Mass Spectrometry Imaging of Biomaterials
Abstract
:1. Introduction
2. Techniques Used for Biomaterial Analysis
2.1. Secondary Ion Mass Spectrometry (SIMS)
SIMS | MALDI | DESI | |
---|---|---|---|
Maximum spatial resolution | 0.05 μm [20] | 5 μm [21] | 10 μm [22] |
Sample preparation required | minimal | matrix | minimal |
Source fragmentation | yes | no | no |
Sensitivity | the highest | high | medium |
Analysis conditions | vacuum | vacuum | ambient |
2.2. Matrix-Assisted Laser Desorption/Ionization (MALDI)
2.3. Desorption Electrospray Ionization (DESI)
3. Mass Spectrometry Imaging of Biomaterials in the Vascular System: Models and Therapies
- (1)
- Improvement of the models used in the investigations of the vascular and heart diseases;
- (2)
- interactions of the implanted materials with living tissues monitored during the disease progress;
- (3)
- the study of the drug release form drug-eluting stents (DES)
3.1. Model Improvement for the Vascular System Diseases
3.2. Interactions of the Implanted Materials with Living Tissues Monitored during the Disease Progress
3.3. Characterization of the Drug-Polymer Profile and Drug Elution in DES
4. Mass Spectrometry Imaging of Bone Implant Biomaterials
5. Evaluation of Biomaterial Influence on the Adjacent Tissue by Mass Spectrometry Imaging Techniques
6. Mass Spectrometry Imaging of Biomaterials Used for In Vitro Cell Cultures
7. Studying the Implant Formulation and Active Pharmaceutical Ingredient Release from Biomaterials Such as LAP and Microspheres with the Aid of Mass Spectrometry Imaging
8. Analysis of Designed Nanofibers by Mass Spectrometry Imaging
9. Dialyzer Polymer Membranes and Modified Surfaces Analyzed by Mass Spectrometry Imaging
9.1. Dialyzer Polymer Membranes
9.2. General Modified Surface Analysis
10. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sambani, K.; Kontomaris, S.V.; Yova, D. Atomic Force Microscopy Imaging of Elastin Nanofibers Self-Assembly. Materials 2023, 16, 4313. [Google Scholar] [CrossRef]
- Chelu, M.; Popa, M.; Ozon, E.A.; Pandele Cusu, J.; Anastasescu, M.; Surdu, V.A.; Calderon Moreno, J.; Musuc, A.M. High-Content Aloe Vera Based Hydrogels: Physicochemical and Pharmaceutical Properties. Polymers 2023, 15, 1312. [Google Scholar] [CrossRef]
- Al-Harbi, N.; Hussein, M.A.; Al-Hadeethi, Y.; Felimban, R.I.; Tayeb, H.H.; Bedaiwi, N.M.H.; Alosaimi, A.M.; Bekyarova, E.; Chen, M. Bioactive Hybrid Membrane-Based Cellulose Acetate/Bioactive Glass/Hydroxyapatite/Carbon Nanotubes Nanocomposite for Dental Applications. J. Mech. Behav. Biomed. Mater. 2023, 141, 105795. [Google Scholar] [CrossRef]
- Dłucik, R.; Orzechowska-Wylęgała, B.; Dłucik, D.; Puzzolo, D.; Santoro, G.; Micali, A.; Testagrossa, B.; Acri, G. Comparison of Clinical Efficacy of Three Different Dentin Matrix Biomaterials Obtained from Different Devices. Expert. Rev. Med. Devices 2023, 20, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Salamanca, E.; Choy, C.S.; Aung, L.M.; Tsao, T.-C.; Wang, P.-H.; Lin, W.-A.; Wu, Y.-F.; Chang, W.-J. 3D-Printed PLA Scaffold with Fibronectin Enhances in Vitro Osteogenesis. Polymers 2023, 15, 2619. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Goodall, E.; Pereira, B.L.; Soares, P.; Popat, K.C. Zinc (Zn) Doping by Hydrothermal and Alkaline Heat-Treatment Methods on Titania Nanotube Arrays for Enhanced Antibacterial Activity. Nanomaterials 2023, 13, 1606. [Google Scholar] [CrossRef]
- Valinezhad, N.; Talebi, A.F.; Alamdari, S. Biosynthesize, Physicochemical Characterization and Biological Investigations of Chitosan-Ferula Gummosa Essential Oil (CS-FEO) Nanocomposite. Int. J. Biol. Macromol. 2023, 241, 124503. [Google Scholar] [CrossRef]
- Tosco, V.; Vitiello, F.; Monterubbianesi, R.; Gatto, M.L.; Orilisi, G.; Mengucci, P.; Putignano, A.; Orsini, G. Assessment of the Remineralizing Potential of Biomimetic Materials on Early Artificial Caries Lesions after 28 Days: An in Vitro Study. Bioengineering 2023, 10, 462. [Google Scholar] [CrossRef]
