Thermal Conductivity and Microstructure of Novel Flaxseed-Gum-Filled Epoxy Resin Biocomposite: Analytical Models and X-ray Computed Tomography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Materials
2.2. Microstructural Characterization of Samples
2.3. Analytical Approach for Estimating Thermal Conductivity
2.3.1. Thermal Conductivity of the Fibrous Media
- with ,
- where,
- λeff: is the effective thermal conductivity of the fibrous composite.
- λFG: is the effective thermal conductivity of the porous flaxseed gum (FG) matrix.
- λFb(s): is the local thermal conductivity of the flax fibers (s = solid).
- νFb: is the volume fraction of the flax fibers.
- φ: is the porosity.
- fs: is a morphological parameter (fs = 1 for fibers).
- with .
- where,
- λg: is the thermal conductivity of the air.
2.3.2. Thermal Conductivity of the Porous Flaxseed Gum Matrix
- λFG: is the effective thermal conductivity of the porous flaxseed gum matrix.
- λFG(s): is the local thermal conductivity of the non-porous flaxseed gum matrix.
- φ: is the porosity of the flaxseed gum matrix.
2.3.3. Local Thermal Conductivity of the Flaxseed Gum Matrix
- X: is the volume fraction of the pure flaxseed gum (FG100) in the solid matrix.
- λFG100(s): is the intrinsic thermal conductivity of the non-porous FG100.
- λEpoxy(s): is the intrinsic thermal conductivity of the non-porous epoxy resin.
3. Results and Discussion
3.1. Microstructure Analysis
3.2. Thermal Conductivity Estimation
3.2.1. Thermal Conductivity of the Non-Porous Flaxseed-Gum-Filled Epoxy Matrix
3.2.2. Local Thermal Conductivity of Chopped Flax Fibers
- λFb: is the effective thermal conductivity of the flax fibers (in air).
- λg: is the thermal conductivity of the air (λg = 0.026 W·m−1·K−1).
3.2.3. Intrinsic Thermal Conductivity of the Pure Flaxseed Gum (FG100) and Epoxy Resin
3.2.4. Local Thermal Conductivity of Flax Fibers Based on the Effective Conductivity of the Fibrous Composite
3.2.5. Estimating the Thermal Conductivity of the Porous Matrix for Different Volume Fractions of Flaxseed Gum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Philp, J.C.; Bartsev, A.; Ritchie, R.J.; Baucher, M.-A.; Guy, K. Bioplastics science from a policy vantage point. New Biotechnol. 2013, 30, 635–646. [Google Scholar] [CrossRef]
- Phiri, R.; Mavinkere Rangappa, S.; Siengchin, S.; Oladijo, O.P.; Dhakal, H.N. Development of sustainable biopolymer-based composites for lightweight applications from agricultural waste biomass: A review. Adv. Ind. Eng. Polym. Res. 2023, in press. [Google Scholar] [CrossRef]
- Akter, M.; Uddin, M.H.; Tania, I.S. Biocomposites based on natural fibers and polymers: A review on properties and potential applications. J. Reinf. Plast. Compos. 2022, 41, 705–742. [Google Scholar] [CrossRef]
- Andrew, J.J.; Dhakal, H.N. Sustainable biobased composites for advanced applications: Recent trends and future opportunities—A critical review. Compos. Part C Open Access 2022, 7, 100220. [Google Scholar] [CrossRef]
- Yan, L.; Chouw, N.; Jayaraman, K. Flax fibre and its composites—A review. Compos. Part B Eng. 2014, 56, 296–317. [Google Scholar] [CrossRef]
- Raja, R.A.A.; Sunil, J. Estimation of Thermal Conductivity of Nanofluids Using Theoretical Correlations. Int. J. Appl. Eng. Res. 2018, 13, 7932–7936. [Google Scholar]
- Audenaert, A.; De Cleyn, S.H.; Buyle, M. LCA of low-energy flats using the Eco-indicator 99 method: Impact of insulation materials. Energy Build. 2012, 47, 68–73. [Google Scholar] [CrossRef]
- Braulio-Gonzalo, M.; Bovea, M.D. Environmental and cost performance of building’s envelope insulation materials to reduce energy demand: Thickness optimisation. Energy Build. 2017, 150, 527–545. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Öchsner, A.; Islam, M.; Francucci, G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019, 38, 323–339. [Google Scholar] [CrossRef]
