Filament-Reinforced 3D Printing of Clay
Abstract
:1. Introduction
2. Materials and Methods
2.1. Hardware Setup
2.1.1. Clay Mixture
2.1.2. Filament Material
2.1.3. Customized Nozzle
2.2. Software Setup
2.3. Experiment 1: Bridging Ability
2.4. Experiment 2: Tensile Strength
2.5. Exemplary 1:1 Architectural Prototype
3. Results and Discussion
3.1. Results of Experiment 1: Bridging Ability
3.2. Results of Experiment 2: Tensile Strength
4. Conclusions
5. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bechthold, M.; Kane, A.; King, N. Ceramic Material Systems: In Architecture and Interior Design; Birkhäuser: Basel, Switzerland, 2015; ISBN 978-3-03821-024-5. [Google Scholar]
- Seibold, Z.; Hinz, K.; López, J.; Alonso, N.; Mhatre, S.; Bechthold, M. Ceramic Morphologies: Precision and Control in Paste-Based Additive Manufacturing. In Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture, Mexico City, Mexico, 18–20 October 2018; pp. 350–357. [Google Scholar]
- Witte, D. Clay Printing: The Fourth Generation Brickwork; Springer Vieweg: Wiesbaden, Germany, 2022; ISBN 978-3-658-37160-9. [Google Scholar]
- Bechthold, M. Ceramic Prototypes—Design, Computation, and Digital Fabrication. Inf. Constr. 2016, 68, 4–6. [Google Scholar] [CrossRef]
- Wolf, A.; Rosendahl, P.; Knaack, U. Additive Manufacturing of Clay and Ceramic Building Components. Autom. Constr. 2022, 133, 6–13. [Google Scholar] [CrossRef]
- Alonso-Cañon, S.; Blanco-Fernandez, E.; Castro-Fresno, D.; Yoris-Nobile, A.; Castañón Jano, L. Reinforcements in 3D Printing Concrete Structures. Arch. Civ. Mech. Eng. 2022, 23, 25. [Google Scholar] [CrossRef]
- Sangiorgio, V.; Parisi, F.; Fieni, F.; Parisi, N. The New Boundaries of 3D-Printed Clay Bricks Design: Printability of Complex Internal Geometries. Sustainability 2022, 14, 598. [Google Scholar] [CrossRef]
- Kontovourkis, O.; Tryfonos, G. Robotic 3D Clay Printing of Prefabricated Non-Conventional Wall Components Based on a Parametric-Integrated Design. Autom. Constr. 2020, 110, 17–18. [Google Scholar] [CrossRef]
- Alonso, J.; Sotorrío Ortega, G.; Carabaño, J.; Olsson, N.; Tenorio, J. 3D Claying: 3D Printing and Recycling Clay. Crystals 2023, 13, 375. [Google Scholar] [CrossRef]
- Carr, M.; Wang, Y.; Ghayoomi, M.; Newell, P. Effects of 3D Printing on Clay Permeability and Strength. Transp. Porous Media 2023, 148, 503–504. [Google Scholar] [CrossRef]
- Naughton, P.; Grennan, R. The Strength of Fibre Reinforced Clays. In Proceedings of the XVI ECSMGEGeotechnical Engineering for Infrastructure and Development; CE Publishing: Edinburgh, UK, 2015; pp. 3255–3260. [Google Scholar]
- Mirzababaei, M.; Mohamed, M.; Arulrajah, A.; Anggraini, V. Practical Approach to Predict the Shear Strength of Fibre-Reinforced Clay. Geosynth. Int. 2017, 25, 5–6. [Google Scholar] [CrossRef]
- Ismail, K.; YAP, T.C.; Ahmed, R. 3D-Printed Fiber-Reinforced Polymer Composites by Fused Deposition Modelling (FDM): Fiber Length and Fiber Implementation Techniques. Polymers 2022, 14, 4659. [Google Scholar] [CrossRef]
- Mirjan, A.; Mata-Falcón, J.; Rieger, C.; Herkrath, J.; Kaufmann, W.; Gramazio, F.; Kohler, M. Mesh Mould Prefabrication; Springer International Publishing: Cham, Switzerland, 2022; pp. 31–36. ISBN 978-3-031-06115-8. [Google Scholar]
- Reinforced Clay Printing. Available online: https://www.iaacblog.com/programs/reinforced-clay-printing-3d-printing-pla-printing/ (accessed on 11 September 2023).