- Pourmadadi, M.; Tajiki, A.; Abdouss, M. A Green Approach for Preparation of Polyacrylic Acid/Starch Incorporated with Titanium Dioxide Nanocomposite as a Biocompatible Platform for Curcumin Delivery to Breast Cancer Cells. Int. J. Biol. Macromol. 2023, 242, 124785. [Google Scholar] [CrossRef]
- Jakubowski, M.; Domke, A.; Ratajczak, M.; Szczuka, J.; Buchwald, T.; Ławniczak, Ł.; Homa, J.; Voelkel, A.; Sandomierski, M. Chitosan Hydrogel Modified with Lanthanum as a Drug Delivery System for Epigallocatechin Gallate: Investigation of Hydrogel—Drug Interaction by FT-IR and Raman Spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023, 297, 122748. [Google Scholar] [CrossRef] [PubMed]
- Suni, A.O.; Lassila, L.V.J.; Tuokko, J.K.; Garoushi, S.; Vallittu, P.K. Adhesion of Individually Formed Fiber Post Adhesively Luted with Flowable Short Fiber Composite. Biomater. Investig. Dent. 2023, 10, 2209593. [Google Scholar] [CrossRef]
- Alazab, M.H.; Abouelgeit, S.A.; Aboushelib, M.N. Histomorphometric Evaluation of 3D Printed Graphene Oxide-Enriched Poly(ε-Caprolactone) Scaffolds for Bone Regeneration. Heliyon 2023, 9, e15844. [Google Scholar] [CrossRef]
- Li, L.; Lu, P.; Liu, Y.; Yang, J.; Li, S. Three-Dimensional-Bioprinted Bioactive Glass/Cellulose Composite Scaffolds with Porous Structure towards Bone Tissue Engineering. Polymers 2023, 15, 2226. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.S.; Matusch, A.; Palm, C.; Salber, D.; Morton, K.A.; Becker, J.S. Bioimaging of Metals in Brain Tissue by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) and Metallomics. Metallomics 2010, 2, 104–111. [Google Scholar] [CrossRef]
- Nemes, P.; Vertes, A. Laser Ablation Electrospray Ionization for Atmospheric Pressure Molecular Imaging Mass Spectrometry. In Mass Spectrometry Imaging: Principles and Protocols; Rubakhin, S.S., Sweedler, J.V., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2010; pp. 159–171. ISBN 978-1-60761-746-4. [Google Scholar]
- Paine, M.R.L.; Kooijman, P.C.; Fisher, G.L.; Heeren, R.M.A.; Fernández, F.M.; Ellis, S.R. Visualizing Molecular Distributions for Biomaterials Applications with Mass Spectrometry Imaging: A Review. J. Mater. Chem. B 2017, 5, 7444–7460. [Google Scholar] [CrossRef] [PubMed]
- Belu, A.M.; Graham, D.J.; Castner, D.G. Time-of-Flight Secondary Ion Mass Spectrometry: Techniques and Applications for the Characterization of Biomaterial Surfaces. Biomaterials 2003, 24, 3635–3653. [Google Scholar] [CrossRef] [PubMed]
- Kingshott, P.; Andersson, G.; McArthur, S.L.; Griesser, H.J. Surface Modification and Chemical Surface Analysis of Biomaterials. Curr. Opin. Chem. Biol. 2011, 15, 667–676. [Google Scholar] [CrossRef]
- Vickerman, J.C. Impact of Mass Spectrometry in Surface Analysis. Analyst 1994, 119, 513–523. [Google Scholar] [CrossRef]
- Brunet, M.A.; Kraft, M.L. Toward Understanding the Subcellular Distributions of Cholesterol and Sphingolipids Using High-Resolution NanoSIMS Imaging. Acc. Chem. Res. 2023, 56, 752–762. [Google Scholar] [CrossRef]
- Feenstra, A.D.; Dueñas, M.E.; Lee, Y.J. Five Micron High Resolution MALDI Mass Spectrometry Imaging with Simple, Interchangeable, Multi-Resolution Optical System. J. Am. Soc. Mass Spectrom. 2017, 28, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Yin, R.; Burnum-Johnson, K.E.; Sun, X.; Dey, S.K.; Laskin, J. High Spatial Resolution Imaging of Biological Tissues Using Nanospray Desorption Electrospray Ionization Mass Spectrometry. Nat. Protoc. 2019, 14, 3445–3470. [Google Scholar] [CrossRef]
- Holzlechner, M.; Eugenin, E.; Prideaux, B. Mass Spectrometry Imaging to Detect Lipid Biomarkers and Disease Signatures in Cancer. Cancer Rep. 2019, 2, e1229. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Guo, Z.; He, L. Mass Spectrometry Imaging of Small Molecules Using Desorption/Ionization on Silicon. Anal. Chem. 2007, 79, 3535–3541. [Google Scholar] [CrossRef] [PubMed]