- Baley, C.; Bourmaud, A.; Davies, P. Eighty years of composites reinforced by flax fibres: A historical review. Compos. Part A Appl. Sci. Manuf. 2021, 144, 106333. [Google Scholar] [CrossRef]
- Baley, C.; Gomina, M.; Breard, J.; Bourmaud, A.; Drapier, S.; Ferreira, M.; Le Duigou, A.; Liotier, P.J.; Ouagne, P.; Soulat, D.; et al. Specific features of flax fibres used to manufacture composite materials. Int. J. Mater. Form. 2019, 12, 1023–1052. [Google Scholar] [CrossRef]
- Melenka, G.W.; Bruni-Bossio, B.M.; Ayranci, C.; Carey, J.P. Examination of voids and geometry of bio-based braided composite structures. IOP Conf. Ser. Mater. Sci. Eng. 2018, 406, 012012. [Google Scholar] [CrossRef]
- Wang, Y.; Chang, H.-I.; Wertheim, D.F.; Jones, A.S.; Jackson, C.; Coombes, A.G.A. Characterisation of the macroporosity of polycaprolactone-based biocomposites and release kinetics for drug delivery. Biomaterials 2007, 28, 4619–4627. [Google Scholar] [CrossRef]
- Alix, S.; Marais, S.; Morvan, C.; Lebrun, L. Biocomposite materials from flax plants: Preparation and properties. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1793–1801. [Google Scholar] [CrossRef]
- Verstraete, S.; Buffel, B.; Madhav, D.; Debruyne, S.; Desplentere, F. Short Flax Fibres and Shives as Reinforcements in Bio Composites: A Numerical and Experimental Study on the Mechanical Properties. Polymers 2023, 15, 2239. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Zhu, H.; Njuguna, J.; Abhyankar, H. Recent development of flax fibres and their reinforced composites based on different polymeric matrices. Materials 2013, 6, 5171. [Google Scholar] [CrossRef]
- Musa, C. Élaboration et Caractérisation de Matériaux Composites Biosourcés à Base de Mucilage et de Fibres de lin. Ph.D. Thesis, Université du Littoral Côte d’Opale, Côte d’Opale, France, 2019. [Google Scholar]
- Musa, C.; Kervoëlen, A.; Danjou, P.-E.; Bourmaud, A.; Delattre, F. Bio-based unidirectional composite made of flax fibre and isosorbide-based epoxy resin. Mater. Lett. 2020, 258, 126818. [Google Scholar] [CrossRef]
- Li, X.; Tabil, L.G.; Oguocha, I.N.; Panigrahi, S. Thermal diffusivity, thermal conductivity, and specific heat of flax fiber–HDPE biocomposites at processing temperatures. Compos. Sci. Technol. 2008, 68, 1753–1758. [Google Scholar] [CrossRef]
- Nait-Ali, B.; Haberko, K.; Vesteghem, H.; Absi, J.; Smith, D.S. Thermal conductivity of highly porous zirconia. J. Eur. Ceram. Soc. 2006, 26, 3567–3574. [Google Scholar] [CrossRef]
- Hanhan, I.; Agyei, R.; Xiao, X.; Sangid, M.D. Comparing non-destructive 3D X-ray computed tomography with destructive optical microscopy for microstructural characterization of fiber reinforced composites. Compos. Sci. Technol. 2019, 184, 107843. [Google Scholar] [CrossRef]
- Panerai, F.; Ferguson, J.C.; Lachaud, J.; Martin, A.; Gasch, M.J.; Mansour, N.N. Micro-tomography based analysis of thermal conductivity, diffusivity and oxidation behavior of rigid and flexible fibrous insulators. Int. J. Heat Mass Transf. 2017, 108, 801–811. [Google Scholar] [CrossRef]
- Jiang, N.; Li, Y.; Li, D.; Yu, T.; Li, Y.; Xu, J.; Li, N.; Marrow, T.J. 3D finite element modeling of water diffusion behavior of jute/PLA composite based on X-ray computed tomography. Compos. Sci. Technol. 2020, 199, 108313. [Google Scholar] [CrossRef]
- Emerson, M.J.; Jespersen, K.M.; Dahl, A.B.; Conradsen, K.; Mikkelsen, L.P. Individual fibre segmentation from 3D X-ray computed tomography for characterising the fibre orientation in unidirectional composite materials. Compos. Part A Appl. Sci. Manuf. 2017, 97, 83–92. [Google Scholar] [CrossRef]
- Yang, P.; Elhajjar, R. Porosity Content Evaluation in Carbon-Fiber/Epoxy Composites Using X-ray Computed Tomography. Available online: https://www.ingentaconnect.com/content/tandf/lpte/2014/00000053/00000003/art00001 (accessed on 15 July 2023).
