Decreasing Hydrogen Content within Zirconium Using Au and Pd Nanoparticles as Sacrificial Agents under Pressurized Water at High Temperature
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Min, S.-J.; Won, J.-J.; Kim, K.-T. Terminal cool-down temperature-dependent hydride reorientations in Zr–Nb Alloy claddings under dry storage conditions. J. Nucl. Mater. 2014, 448, 172–183. [Google Scholar] [CrossRef]
- Youn, Y.-S.; Park, J.; Lim, S.H. Stable lattice thermal expansion of ZIRLO™: High-temperature X-ray diffraction results. J. Nucl. Mater. 2019, 523, 66–70. [Google Scholar] [CrossRef]
- Kim, S.-S.; Lim, S.; Ahn, D.-H.; Lee, G.-G.; Chang, K. Effect of Inhomogeneous Nucleation of Hydride at α/β Phase Boundary on Microstructure Evolution of Zr–2.5 wt% Nb Pressure Tube. Met. Mater. Int. 2019, 25, 838–845. [Google Scholar] [CrossRef]
- Park, S.; Kim, K.-j.; Lee, J.; Kim, J.-Y.; Lee, D.W.; Lim, S.H.; Youn, Y.-S. Synchrotron-based high-resolution photoemission spectroscopy study of ZIRLO cladding with H2O adsorption: Coverage and temperature dependence. Sci. Rep. 2020, 10, 6650. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, T.-H.; Kim, K.-m.; Kim, Y.-S. Terminal solid solubility of hydrogen of optimized-Zirlo and its effects on hydride reorientation mechanisms under dry storage conditions. Nucl. Eng. Technol. 2020, 52, 1742–1748. [Google Scholar] [CrossRef]
- Ha, J.M.; Park, S.; Kwon, E.; Lee, D.W.; Kwon, T.H.; Nam, J.-W.; Lee, J.; Kim, J.-Y.; Lee, H.; Lim, S.H.; et al. Effects of minor alloying elements added in simulated cladding on lattice thermal expansion. J. Nucl. Mater. 2021, 557, 153240. [Google Scholar] [CrossRef]
- Topping, M.; Long, F.; Cherubin, I.; Badr, N.N.; Cui, J.; Park, J.S.; Daymond, M.R. Investigating the stability of reoriented hydrides and their reprecipitation using in-situ heating experiments. J. Nucl. Mater. 2022, 564, 153670. [Google Scholar] [CrossRef]
- Kim, S.; Kang, J.-H.; Lee, Y. Suppressed hydride precipitation in the welding zone of a zirconium-based alloy cladding tube. J. Nucl. Mater. 2023, 580, 154406. [Google Scholar] [CrossRef]
- Stojilovic, N.; Ramsier, R.D. Oxidation of Zircaloy-4 by H2O followed by molecular desorption. Appl. Surf. Sci. 2006, 252, 5839–5845. [Google Scholar] [CrossRef]
- Hong, S.I.; Lee, K.W. Stress-induced reorientation of hydrides and mechanical properties of Zircaloy-4 cladding tubes. J. Nucl. Mater. 2005, 340, 203–208. [Google Scholar] [CrossRef]
- Colas, K.B.; Motta, A.T.; Daymond, M.R.; Almer, J.D. Effect of thermo-mechanical cycling on zirconium hydride reorientation studied in situ with synchrotron X-ray diffraction. J. Nucl. Mater. 2013, 440, 586–595. [Google Scholar] [CrossRef]
- Lee, H.; Kim, K.-m.; Kim, J.-S.; Kim, Y.-S. Effects of hydride precipitation on the mechanical property of cold worked zirconium alloys in fully recrystallized condition. Nucl. Eng. Technol. 2020, 52, 352–359. [Google Scholar] [CrossRef]
- Barashev, A.V.; Zhao, Q.; Wang, Q.; Yan, Q.; Gao, F. Cluster dynamics simulation of Zr hydrides formation on grain boundaries in Zr. J. Nucl. Mater. 2022, 561, 153521. [Google Scholar] [CrossRef]