- Northen, T.R.; Yanes, O.; Northen, M.T.; Marrinucci, D.; Uritboonthai, W.; Apon, J.; Golledge, S.L.; Nordström, A.; Siuzdak, G. Clathrate Nanostructures for Mass Spectrometry. Nature 2007, 449, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Stopka, S.A.; Rong, C.; Korte, A.R.; Yadavilli, S.; Nazarian, J.; Razunguzwa, T.T.; Morris, N.J.; Vertes, A. Molecular Imaging of Biological Samples on Nanophotonic Laser Desorption Ionization Platforms. Angew. Chem. Int. Ed. Engl. 2016, 55, 4482–4486. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Zhang, Y.; Tang, W.; Li, B. Submicron 3,4-Dihydroxybenzoic Acid-TiO2 Composite Particles for Enhanced MALDI MS Imaging of Secondary Metabolites in the Root of Differently Aged Baical Skullcap. Analyst 2022, 147, 3017–3024. [Google Scholar] [CrossRef]
- Laiko, V.V.; Baldwin, M.A.; Burlingame, A.L. Atmospheric Pressure Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2000, 72, 652–657. [Google Scholar] [CrossRef]
- Takáts, Z.; Wiseman, J.M.; Gologan, B.; Cooks, R.G. Mass Spectrometry Sampling under Ambient Conditions with Desorption Electrospray Ionization. Science 2004, 306, 471–473. [Google Scholar] [CrossRef]
- Bodzon-Kulakowska, A.; Drabik, A.; Ner, J.; Kotlinska, J.H.; Suder, P. Desorption Electrospray Ionisation (DESI) for Beginners—How to Adjust Settings for Tissue Imaging. Rapid Commun. Mass. Spectrom. 2014, 28, 1–9. [Google Scholar] [CrossRef]
- Vähätalo, J.; Holmström, L.; Pakanen, L.; Kaikkonen, K.; Perkiömäki, J.; Huikuri, H.; Junttila, J. Coronary Artery Disease as the Cause of Sudden Cardiac Death among Victims < 50 Years of Age. Am. J. Cardiol. 2021, 147, 33–38. [Google Scholar] [CrossRef]
- Scafa Udriște, A.; Niculescu, A.-G.; Grumezescu, A.M.; Bădilă, E. Cardiovascular Stents: A Review of Past, Current, and Emerging Devices. Materials 2021, 14, 2498. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.; Pivato, C.A.; Chiarito, M.; Beerkens, F.; Cao, D.; Mehran, R. Evolution of Drug-Eluting Coronary Stents: A Back-and-Forth Journey from the Bench to Bedside. Cardiovasc. Res. 2023, 119, 631–646. [Google Scholar] [CrossRef] [PubMed]
- Chiarito, M.; Mehran, R. Drug-Eluting Stents in Diabetic Patients: Are We Still Treading Water? Catheter. Cardiovasc. Interv. 2020, 96, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Torii, S.; Jinnouchi, H.; Sakamoto, A.; Mori, H.; Park, J.; Amoa, F.C.; Sawan, M.; Sato, Y.; Cornelissen, A.; Kuntz, S.H.; et al. Vascular Responses to Coronary Calcification Following Implantation of Newer-Generation Drug-Eluting Stents in Humans: Impact on Healing. Eur. Heart J. 2020, 41, 786–796. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Chamberlain, J.; Francis, S.E.; Gunn, J. Role of Animal Models in Coronary Stenting. Ann. Biomed. Eng. 2016, 44, 453–465. [Google Scholar] [CrossRef]
- Tellez, A.; Seifert, P.S.; Donskoy, E.; Sushkova, N.; Pennington, D.E.; Milewski, K.; Krueger, C.G.; Kaluza, G.L.; Eppihimer, M.J.; Huibregtse, B.A.; et al. Experimental Evaluation of Efficacy and Healing Response of Everolimus-Eluting Stents in the Familial Hypercholesterolemic Swine Model: A Comparative Study of Bioabsorbable versus Durable Polymer Stent Platforms. Coron. Artery Dis. 2014, 25, 198–207. [Google Scholar] [CrossRef]
- Razzi, F.; Lovrak, M.; Gruzdyte, D.; Den Hartog, Y.; Duncker, D.J.; van Esch, J.H.; van Steijn, V.; van Beusekom, H.M.M. An Implantable Artificial Atherosclerotic Plaque as a Novel Approach for Drug Transport Studies on Drug-Eluting Stents. Adv. Healthc. Mater. 2022, 11, e2101570. [Google Scholar] [CrossRef]
- Meng, M.; Gao, B.; Wang, X.; Bai, Z.; Sa, R.; Ge, B. Long-Term Clinical Outcomes of Everolimus-Eluting Stent versus Paclitaxel-Eluting Stent in Patients Undergoing Percutaneous Coronary Interventions: A Meta-Analysis. BMC Cardiovasc. Disord. 2016, 16, 34. [Google Scholar] [CrossRef]
- Huang, J.-T.; Hannah-Qiuhua, L.; Szyszka, R.; Veselov, V.; Reed, G.; Wang, X.; Price, S.; Alquier, L.; Vas, G. Molecular Imaging of Drug-Eluting Coronary Stents: Method Development, Optimization and Selected Applications. J. Mass. Spectrom. 2012, 47, 155–162. [Google Scholar] [CrossRef]