- Tran, L.Q.N.; Minh, T.N.; Fuentes, C.A.; Chi, T.T.; Van Vuure, A.W.; Verpoest, I. Investigation of microstructure and tensile properties of porous natural coir fibre for use in composite materials. Ind. Crops Prod. 2015, 65, 437–445. [Google Scholar] [CrossRef]
- Dubois, F.; Musa, C.; Duponchel, B.; Tidahy, L.; Sécordel, X.; Mallard, I.; Delattre, F. Nuclear Magnetic Resonance and Calorimetric Investigations of Extraction Mode on Flaxseed Gum Composition. Polymers 2020, 12, 2654. [Google Scholar] [CrossRef] [PubMed]
- D7984 Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument. Available online: https://www.astm.org/d7984-21.html (accessed on 15 July 2023).
- Arzt, M.; Deschamps, J.; Schmied, C.; Pietzsch, T.; Schmidt, D.; Tomancak, P.; Haase, R.; Jug, F. LABKIT: Labeling and Segmentation Toolkit for Big Image Data. Front. Comput. Sci. 2022, 4, 10. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Glicksman, L.R.; Torpey, M.; Marge, A. Means to Improve the Thermal Conductivity of Foam Insulation. J. Cell. Plast. 1992, 28, 571–583. [Google Scholar] [CrossRef]
- Saghrouni, Z.; Baillis, D.; Naouar, N.; Blal, N.; Jemni, A. Thermal Properties of New Insulating Juncus Maritimus Fibrous Mortar Composites/Experimental Results and Analytical Laws. Appl. Sci. 2019, 9, 981. [Google Scholar] [CrossRef]
- Maxwell, J.C. A Treatise on Electricity and Magnetism; Clarendon Press: Oxford, UK, 1873. [Google Scholar]
- Pietrak, K.; Wiśniewski, T. A review of models for effective thermal conductivity of composite materials. J. Power Technol. 2015, 95, 14–24. [Google Scholar]
- Lakhtakia, A.; Michel, B.; Weiglhofer, W.S. Bruggeman formalism for two models of uniaxial composite media: Dielectric properties. Compos. Sci. Technol. 1997, 57, 185–196. [Google Scholar] [CrossRef]
- Liu, P.; Li, X.; Min, P.; Chang, X.; Shu, C.; Ding, Y.; Yu, Z.-Z. 3D Lamellar-Structured Graphene Aerogels for Thermal Interface Composites with High through-Plane Thermal Conductivity and Fracture Toughness. Nano-Micro Lett. 2020, 13, 22. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Chen, H.; Yang, S.; Guo, Y.; Li, N.; Zhou, H.; Cao, Y. Frozen slurry-based laminated object manufacturing to fabricate porous ceramic with oriented lamellar structure. J. Eur. Ceram. Soc. 2018, 38, 4014–4019. [Google Scholar] [CrossRef]
- Bodaghi, M.; Delfrari, D.; Lucas, M.; Senoussaoui, N.-L.; Koutsawa, Y.; Uğural, B.K.; Perrin, H. On the relationship of morphology evolution and thermal conductivity of flax reinforced polypropylene laminates. Front. Mater. 2023, 10, 1150180. [Google Scholar] [CrossRef]