- Auzoux, Q.; Bouffioux, P.; Machiels, A.; Yagnik, S.; Bourdiliau, B.; Mallet, C.; Mozzani, N.; Colas, K. Hydride reorientation and its impact on mechanical properties of high burn-up and unirradiated cold-worked stress-relieved Zircaloy-4 and ZirloTM fuel cladding. J. Nucl. Mater. 2022, 568, 153893. [Google Scholar] [CrossRef]
- Kim, D.; Woo, D.; Lee, Y. Radial hydride fraction with various rod internal pressures and hydrogen contents for Zr-Nb alloy cladding tube. J. Nucl. Mater. 2022, 572, 154036. [Google Scholar] [CrossRef]
- Zanellato, O.; Preuss, M.; Buffiere, J.Y.; Ribeiro, F.; Steuwer, A.; Desquines, J.; Andrieux, J.; Krebs, B. Synchrotron diffraction study of dissolution and precipitation kinetics of hydrides in Zircaloy-4. J. Nucl. Mater. 2012, 420, 537–547. [Google Scholar] [CrossRef]
- Raynaud, P.A.; Koss, D.A.; Motta, A.T. Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet. J. Nucl. Mater. 2012, 420, 69–82. [Google Scholar] [CrossRef]
- Tupin, M.; Martin, F.; Bisor, C.; Verlet, R.; Bossis, P.; Chene, J.; Jomard, F.; Berger, P.; Pascal, S.; Nuns, N. Hydrogen diffusion process in the oxides formed on zirconium alloys during corrosion in pressurized water reactor conditions. Corros. Sci. 2017, 116, 1–13. [Google Scholar] [CrossRef]
- Qin, W.; Liang, J.L.; Cheng, Z.Q.; Shi, M.H.; Gu, D.; Li, T.L.; Zhu, W.L.; Szpunar, J.A. Threshold stress of hydride reorientation in zirconium alloy nuclear fuel cladding tubes: A theoretical determination. J. Nucl. Mater. 2022, 563, 153659. [Google Scholar] [CrossRef]
- Courty, O.F.; Motta, A.T.; Piotrowski, C.J.; Almer, J.D. Hydride precipitation kinetics in Zircaloy-4 studied using synchrotron X-ray diffraction. J. Nucl. Mater. 2015, 461, 180–185. [Google Scholar] [CrossRef]
- Motta, A.T.; Capolungo, L.; Chen, L.-Q.; Cinbiz, M.N.; Daymond, M.R.; Koss, D.A.; Lacroix, E.; Pastore, G.; Simon, P.-C.A.; Tonks, M.R.; et al. Hydrogen in zirconium alloys: A review. J. Nucl. Mater. 2019, 518, 440–460. [Google Scholar] [CrossRef]
- Billone, M.C.; Burtseva, T.A.; Einziger, R.E. Ductile-to-brittle transition temperature for high-burnup cladding alloys exposed to simulated drying-storage conditions. J. Nucl. Mater. 2013, 433, 431–448. [Google Scholar] [CrossRef]
- Chu, H.C.; Wu, S.K.; Kuo, R.C. Hydride reorientation in Zircaloy-4 cladding. J. Nucl. Mater. 2008, 373, 319–327. [Google Scholar] [CrossRef]
- Won, J.-J.; Kim, M.-S.; Kim, K.-T. Heat-up and cool-down temperature-dependent hydride reorientation behaviors in zirconium alloy cladding tubes. Nucl. Eng. Technol. 2014, 46, 681–688. [Google Scholar] [CrossRef]
- Cha, H.-J.; Jang, K.-N.; An, J.-H.; Kim, K.-T. The effect of hydrogen and oxygen contents on hydride reorientations of zirconium alloy cladding tubes. Nucl. Eng. Technol. 2015, 47, 746–755. [Google Scholar] [CrossRef]
- Lee, J.-M.; Kim, H.-A.; Kook, D.-H.; Kim, Y.-S. A study on the effects of hydrogen content and peak temperature on threshold stress for hydride reorientation in Zircaloy-4 cladding. J. Nucl. Mater. 2018, 509, 285–294. [Google Scholar] [CrossRef]
- Singh, R.N.; Kishore, R.; Singh, S.S.; Sinha, T.K.; Kashyap, B.P. Stress-reorientation of hydrides and hydride embrittlement of Zr–2.5 wt% Nb pressure tube alloy. J. Nucl. Mater. 2004, 325, 26–33. [Google Scholar] [CrossRef]
- Daum, R.S.; Majumdar, S.; Liu, Y.; Billone, M.C. Radial-hydride Embrittlement of High-burnup Zircaloy-4 Fuel Cladding. J. Nucl. Sci. Technol. 2006, 43, 1054–1067. [Google Scholar] [CrossRef]
