Acceleration of Near-IR Emission through Efficient Surface Passivation in Cd3P2 Quantum Dots
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis and Surface Passivation
3.2. Time-Resolved Spectroscopy
3.3. Surface Trap States
3.4. Stokes Shifts
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feng, Z.; Tang, T.; Wu, T.; Yu, X.; Zhang, Y.; Wang, M.; Zheng, J.; Ying, Y.; Chen, S.; Zhou, J.; et al. Perfecting and extending the near-infrared imaging window. Light Sci. Appl. 2021, 10, 197. [Google Scholar] [CrossRef] [PubMed]
- Senellart, P.; Solomon, G.; White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 2017, 12, 1026–1039. [Google Scholar] [CrossRef] [PubMed]
- Moreels, I.; Justo, Y.; De Geyter, B.; Haustraete, K.; Martins, J.C.; Hens, Z. Size-Tunable, Bright, and Stable PbS Quantum Dots: A Surface Chemistry Study. ACS Nano 2011, 5, 2004–2012. [Google Scholar] [CrossRef] [PubMed]
- Bae, W.K.; Joo, J.; Padilha, L.A.; Won, J.; Lee, D.C.; Lin, Q.; Koh, W.-k.; Luo, H.; Klimov, V.I.; Pietryga, J.M. Highly Effective Surface Passivation of PbSe Quantum Dots through Reaction with Molecular Chlorine. J. Am. Chem. Soc. 2012, 134, 20160–20168. [Google Scholar] [CrossRef]
- Sayevich, V.; Robinson, Z.L.; Kim, Y.; Kozlov, O.V.; Jung, H.; Nakotte, T.; Park, Y.-S.; Klimov, V.I. Highly versatile near-infrared emitters based on an atomically defined HgS interlayer embedded into a CdSe/CdS quantum dot. Nat. Nanotechnol. 2021, 16, 673–679. [Google Scholar] [CrossRef]
- Kamath, A.; Schaller, R.D.; Guyot-Sionnest, P. Bright Fluorophores in the Second Near-Infrared Window: HgSe/CdSe Quantum Dots. J. Am. Chem. Soc. 2023, 145, 10809–10816. [Google Scholar] [CrossRef]
- Franke, D.; Harris, D.K.; Chen, O.; Bruns, O.T.; Carr, J.A.; Wilson, M.W.B.; Bawendi, M.G. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun. 2016, 7, 12749. [Google Scholar] [CrossRef]
- Ginterseder, M.; Franke, D.; Perkinson, C.F.; Wang, L.; Hansen, E.C.; Bawendi, M.G. Scalable Synthesis of InAs Quantum Dots Mediated through Indium Redox Chemistry. J. Am. Chem. Soc. 2020, 142, 4088–4092. [Google Scholar] [CrossRef]
- Cheng, C.; Li, J.; Cheng, X. Photoluminescence lifetime and absorption spectrum of PbS nanocrystal quantum dots. J. Lumin. 2017, 188, 252–257. [Google Scholar] [CrossRef]
- Janke, E.M.; Williams, N.E.; She, C.; Zherebetskyy, D.; Hudson, M.H.; Wang, L.; Gosztola, D.J.; Schaller, R.D.; Lee, B.; Sun, C.; et al. Origin of Broad Emission Spectra in InP Quantum Dots: Contributions from Structural and Electronic Disorder. J. Am. Chem. Soc. 2018, 140, 15791–15803. [Google Scholar] [CrossRef]
- Glassy, B.A.; Cossairt, B.M. II3V2 (II: Zn, Cd; V: P, As) Semiconductors: From Bulk Solids to Colloidal Nanocrystals. Small 2017, 13, 1702038. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.; Hickey, S.G.; Rellinghaus, B.; Waurisch, C.; Eychmüller, A. Synthesis and Characterization of Cadmium Phosphide Quantum Dots Emitting in the Visible Red to Near-Infrared. J. Am. Chem. Soc. 2010, 132, 5613–5615. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhang, J.; Zhao, F.; Yang, W.; Peng, X. Synthesis of Monodisperse, Highly Emissive, and Size-Tunable Cd3P2 Nanocrystals. Chem. Mater. 2010, 22, 3820–3822. [Google Scholar] [CrossRef]
- McVey, B.F.P.; Swain, R.A.; Lagarde, D.; Ojo, W.-S.; Bakkouche, K.; Marcelot, C.; Warot, B.; Tison, Y.; Martinez, H.; Chaudret, B.; et al. Cd3P2/Zn3P2 Core-Shell Nanocrystals: Synthesis and Optical Properties. Nanomaterials 2022, 12, 3364. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; He, S.; Chen, D.; Huang, M.; Xu, J.; Hickey, S.G.; Eychmüller, A.; Yu, S.-H.; Miao, S. Encapsulated Cd3P2 quantum dots emitting from the visible to the near infrared for bio-labelling applications. CrystEngComm 2014, 16, 9622–9630. [Google Scholar] [CrossRef]