- Fiber Reinforcement in 3D Printing with Clay. Available online: https://www.iaacblog.com/programs/fiber-reinforcement-3d-printing-clay/ (accessed on 11 September 2023).
- Asprone, D.; Menna, C.; Bos, F.; Salet, T.; Mata-Falcón, J.; Kaufmann, W. Rethinking Reinforcement for Digital Fabrication with Concrete. Cem. Concr. Res. 2018, 112, 2–8. [Google Scholar] [CrossRef]
- Bos, F.; Ahmed, Z.; Jutinov, E.; Salet, T. Experimental Exploration of Metal Cable as Reinforcement in 3D Printed Concrete. Materials 2017, 10, 1314. [Google Scholar] [CrossRef] [PubMed]
- Mierzwiński, D.; Łach, M.; Gądek, S.; Lin, W.-T.; Tran, H.; Korniejenko, K. A Brief Overview of the Use of Additive Manufacturing of Con-Create Materials in Construction. Acta Innov. 2023, 28–29. [Google Scholar] [CrossRef]
- Rajendran, S.; Palani, G.; Kanakaraj, A.; Shanmugam, V.; Gądek, S.; Korniejenko, K.; Marimuthu, U. Metal and Polymer Based Composites Manufactured Using Additive Manufacturing—A Brief Review. Polymers 2023, 15, 2564. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-Q.; Klug, C.; Schmitz, T. Fiber-Reinforced Clay: An Exploratory Study on Automated Thread Insertion for Enhanced Structural Integrity in LDM. Ceramics 2023, 6, 1365–1383. [Google Scholar] [CrossRef]
- Ekinci, A.; Abki, A.; Mirzababaei, M. Parameters Controlling Strength, Stiffness and Durability of a Fibre-Reinforced Clay. Int. J. Geosynth. Ground Eng. 2022, 8, 6. [Google Scholar] [CrossRef]
- Neef, T.; Mechtcherine, V. Simultaneous Integration of Continuous Mineral-Bonded Carbon Reinforcement Into Additive Manufacturing With Concrete. Open Conf. Proc. 2022, 1, 74–75. [Google Scholar] [CrossRef]
- Gosch, L.; Jauk, J.; Vašatko, H.; Šamec, E.; Raffaelli, M.; Rutzinger, S.; Stavric, M. Fabricating Lightweight Ceramics by Spraying Clay on Knitted Structures. Int. J. Archit. Comput. 2022, 20, 693–706. [Google Scholar] [CrossRef]
- Khan, M.; Mishra, S. Minimizing Surface Roughness of ABS-FDM Build Parts: An Experimental Approach. Mater. Today Proc. 2020, 26, 1557–1566. [Google Scholar] [CrossRef]
- Brown, A.; Beer, D. Development of a Stereolithography (STL) Slicing and G-Code Generation Algorithm for an Entry Level 3-D Printer. In Proceedings of the IEEE AFRICON Conference, Pointe-Aux-Piments, Mauritius, 9–12 September 2013; pp. 1–5. [Google Scholar]
- Termite Food4Rhino. Available online: https://www.food4rhino.com/en/app/termite (accessed on 11 September 2023).