- Kim, J.-S.; Kim, T.-H.; Kook, D.-H.; Kim, Y.-S. Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding. J. Nucl. Mater. 2015, 456, 235–245. [Google Scholar] [CrossRef]
- Valance, S.; Bertsch, J. Hydrides reorientation investigation of high burn-up PWR fuel cladding. J. Nucl. Mater. 2015, 464, 371–381. [Google Scholar] [CrossRef]
- Woo, D.; Lee, Y. Understanding the mechanical integrity of Zircaloy cladding with various radial and circumferential hydride morphologies via image analysis. J. Nucl. Mater. 2023, 584, 154560. [Google Scholar] [CrossRef]
- Zlotea, C.; Oumellal, Y.; Provost, K.; Ghimbeu, C.M. Experimental Challenges in Studying Hydrogen Absorption in Ultrasmall Metal Nanoparticles. Front. Energy Res. 2016, 4, 24. [Google Scholar] [CrossRef]
- Narayan, T.C.; Hayee, F.; Baldi, A.; Leen Koh, A.; Sinclair, R.; Dionne, J.A. Direct visualization of hydrogen absorption dynamics in individual palladium nanoparticles. Nat. Commun. 2017, 8, 14020. [Google Scholar] [CrossRef]
- Namba, K.; Ogura, S.; Ohno, S.; Di, W.; Kato, K.; Wilde, M.; Pletikosić, I.; Pervan, P.; Milun, M.; Fukutani, K. Acceleration of hydrogen absorption by palladium through surface alloying with gold. Proc. Natl. Acad. Sci. USA 2018, 115, 7896–7900. [Google Scholar] [CrossRef] [PubMed]
- Gatin, A.; Grishin, M.; Dokhlikova, N.; Ozerin, S.; Sarvadii, S.; Kharitonov, V.; Shub, B. Effect of Size on Hydrogen Adsorption on the Surface of Deposited Gold Nanoparticles. Nanomaterials 2019, 9, 344. [Google Scholar] [CrossRef] [PubMed]
- Manzoli, M.; Chiorino, A.; Vindigni, F.; Boccuzzi, F. Hydrogen interaction with gold nanoparticles and clusters supported on different oxides: A FTIR study. Catal. Today 2012, 181, 62–67. [Google Scholar] [CrossRef]
- Watkins, W.L.; Borensztein, Y. Mechanism of hydrogen adsorption on gold nanoparticles and charge transfer probed by anisotropic surface plasmon resonance. Phys. Chem. Chem. Phys. 2017, 19, 27397–27405. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, H.; Yamauchi, M.; Ikeda, R.; Yamamoto, T.; Matsumura, S.; Kitagawa, H. Double enhancement of hydrogen storage capacity of Pd nanoparticles by 20 at% replacement with Ir; systematic control of hydrogen storage in Pd–M nanoparticles (M = Ir, Pt, Au). Chem. Sci. 2018, 9, 5536–5540. [Google Scholar] [CrossRef]
- Dekura, S.; Kobayashi, H.; Kusada, K.; Kitagawa, H. Hydrogen in Palladium and Storage Properties of Related Nanomaterials: Size, Shape, Alloying, and Metal-Organic Framework Coating Effects. ChemPhysChem 2019, 20, 1158–1176. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Xiahou, Y.; Zhang, P.; Ding, W.; Wang, D. Revitalizing the Frens Method to Synthesize Uniform, Quasi-Spherical Gold Nanoparticles with Deliberately Regulated Sizes from 2 to 330 nm. Langmuir 2016, 32, 5870–5880. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhong, X.; Li, Z.; Xia, Y. Successive, Seed-Mediated Growth for the Synthesis of Single-Crystal Gold Nanospheres with Uniform Diameters Controlled in the Range of 5–150 nm. Part. Part. Syst. Charact. 2014, 31, 266–273. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Tumskiy, R.S.; Burov, A.M.; Pylaev, T.E.; Khlebtsov, N.G. Quantifying the Numbers of Gold Nanoparticles in the Test Zone of Lateral Flow Immunoassay Strips. ACS Appl. Nano Mater. 2019, 2, 5020–5028. [Google Scholar] [CrossRef]