- Pilgrim, T.; Rothenbühler, M.; Siontis, G.C.; Kandzari, D.E.; Iglesias, J.F.; Asami, M.; Lefèvre, T.; Piccolo, R.; Koolen, J.; Saito, S.; et al. Biodegradable Polymer Sirolimus-Eluting Stents vs Durable Polymer Everolimus-Eluting Stents in Patients Undergoing Percutaneous Coronary Intervention: A Meta-Analysis of Individual Patient Data from 5 Randomized Trials. Am. Heart J. 2021, 235, 140–148. [Google Scholar] [CrossRef]
- Mielczarek, P.; Suder, P.; Kret, P.; Słowik, T.; Gibuła-Tarłowska, E.; Kotlińska, J.H.; Kotsan, I.; Bodzon-Kulakowska, A. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Sample Preparation Using Wet-Interface Matrix Deposition for Lipid Analysis. Rapid Commun. Mass. Spectrom. 2023, 37, e9531. [Google Scholar] [CrossRef] [PubMed]
- Mielczarek, P.; Suder, P.; Kotsan, I.; Bodzon-Kulakowska, A. The Influence of Matrix Concentration and Solvent Composition on the Results of MALDI MSI, with the Aid of Wet-Interface Matrix Deposition. J. Mass. Spectrom. 2023, 58, e4916. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Yuan, Y.; Hang, T.; Wang, P.; Lu, S.; Wang, H. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometric Imaging the Spatial Distribution of Biodegradable Vascular Stents Using a Self-Made Semi-Quantitative Target Plate. J. Pharm. Biomed. Anal. 2022, 219, 114888. [Google Scholar] [CrossRef]
- Ogaki, R.; Gilmore, I.S.; Alexander, M.R.; Green, F.M.; Davies, M.C.; Lee, J.L.S. Surface Mass Spectrometry of Two Component Drug-Polymer Systems: Novel Chromatographic Separation Method Using Gentle-Secondary Ion Mass Spectrometry (G-SIMS). Anal. Chem. 2011, 83, 3627–3631. [Google Scholar] [CrossRef]
- Belu, A.; Mahoney, C.; Wormuth, K. Chemical Imaging of Drug Eluting Coatings: Combining Surface Analysis and Confocal Raman Microscopy. J. Control. Release 2008, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Balss, K.M.; Long, F.H.; Veselov, V.; Orana, A.; Akerman-Revis, E.; Papandreou, G.; Maryanoff, C.A. Multivariate Analysis Applied to the Study of Spatial Distributions Found in Drug-Eluting Stent Coatings by Confocal Raman Microscopy. Anal. Chem. 2008, 80, 4853–4859. [Google Scholar] [CrossRef]
- Fisher, G.L.; Belu, A.M.; Mahoney, C.M.; Wormuth, K.; Sanada, N. Three-Dimensional Time-of-Flight Secondary Ion Mass Spectrometry Imaging of a Pharmaceutical in a Coronary Stent Coating as a Function of Elution Time. Anal. Chem. 2009, 81, 9930–9940. [Google Scholar] [CrossRef]
- Sosnik, A.; Sodhi, R.N.S.; Brodersen, P.M.; Sefton, M.V. Surface Study of Collagen/Poloxamine Hydrogels by a “deep Freezing” ToF-SIMS Approach. Biomaterials 2006, 27, 2340–2348. [Google Scholar] [CrossRef]
- Mahoney, C.M.; Fahey, A.J.; Belu, A.M. Three-Dimensional Compositional Analysis of Drug Eluting Stent Coatings Using Cluster Secondary Ion Mass Spectrometry. Anal. Chem. 2008, 80, 624–632. [Google Scholar] [CrossRef]
- Fröhlich, S.M.; Eilenberg, M.; Svirkova, A.; Grasl, C.; Liska, R.; Bergmeister, H.; Marchetti-Deschmann, M. Mass Spectrometric Imaging of in Vivo Protein and Lipid Adsorption on Biodegradable Vascular Replacement Systems. Analyst 2015, 140, 6089–6099. [Google Scholar] [CrossRef]
- Bodzon-Kulakowska, A.; Drabik, A.; Mystkowska, J.; Chlabicz, M.; Gacko, M.; Dabrowski, J.R.; Mielczarek, P.; Silberring, J.; Suder, P. Desorption Electrospray Ionization-Based Imaging of Interaction between Vascular Graft and Human Body. J. Biomed. Mater. Res. B Appl. Biomater. 2016, 104, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Guidoin, R.; Maurel, S.; Chakfé, N.; How, T.; Zhang, Z.; Therrien, M.; Formichi, M.; Gosselin, C. Expanded Polytetrafluoroethylene Arterial Prostheses in Humans: Chemical Analysis of 79 Explanted Specimens. Biomaterials 1993, 14, 694–704. [Google Scholar] [CrossRef]
- Mantovani, D.; Vermette, P.; Guidoin, R.; Laroche, G. Lipid Uptake in Synthetic Vascular Prostheses Explanted from Humans. Biomaterials 1999, 20, 1023–1032. [Google Scholar] [CrossRef] [PubMed]