- Wang, J.; Gee-Clough, D. Deformation and Failure in Wet Clay Soil: Part 1, Stress-Strain Relationships. J. Agric. Eng. Res. 1993, 54, 37–55. [Google Scholar] [CrossRef]
- Sachan, A. Effect of Intermediate Microfabric on Shear Strength and Strain Localization Response of Kaolin Clay Under Compression and Extension Loading. Geotech. Geol. Eng. 2012, 31, 213–228. [Google Scholar] [CrossRef]
- Friedman, J.; Kim, H.; Mesa, O. Experiments in Additive Clay Depositions. Rob/Arch 2014 Robot. Fabr. Archit. Art Des. 2014, 2014, 261–272. [Google Scholar] [CrossRef]
- Galán-Marín, C.; Rivera-Gómez, C.; Petric, J. Clay-Based Composite Stabilized with Natural Polymer and Fibre. Constr. Build. Mater. 2010, 24, 1462–1468. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Seshadri, S.A.; Ramakrishnan, S.; Sanjay, M.R.; Siengchin, S.; Nagaraja, K.C. A Comprehensive Review on Natural Fiber/Nano-clay Reinforced Hybrid Polymeric Composites: Materials and Technologies. Polym. Compos. 2021, 42, 3687–3701. [Google Scholar] [CrossRef]
- Chand, N.; Mohammed, F. Natural Fibers and Their Composites; Woodhead Publishing: Sawston, UK, 2021; pp. 1–59. ISBN 978-0-12-818983-2. [Google Scholar]
- Shuaib, N.A.; Mohamed Sultan, A.A.; Ismail, S.; Samat, A.; Omar, N.; Azmi, A.; Mativenga, P. Recycling of Composite Materials; Springer: Berlin, Germany, 2021; pp. 532–535. ISBN 978-3-030-71437-6. [Google Scholar]
- Milošević, J.; Brajković, J.; Josifovski, A.; Žujović, M.; Zivkovic, M. Reimagining Materiality: 3D Printing With Recycled Clay for Circular Architectural Elements. In Proceedings of the On Architecture—Challenges in Design; Sustainable Urban Society Association—STRAND: Belgrade, Serbia, 2023; p. 1. [Google Scholar]
- Jacquet, Y.; Perrot, A. Sewing Concrete Device—Combining In-Line Rheology Control and Reinforcement System for 3D Concrete Printing. Materials 2023, 16, 5110. [Google Scholar] [CrossRef] [PubMed]
- Keating, S. From Bacteria to Buildings: Additive Manufacturing Outside the Box. PhD Thesis. PhD Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2016. [Google Scholar]
- Han, C. Coextrusion; Oxford Academic: New York, NY, USA, 2006; pp. 379–423. ISBN 978-0-19-518783-0. [Google Scholar]
- Ahmed, Z.; Bos, F.; Brunschot, M.C.A.J.; Salet, T. On-Demand Additive Manufacturing of Functionally Graded Concrete. Virtual Phys. Prototyp. 2020, 15, 194–210. [Google Scholar] [CrossRef]
- Jauk, J.; Gosch, L.; Vašatko, H.; Christian, I.; Klaus, A.; Stavric, M. MyCera. Application of Mycelial Growth within Digitally Manufactured Clay Structures. Int. J. Archit. Comput. 2022, 20, 31–40. [Google Scholar] [CrossRef]
Thread Type | Adhesion | Stiffness | Elasticity | Texture | Accessibility |
---|---|---|---|---|---|
Synthetic | Low | Low | Low | Medium | High |
Cotton | High | Low | Medium | Medium | High |
Nylon | Low | Medium | Medium | Plain | High |
Carbon | Medium | Low | Low | Rough | Medium |
Glass | Medium | Low | Low | Rough | Medium |
E-Glass | Medium | Low | Low | Rough | Medium |
Basalt | Medium | Low | Low | Rough | Medium |
Stainless Steel | Low | High | Low | Medium | Low |
Silicate | Medium | Low | Low | Rough | medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jauk, J.; Gosch, L.; Vašatko, H.; Königsberger, M.; Schlusche, J.; Stavric, M. Filament-Reinforced 3D Printing of Clay. Materials 2023, 16, 6253. https://doi.org/10.3390/ma16186253
Jauk J, Gosch L, Vašatko H, Königsberger M, Schlusche J, Stavric M. Filament-Reinforced 3D Printing of Clay. Materials. 2023; 16(18):6253. https://doi.org/10.3390/ma16186253
Chicago/Turabian StyleJauk, Julian, Lukas Gosch, Hana Vašatko, Markus Königsberger, Johannes Schlusche, and Milena Stavric. 2023. "Filament-Reinforced 3D Printing of Clay" Materials 16, no. 18: 6253. https://doi.org/10.3390/ma16186253
APA StyleJauk, J., Gosch, L., Vašatko, H., Königsberger, M., Schlusche, J., & Stavric, M. (2023). Filament-Reinforced 3D Printing of Clay. Materials, 16(18), 6253. https://doi.org/10.3390/ma16186253