- Wang, Y.; Biby, A.; Xi, Z.; Liu, B.; Rao, Q.; Xia, X. One-Pot Synthesis of Single-Crystal Palladium Nanoparticles with Controllable Sizes for Applications in Catalysis and Biomedicine. ACS Appl. Nano Mater. 2019, 2, 4605–4612. [Google Scholar] [CrossRef]
- Wang, L.-m.; He, S.; Cui, Z.-m.; Guo, L. One-step synthesis of monodisperse palladium nanosphere and their catalytic activity for Suzuki coupling reactions. Inorg. Chem. Commun. 2011, 14, 1574–1578. [Google Scholar] [CrossRef]
- Baylon, R.A.L.; Sun, J.; Kovarik, L.; Engelhard, M.; Li, H.; Winkelman, A.D.; Wang, Y. Structural identification of ZnxZryOz catalysts for Cascade aldolization and self-deoxygenation reactions. Appl. Catal. B 2018, 234, 337–346. [Google Scholar] [CrossRef]
- Nelson, A.E.; Schulz, K.H. Surface chemistry and microstructural analysis of CexZr1−xO2−y model catalyst surfaces. Appl. Surf. Sci. 2003, 210, 206–221. [Google Scholar] [CrossRef]
- Lokesha, H.S.; Nagabhushana, K.R.; Singh, F.; Tatumi, S.H.; Prinsloo, A.R.E.; Sheppard, C.J. Unraveling the Charge State of Oxygen Vacancies in Monoclinic ZrO2 and Spectroscopic Properties of ZrO2:Sm3+ Phosphor. J. Phys. Chem. C 2021, 125, 27106–27117. [Google Scholar] [CrossRef]
- Yan, Y.; Qian, S.; Garrison, B.; Smith, T.; Kim, P. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering. J. Nucl. Mater. 2018, 502, 191–200. [Google Scholar] [CrossRef]
- Yamauchi, M.; Ikeda, R.; Kitagawa, H.; Takata, M. Nanosize Effects on Hydrogen Storage in Palladium. J. Phys. Chem. C 2008, 112, 3294–3299. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yamauchi, M.; Ikeda, R.; Kitagawa, H. Atomic-level Pd–Au alloying and controllable hydrogen-absorption properties in size-controlled nanoparticles synthesized by hydrogenreduction. Chem. Commun. 2009, 32, 4806–4808. [Google Scholar] [CrossRef]
- Bond, G.C. Hydrogenation by gold catalysts: An unexpected discovery and a current assessment. Gold Bull. 2016, 49, 53–61. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.J.; Ha, J.; Choi, S.J.; Kim, H.I.; Ryu, S.; Kim, Y.; Youn, Y.-S. Decreasing Hydrogen Content within Zirconium Using Au and Pd Nanoparticles as Sacrificial Agents under Pressurized Water at High Temperature. Materials 2023, 16, 6164. https://doi.org/10.3390/ma16186164
Lee YJ, Ha J, Choi SJ, Kim HI, Ryu S, Kim Y, Youn Y-S. Decreasing Hydrogen Content within Zirconium Using Au and Pd Nanoparticles as Sacrificial Agents under Pressurized Water at High Temperature. Materials. 2023; 16(18):6164. https://doi.org/10.3390/ma16186164
Chicago/Turabian StyleLee, Yeon Ju, Juhee Ha, Su Ji Choi, Hyeok Il Kim, Sumin Ryu, Youngsoo Kim, and Young-Sang Youn. 2023. "Decreasing Hydrogen Content within Zirconium Using Au and Pd Nanoparticles as Sacrificial Agents under Pressurized Water at High Temperature" Materials 16, no. 18: 6164. https://doi.org/10.3390/ma16186164
APA StyleLee, Y. J., Ha, J., Choi, S. J., Kim, H. I., Ryu, S., Kim, Y., & Youn, Y. -S. (2023). Decreasing Hydrogen Content within Zirconium Using Au and Pd Nanoparticles as Sacrificial Agents under Pressurized Water at High Temperature. Materials, 16(18), 6164. https://doi.org/10.3390/ma16186164