- Liedenbaum, M.H.; Verdam, F.J.; Spelt, D.; de Groot, H.G.W.; van der Waal, J.; van der Laan, L. The Outcome of the Axillofemoral Bypass: A Retrospective Analysis of 45 Patients. World J. Surg. 2009, 33, 2490–2496. [Google Scholar] [CrossRef] [PubMed]
- Bodzon-Kulakowska, A.; Cichon, T.; Golec, A.; Drabik, A.; Ner, J.; Suder, P. DESI-MS as a Tool for Direct Lipid Analysis in Cultured Cells. Cytotechnology 2015, 67, 1085–1091. [Google Scholar] [CrossRef] [PubMed]
- Kauschke, V.; Schneider, M.; Jauch, A.; Schumacher, M.; Kampschulte, M.; Rohnke, M.; Henss, A.; Bamberg, C.; Trinkaus, K.; Gelinsky, M.; et al. Effects of a Pasty Bone Cement Containing Brain-Derived Neurotrophic Factor-Functionalized Mesoporous Bioactive Glass Particles on Metaphyseal Healing in a New Murine Osteoporotic Fracture Model. Int. J. Mol. Sci. 2018, 19, 3531. [Google Scholar] [CrossRef] [PubMed]
- Kern, C.; Jamous, R.; El Khassawna, T.; Rohnke, M. Characterisation of Sr2+ Mobility in Osteoporotic Rat Bone Marrow by Cryo-ToF-SIMS and Cryo-OrbiSIMS. Analyst 2022, 147, 4141–4157. [Google Scholar] [CrossRef] [PubMed]
- Malmberg, P.; Nygren, H. Methods for the Analysis of the Composition of Bone Tissue, with a Focus on Imaging Mass Spectrometry (TOF-SIMS). Proteomics 2008, 8, 3755–3762. [Google Scholar] [CrossRef]
- Henss, A.; Rohnke, M.; Knaack, S.; Kleine-Boymann, M.; Leichtweiss, T.; Schmitz, P.; El Khassawna, T.; Gelinsky, M.; Heiss, C.; Janek, J. Quantification of Calcium Content in Bone by Using ToF-SIMS—A First Approach. Biointerphases 2013, 8, 31. [Google Scholar] [CrossRef]
- Kern, C.; Ray, S.; Gelinsky, M.; Bellew, A.T.; Pirkl, A.; Rohnke, M. New Insights into ToF-SIMS Imaging in Osteoporotic Bone Research. Biointerphases 2020, 15, 031005. [Google Scholar] [CrossRef]
- Eriksson, C.; Malmberg, P.; Nygren, H. Time-of-Flight Secondary Ion Mass Spectrometric Analysis of the Interface between Bone and Titanium Implants. Rapid Commun. Mass. Spectrom. 2008, 22, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Rentsch, B.; Bernhardt, A.; Henß, A.; Ray, S.; Rentsch, C.; Schamel, M.; Gbureck, U.; Gelinsky, M.; Rammelt, S.; Lode, A. Trivalent Chromium Incorporated in a Crystalline Calcium Phosphate Matrix Accelerates Materials Degradation and Bone Formation in Vivo. Acta Biomater. 2018, 69, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Rohnke, M.; Pfitzenreuter, S.; Mogwitz, B.; Henß, A.; Thomas, J.; Bieberstein, D.; Gemming, T.; Otto, S.K.; Ray, S.; Schumacher, M.; et al. Strontium Release from Sr2+-Loaded Bone Cements and Dispersion in Healthy and Osteoporotic Rat Bone. J. Control. Release 2017, 262, 159–169. [Google Scholar] [CrossRef]
- Fröhlich, S.M.; Archodoulaki, V.-M.; Allmaier, G.; Marchetti-Deschmann, M. MALDI-TOF Mass Spectrometry Imaging Reveals Molecular Level Changes in Ultrahigh Molecular Weight Polyethylene Joint Implants in Correlation with Lipid Adsorption. Anal. Chem. 2014, 86, 9723–9732. [Google Scholar] [CrossRef]
- Rohnke, M.; Henss, A.; Kokesch-Himmelreich, J.; Schumacher, M.; Ray, S.; Alt, V.; Gelinsky, M.; Janek, J. Mass Spectrometric Monitoring of Sr-Enriched Bone Cements—From in Vitro to in Vivo. Anal. Bioanal. Chem. 2013, 405, 8769–8780. [Google Scholar] [CrossRef] [PubMed]
- Schaepe, K.; Werner, J.; Glenske, K.; Bartges, T.; Henss, A.; Rohnke, M.; Wenisch, S.; Janek, J. ToF-SIMS Study of Differentiation of Human Bone-Derived Stromal Cells: New Insights into Osteoporosis. Anal. Bioanal. Chem. 2017, 409, 4425–4435. [Google Scholar] [CrossRef]
- Göttlicher, M.; Rohnke, M.; Moryson, Y.; Thomas, J.; Sann, J.; Lode, A.; Schumacher, M.; Schmidt, R.; Pilz, S.; Gebert, A.; et al. Functionalization of Ti-40Nb Implant Material with Strontium by Reactive Sputtering. Biomater. Res. 2017, 21, 18. [Google Scholar] [CrossRef]
- Nygren, H.; Chaudhry, M.; Gustafsson, S.; Kjeller, G.; Malmberg, P.; Johansson, K.-E. Increase of Compact Bone Thickness in Rat Tibia after Implanting MgO into the Bone Marrow Cavity. J. Funct. Biomater. 2014, 5, 158–166. [Google Scholar] [CrossRef]
