kwong, C.; Chui, P.; Chan, W. Indium–tin–oxide surface treatments: Influence on the performance of CuPc/C60 solar cells. J. Appl. Phys. 2003, 93, 5472–5479. [Google Scholar] [CrossRef]
- Kim, W.; Lee, W.J.; Kwak, T.; Baek, S.; Lee, S.H.; Park, S. Influence of UV/Ozone Treatment on Threshold Voltage Modulation in Sol–Gel IGZO Thin-Film Transistors. Adv. Mater. Interfaces 2022, 9, 2200032. [Google Scholar] [CrossRef]
- Zhou, X.; Shao, Y.; Zhang, L.; Lu, H.; He, H.; Han, D.; Wang, Y.; Zhang, S. Oxygen interstitial creation in a-IGZO thin-film transistors under positive gate-bias stress. IEEE Electron Device Lett. 2017, 38, 1252–1255. [Google Scholar] [CrossRef]
- Bach, R.D.; Schlegel, H.B. Bond dissociation energy of peroxides revisited. J. Phys. Chem. A 2020, 124, 4742–4751. [Google Scholar] [CrossRef] [PubMed]
- Han, K.-L.; Ok, K.-C.; Cho, H.-S.; Oh, S.; Park, J.-S. Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiNx/SiO2 buffer. Appl. Phys. Lett. 2017, 111, 063502. [Google Scholar] [CrossRef]
- Ahn, B.D.; Park, J.-S.; Chung, K. Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature. Appl. Phys. Lett. 2014, 105, 263901. [Google Scholar] [CrossRef]
- Bae, S.-H.; Yang, J.-H.; Kim, Y.-H.; Kwon, Y.H.; Seong, N.-J.; Choi, K.-J.; Hwang, C.-S.; Yoon, S.-M. Roles of Oxygen interstitial defects in atomic-layer deposited InGaZnO thin films with controlling the cationic compositions and gate-stack processes for the devices with subμm channel lengths. ACS Appl. Mater. Interfaces 2022, 14, 31010–31023. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.-S.; Lee, H.-M.; Lim, J.H.; Park, J.-S. Impact of tandem IGZO/ZnON TFT with energy-band aligned structure. Appl. Phys. Lett. 2020, 117, 143505. [Google Scholar] [CrossRef]
- Lee, D.; Park, J.-W.; Cho, N.-K.; Lee, J.; Kim, Y.S. Verification of charge transfer in metal-insulator-oxide semiconductor diodes via defect engineering of insulator. Sci. Rep. 2019, 9, 10323. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Joo, Y.-H.; Kim, M.P.; Um, D.-S.; Kim, C.-I. Etching characteristics and changes in surface properties of IGZO thin films by O2 addition in CF4/Ar plasma. Coatings 2021, 11, 906. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, C.; Kim, T.; Ju, M.W.; Kim, M.Y.; Park, S.H.; Lee, G.H.; Kim, H.; Kim, S.; Kim, B.S. Influence of Channel Surface with Ozone Annealing and UV Treatment on the Electrical Characteristics of Top-Gate InGaZnO Thin-Film Transistors. Materials 2023, 16, 6161. https://doi.org/10.3390/ma16186161
Oh C, Kim T, Ju MW, Kim MY, Park SH, Lee GH, Kim H, Kim S, Kim BS. Influence of Channel Surface with Ozone Annealing and UV Treatment on the Electrical Characteristics of Top-Gate InGaZnO Thin-Film Transistors. Materials. 2023; 16(18):6161. https://doi.org/10.3390/ma16186161
Chicago/Turabian StyleOh, Changyong, Taehyeon Kim, Myeong Woo Ju, Min Young Kim, So Hee Park, Geon Hyeong Lee, Hyunwuk Kim, SeHoon Kim, and Bo Sung Kim. 2023. "Influence of Channel Surface with Ozone Annealing and UV Treatment on the Electrical Characteristics of Top-Gate InGaZnO Thin-Film Transistors" Materials 16, no. 18: 6161. https://doi.org/10.3390/ma16186161
APA StyleOh, C., Kim, T., Ju, M. W., Kim, M. Y., Park, S. H., Lee, G. H., Kim, H., Kim, S., & Kim, B. S. (2023). Influence of Channel Surface with Ozone Annealing and UV Treatment on the Electrical Characteristics of Top-Gate InGaZnO Thin-Film Transistors. Materials, 16(18), 6161. https://doi.org/10.3390/ma16186161