- Xu, S.; Liu, H.; Li, Q.; Mu, Q.; Wen, H. Influence of magnetic alignment and layered structure of BN&Fe/EP on thermal conducting performance. J. Mater. Chem. C 2016, 4, 872–878. [Google Scholar] [CrossRef]
- Wan, X.; Demir, B.; An, M.; Walsh, T.R.; Yang, N. Thermal conductivities and mechanical properties of epoxy resin as a function of the degree of cross-linking. Int. J. Heat Mass Transf. 2021, 180, 121821. [Google Scholar] [CrossRef]
- Borges dos Santos, M.; Moura, L.M.; Baillis, D. Identification of the Radiative Parameters-Albedo and Optical Thickness—Of the Juncus maritimus Fiber. Materials 2023, 16, 1891. [Google Scholar] [CrossRef]
Sample | mFG (%) | mFibers (%) | mEpoxy (%) | Bulk Density (g/cm3) | Thermal Conductivity (W·m−1·K−1) |
---|---|---|---|---|---|
FG100 | 100.0 | 0.0 | 0.0 | 228.9 ± 9.3 | 0.054 ± 0.001 |
FG80 | 80.0 | 0.0 | 20.0 | 0.231 ± 8.2 | 0.065 ± 0.001 |
FG20 | 20.0 | 0.0 | 80.0 | 0.219 ± 3.0 | 0.057 ± 0.001 |
FFG | 12.0 | 48.0 | 40.0 | 0.194 ± 5.3 | 0.064 ± 0.001 |
Epoxy resin (dense) | 0.0 | 0.0 | 100 | 1.1 | 0.782 ± 0.001 |
Chopped fibers (1 mm in length) | - | 100.00 | - | 0.108 | 0.048 ± 0.001 |
Sample | νFG (%) | νfibers (%) | Porosity (%) |
---|---|---|---|
FG100 | 32.0 | - | 68.0 ± 2.4 |
FG80 | 32.0 | - | 68.0 ± 2.5 |
FG20 | 39.0 | - | 61.0 ± 3.0 |
FFG | 19.0 | 16.0 | 65.0 ± 1.1 |
Chopped fibers (1 mm) | - | 24.0 | 76.0 ± 1.0 |
Sample | νFG100 (%) | νEpoxy (%) |
---|---|---|
FG100 | 100.00 | 0.00 |
FG80 | 80.30 | 19.70 |
FG20 | 59.20 | 40.80 |
FFG | 35.00 | 65.00 |
Epoxy resin | 0.00 | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaidi, M.; Baillis, D.; Naouar, N.; Depriester, M.; Delattre, F. Thermal Conductivity and Microstructure of Novel Flaxseed-Gum-Filled Epoxy Resin Biocomposite: Analytical Models and X-ray Computed Tomography. Materials 2023, 16, 6318. https://doi.org/10.3390/ma16186318
Zaidi M, Baillis D, Naouar N, Depriester M, Delattre F. Thermal Conductivity and Microstructure of Novel Flaxseed-Gum-Filled Epoxy Resin Biocomposite: Analytical Models and X-ray Computed Tomography. Materials. 2023; 16(18):6318. https://doi.org/10.3390/ma16186318
Chicago/Turabian StyleZaidi, Mohammed, Dominique Baillis, Naim Naouar, Michael Depriester, and François Delattre. 2023. "Thermal Conductivity and Microstructure of Novel Flaxseed-Gum-Filled Epoxy Resin Biocomposite: Analytical Models and X-ray Computed Tomography" Materials 16, no. 18: 6318. https://doi.org/10.3390/ma16186318
APA StyleZaidi, M., Baillis, D., Naouar, N., Depriester, M., & Delattre, F. (2023). Thermal Conductivity and Microstructure of Novel Flaxseed-Gum-Filled Epoxy Resin Biocomposite: Analytical Models and X-ray Computed Tomography. Materials, 16(18), 6318. https://doi.org/10.3390/ma16186318