- Duddeck, D.U.; Albrektsson, T.; Wennerberg, A.; Larsson, C.; Mouhyi, J.; Beuer, F. Quality Assessment of Five Randomly Chosen Ceramic Oral Implant Systems: Cleanliness, Surface Topography, and Clinical Documentation. Int. J. Oral. Maxillofac. Implant. 2021, 36, 863–874. [Google Scholar] [CrossRef]
- Malmberg, P.; Bexell, U.; Eriksson, C.; Nygren, H.; Richter, K. Analysis of Bone Minerals by Time-of-Flight Secondary Ion Mass Spectrometry: A Comparative Study Using Monoatomic and Cluster Ions Sources. EndNote Click. Rapid Commun. Mass Spectrom. 2007, 21, 745–749. [Google Scholar] [CrossRef]
- Klerk, L.A.; Dankers, P.Y.W.; Popa, E.R.; Bosman, A.W.; Sanders, M.E.; Reedquist, K.A.; Heeren, R.M.A. TOF-Secondary Ion Mass Spectrometry Imaging of Polymeric Scaffolds with Surrounding Tissue after in Vivo Implantation. Anal. Chem. 2010, 82, 4337–4343. [Google Scholar] [CrossRef] [PubMed]
- Sijbesma, R.P.; Beijer, F.H.; Brunsveld, L.; Folmer, B.J.; Hirschberg, J.H.; Lange, R.F.; Lowe, J.K.; Meijer, E.W. Reversible Polymers Formed from Self-Complementary Monomers Using Quadruple Hydrogen Bonding. Science 1997, 278, 1601–1604. [Google Scholar] [CrossRef] [PubMed]
- Antoine, E.E.; Vlachos, P.P.; Rylander, M.N. Review of Collagen I Hydrogels for Bioengineered Tissue Microenvironments: Characterization of Mechanics, Structure, and Transport. Tissue Eng. Part B Rev. 2014, 20, 683–696. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, S.; McNeill, B.; Podrebarac, J.; Hosoyama, K.; Sedlakova, V.; Cron, G.; Smyth, D.; Seymour, R.; Goel, K.; Liang, W.; et al. Injectable Human Recombinant Collagen Matrices Limit Adverse Remodeling and Improve Cardiac Function after Myocardial Infarction. Nat. Commun. 2019, 10, 4866. [Google Scholar] [CrossRef] [PubMed]
- Tanrikulu, I.C.; Forticaux, A.; Jin, S.; Raines, R.T. Peptide Tessellation Yields Micrometre-Scale Collagen Triple Helices. Nat. Chem. 2016, 8, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Koide, T. Triple Helical Collagen-Like Peptides: Engineering and Applications in Matrix Biology. Connect. Tissue Res. 2005, 46, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Clift, C.L.; McLaughlin, S.; Muñoz, M.; Suuronen, E.J.; Rotstein, B.H.; Mehta, A.S.; Drake, R.R.; Alarcon, E.I.; Angel, P.M. Evaluation of Therapeutic Collagen-Based Biomaterials in the Infarcted Mouse Heart by Extracellular Matrix Targeted MALDI Imaging Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2021, 32, 2746–2754. [Google Scholar] [CrossRef] [PubMed]
- Artzi, N.; Oliva, N.; Puron, C.; Shitreet, S.; Artzi, S.; bon Ramos, A.; Groothuis, A.; Sahagian, G.; Edelman, E.R. In Vivo and in Vitro Tracking of Erosion in Biodegradable Materials Using Non-Invasive Fluorescence Imaging. Nat. Mater. 2011, 10, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Mertens, M.E.; Hermann, A.; Bühren, A.; Olde-Damink, L.; Möckel, D.; Gremse, F.; Ehling, J.; Kiessling, F.; Lammers, T. Iron Oxide-Labeled Collagen Scaffolds for Non-Invasive MR Imaging in Tissue Engineering. Adv. Funct. Mater. 2014, 24, 754–762. [Google Scholar] [CrossRef]
- Huber, M.; Heiduschka, P.; Kienle, S.; Pavlidis, C.; Mack, J.; Walk, T.; Jung, G.; Thanos, S. Modification of Glassy Carbon Surfaces with Synthetic Laminin-Derived Peptides for Nerve Cell Attachment and Neurite Growth. J. Biomed. Mater. Res. 1998, 41, 278–288. [Google Scholar] [CrossRef]
- Zheng, J.; Kontoveros, D.; Lin, F.; Hua, G.; Reneker, D.H.; Becker, M.L.; Willits, R.K. Enhanced Schwann Cell Attachment and Alignment Using One-Pot “Dual Click” GRGDS and YIGSR Derivatized Nanofibers. Biomacromolecules 2015, 16, 357–363. [Google Scholar] [CrossRef]
- Motta, C.M.M.; Endres, K.J.; Wesdemiotis, C.; Willits, R.K.; Becker, M.L. Enhancing Schwann Cell Migration Using Concentration Gradients of Laminin-Derived Peptides. Biomaterials 2019, 218, 119335. [Google Scholar] [CrossRef] [PubMed]
- Chalazonitis, A.; Tennyson, V.M.; Kibbey, M.C.; Rothman, T.P.; Gershon, M.D. The Alpha1 Subunit of Laminin-1 Promotes the Development of Neurons by Interacting with LBP110 Expressed by Neural Crest-Derived Cells Immunoselected from the Fetal Mouse Gut. J. Neurobiol. 1997, 33, 118–138. [Google Scholar] [CrossRef]
- Stauffer, W.R.; Cui, X.T. Polypyrrole Doped with 2 Peptide Sequences from Laminin. Biomaterials 2006, 27, 2405–2413. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Wang, K.; Ma, T.; Huang, L.; Xia, B.; Zhu, S.; Yang, Y.; Liu, Z.; Quan, X.; Luo, K.; et al. Noncovalent Bonding of RGD and YIGSR to an Electrospun Poly(ε-Caprolactone) Conduit through Peptide Self-Assembly to Synergistically Promote Sciatic Nerve Regeneration in Rats. Adv. Healthc. Mater. 2017, 6, 1600860. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Jo, S.; Mikos, A.G. Biomimetic Materials for Tissue Engineering. Biomaterials 2003, 24, 4353–4364. [Google Scholar] [CrossRef] [PubMed]
- Ender, A.M.; Kaygisiz, K.; Räder, H.-J.; Mayer, F.J.; Synatschke, C.V.; Weil, T. Cell-Instructive Surface Gradients of Photoresponsive Amyloid-like Fibrils. ACS Biomater. Sci. Eng. 2021, 7, 4798–4808. [Google Scholar] [CrossRef]
- Adamcik, J.; Ruggeri, F.S.; Berryman, J.T.; Zhang, A.; Knowles, T.P.J.; Mezzenga, R. Evolution of Conformation, Nanomechanics, and Infrared Nanospectroscopy of Single Amyloid Fibrils Converting into Microcrystals. Adv. Sci. 2021, 8, 2002182. [Google Scholar] [CrossRef]
- Knowles, T.P.J.; Mezzenga, R. Amyloid Fibrils as Building Blocks for Natural and Artificial Functional Materials. Adv. Mater. 2016, 28, 6546–6561. [Google Scholar] [CrossRef]
- Wei, G.; Su, Z.; Reynolds, N.P.; Arosio, P.; Hamley, I.W.; Gazit, E.; Mezzenga, R. Self-Assembling Peptide and Protein Amyloids: From Structure to Tailored Function in Nanotechnology. Chem. Soc. Rev. 2017, 46, 4661–4708. [Google Scholar] [CrossRef] [PubMed]
- Schilling, C.; Mack, T.; Lickfett, S.; Sieste, S.; Ruggeri, F.S.; Sneideris, T.; Dutta, A.; Bereau, T.; Naraghi, R.; Sinske, D.; et al. Sequence-Optimized Peptide Nanofibers as Growth Stimulators for Regeneration of Peripheral Neurons. Adv. Funct. Mater. 2019, 29, 1809112. [Google Scholar] [CrossRef]
- Kokesch-Himmelreich, J.; Woltmann, B.; Torger, B.; Rohnke, M.; Arnhold, S.; Hempel, U.; Müller, M.; Janek, J. Detection of Organic Nanoparticles in Human Bone Marrow-Derived Stromal Cells Using ToF–SIMS and PCA. Anal. Bioanal. Chem. 2015, 407, 4555–4565. [Google Scholar] [CrossRef] [PubMed]
- Sridharan, G.; Shankar, A.A. Toluidine Blue: A Review of Its Chemistry and Clinical Utility. J. Oral Maxillofac. Pathol. 2012, 16, 251. [Google Scholar] [CrossRef] [PubMed]
- Prideaux, B.; Stoeckli, M. Mass Spectrometry Imaging for Drug Distribution Studies. J. Proteom. 2012, 75, 4999–5013. [Google Scholar] [CrossRef] [PubMed]
- Pierson, E.E.; Midey, A.J.; Forrest, W.P.; Shah, V.; Olivos, H.J.; Shrestha, B.; Teller, R.; Forster, S.; Bensussan, A.; Helmy, R. Direct Drug Analysis in Polymeric Implants Using Desorption Electrospray Ionization—Mass Spectrometry Imaging (DESI-MSI). Pharm. Res. 2020, 37, 107. [Google Scholar] [CrossRef] [PubMed]
- Derbalah, A.; Karpick, H.C.; Maize, H.; Skersick, P.; Cottrell, M.; Rao, G.G. Role of Islatravir in HIV Treatment and Prevention: An Update. Curr. Opin. HIV AIDS 2022, 17, 240–246. [Google Scholar] [CrossRef]
- Liang, Z.; Giles, M.B.; Stenslik, M.J.; Marsales, M.; Ormes, J.D.; Seto, R.; Zhong, W. Direct Visualization of the Drug Release Process of Non-Conductive Polymeric Implants via Molecular Imaging. Anal. Chim. Acta 2022, 1230, 340395. [Google Scholar] [CrossRef]
- Rafati, A.; Boussahel, A.; Shakesheff, K.M.; Shard, A.G.; Roberts, C.J.; Chen, X.; Scurr, D.J.; Rigby-Singleton, S.; Whiteside, P.; Alexander, M.R.; et al. Chemical and Spatial Analysis of Protein Loaded PLGA Microspheres for Drug Delivery Applications. J. Control. Release 2012, 162, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-C.; Chen, Y.-W.; Yeh, P.-Y.; Hsiao, Y.-S.; Lin, W.-T.; Kuo, C.-W.; Chueh, D.-Y.; You, Y.-W.; Shyue, J.-J.; Chang, Y.-C.; et al. Random and Aligned Electrospun PLGA Nanofibers Embedded in Microfluidic Chips for Cancer Cell Isolation and Integration with Air Foam Technology for Cell Release. J. Nanobiotechnol. 2019, 17, 31. [Google Scholar] [CrossRef]
- Scoutaris, N.; Hook, A.L.; Gellert, P.R.; Roberts, C.J.; Alexander, M.R.; Scurr, D.J. ToF-SIMS Analysis of Chemical Heterogenities in Inkjet Micro-Array Printed Drug/Polymer Formulations. J. Mater. Sci. Mater. Med. 2012, 23, 385–391. [Google Scholar] [CrossRef]
- Scoutaris, N.; Alexander, M.R.; Gellert, P.R.; Roberts, C.J. Inkjet Printing as a Novel Medicine Formulation Technique. J. Control. Release 2011, 156, 179–185. [Google Scholar] [CrossRef]
- Goessl, A.; Garrison, M.D.; Lhoest, J.B.; Hoffman, A.S. Plasma Lithography—Thin-Film Patterning of Polymeric Biomaterials by RF Plasma Polymerization I: Surface Preparation and Analysis. J. Biomater. Sci. Polym. Ed. 2001, 12, 721–738. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, S.; Abe, K.; Yamagishi, T.; Iwai, H.; Yamaguchi, S.; Sunohara, T. Evaluation of Blood Adsorption onto Dialysis Membranes by Time-of-Flight Secondary Ion Mass Spectrometry and near-Field Infrared Microscopy. Anal. Bioanal. Chem. 2017, 409, 6387–6396. [Google Scholar] [CrossRef]
- Krueger, K.; Terne, C.; Werner, C.; Freudenberg, U.; Jankowski, V.; Zidek, W.; Jankowski, J. Characterization of Polymer Membranes by MALDI Mass-Spectrometric Imaging Techniques. Anal. Chem. 2013, 85, 4998–5004. [Google Scholar] [CrossRef]
- Holzweber, M.; Lippitz, A.; Krueger, K.; Jankowski, J.; Unger, W.E.S. Surface Characterization of Dialyzer Polymer Membranes by Imaging ToF-SIMS and Quantitative XPS Line Scans. Biointerphases 2015, 10, 019011. [Google Scholar] [CrossRef]
- Bolles, K.M.; Cheng, F.; Burk-Rafel, J.; Dubey, M.; Ratner, D.M. Imaging Analysis of Carbohydrate-Modified Surfaces Using ToF-SIMS and SPRi. Materials 2010, 3, 3948–3964. [Google Scholar] [CrossRef]
- Qi, K.; Ma, Q.; Remsen, E.E.; Clark, C.G.; Wooley, K.L. Determination of the Bioavailability of Biotin Conjugated onto Shell Cross-Linked (SCK) Nanoparticles. J. Am. Chem. Soc. 2004, 126, 6599–6607. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Qi, K.; Wooley, K.L.; Walker, A.V. Time-of-Flight Secondary Ion Mass Spectrometry, Fluorescence Microscopy and Scanning Electron Microscopy: Combined Tools for Monitoring the Process of Patterning and Layer-by-Layer Assembly of Synthetic and Biological Materials. Colloids Surf. B Biointerfaces 2008, 65, 85–91. [Google Scholar] [CrossRef]
- Chandler-Temple, A.F.; Wentrup-Byrne, E.; Griesser, H.J.; Jasieniak, M.; Whittaker, A.K.; Grøndahl, L. Comprehensive Characterization of Grafted Expanded Poly(Tetrafluoroethylene) for Medical Applications. Langmuir 2010, 26, 15409–15417. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.; Ulrichs, K.; Moskalenko, V.; Bonneau, M.; Kang, C.; Belcourt, A.; Bertrand, P. Surface Analysis of an Encapsulation Membrane after Its Implantation in Mini-Pigs. Biomed. Mater. 2007, 2, S78–S89. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kret, P.; Bodzon-Kulakowska, A.; Drabik, A.; Ner-Kluza, J.; Suder, P.; Smoluch, M. Mass Spectrometry Imaging of Biomaterials. Materials 2023, 16, 6343. https://doi.org/10.3390/ma16186343
Kret P, Bodzon-Kulakowska A, Drabik A, Ner-Kluza J, Suder P, Smoluch M. Mass Spectrometry Imaging of Biomaterials. Materials. 2023; 16(18):6343. https://doi.org/10.3390/ma16186343
Chicago/Turabian StyleKret, Paulina, Anna Bodzon-Kulakowska, Anna Drabik, Joanna Ner-Kluza, Piotr Suder, and Marek Smoluch. 2023. "Mass Spectrometry Imaging of Biomaterials" Materials 16, no. 18: 6343. https://doi.org/10.3390/ma16186343
APA StyleKret, P., Bodzon-Kulakowska, A., Drabik, A., Ner-Kluza, J., Suder, P., & Smoluch, M. (2023). Mass Spectrometry Imaging of Biomaterials. Materials, 16(18), 6343. https://doi.org/10.3390/ma16186343