- Sercel, P.C.; Efros, A.L. Band-Edge Exciton in CdSe and Other II–VI and III–V Compound Semiconductor Nanocrystals—Revisited. Nano Lett. 2018, 18, 4061–4068. [Google Scholar] [CrossRef]
- Trimpl, M.J.; Wright, A.D.; Schutt, K.; Buizza, L.R.V.; Wang, Z.; Johnston, M.B.; Snaith, H.J.; Müller-Buschbaum, P.; Herz, L.M. Charge-Carrier Trapping and Radiative Recombination in Metal Halide Perovskite Semiconductors. Adv. Funct. Mater. 2020, 30, 2004312. [Google Scholar] [CrossRef]
- Houtepen, A.J.; Hens, Z.; Owen, J.S.; Infante, I. On the Origin of Surface Traps in Colloidal II–VI Semiconductor Nanocrystals. Chem. Mater. 2017, 29, 752–761. [Google Scholar] [CrossRef]
- Gao, Y.; Peng, X. Photogenerated Excitons in Plain Core CdSe Nanocrystals with Unity Radiative Decay in Single Channel: The Effects of Surface and Ligands. J. Am. Chem. Soc. 2015, 137, 4230–4235. [Google Scholar] [CrossRef]
- Zhang, H.; Kurley, J.M.; Russell, J.C.; Jang, J.; Talapin, D.V. Solution-Processed, Ultrathin Solar Cells from CdCl3−-Capped CdTe Nanocrystals: The Multiple Roles of CdCl3− Ligands. J. Am. Chem. Soc. 2016, 138, 7464–7467. [Google Scholar] [CrossRef]
- Salzmann, B.B.V.; Vliem, J.F.; Maaskant, D.N.; Post, L.C.; Li, C.; Bals, S.; Vanmaekelbergh, D. From CdSe Nanoplatelets to Quantum Rings by Thermochemical Edge Reconfiguration. Chem. Mater. 2021, 33, 6853–6859. [Google Scholar] [CrossRef] [PubMed]
- Harris, D.K.; Allen, P.M.; Han, H.-S.; Walker, B.J.; Lee, J.; Bawendi, M.G. Synthesis of Cadmium Arsenide Quantum Dots Luminescent in the Infrared. J. Am. Chem. Soc. 2011, 133, 4676–4679. [Google Scholar] [CrossRef] [PubMed]
- Robel, I.; Gresback, R.; Kortshagen, U.; Schaller, R.D.; Klimov, V.I. Universal Size-Dependent Trend in Auger Recombination in Direct-Gap and Indirect-Gap Semiconductor Nanocrystals. Phys. Rev. Lett. 2009, 102, 177404. [Google Scholar] [CrossRef]
- Sung, Y.M.; Kim, T.-G.; Yun, D.-J.; Lim, M.; Ko, D.-S.; Jung, C.; Won, N.; Park, S.; Jeon, W.S.; Lee, H.S.; et al. Increasing the Energy Gap between Band-Edge and Trap States Slows Down Picosecond Carrier Trapping in Highly Luminescent InP/ZnSe/ZnS Quantum Dots. Small 2021, 17, 2102792. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Singh, R.; Fedin, I.; Fuhr, A.S.; Klimov, V.I. Spectroscopic insights into high defect tolerance of Zn:CuInSe2 quantum-dot-sensitized solar cells. Nat. Energy 2020, 5, 409–417. [Google Scholar] [CrossRef]
- Ninomiya, S.; Adachi, S. Optical properties of cubic and hexagonal CdSe. J. Appl. Phys. 1995, 78, 4681–4689. [Google Scholar] [CrossRef]
- Liptay, T.J.; Marshall, L.F.; Rao, P.S.; Ram, R.J.; Bawendi, M.G. Anomalous Stokes shift in CdSe nanocrystals. Phys. Rev. B 2007, 76, 155314. [Google Scholar] [CrossRef]
- Kornowski, A.; Eichberger, R.; Giersig, M.; Weller, H.; Eychmüller, A. Preparation and Photophysics of Strongly Luminescing Cd3P2 Quantum Dots. J. Phys. Chem. 1996, 100, 12467–12471. [Google Scholar] [CrossRef]
Material | τS (ns) | τi (ns) | τL (ns) |
---|---|---|---|
Cd3P2 | 162 ns (6.0%) | 491 ns (94.0%) | |
Cd3P2/CdSe | 21.2 ns (0.7%) | 139 ns (13.8%) | 327 ns (85.4%) |
Cd3P2/CdI2 | 16.9 ns (1.1%) | 116 ns (28.5%) | 291 ns (70.4%) |
Cd3P2/NH4CdI3 | 7.5 ns (8.7%) | 42.6 ns (52.4%) | 152 ns (38.8%) |
QD Diameter | τS (ns) | τi (ns) | τL (ns) |
---|---|---|---|
3.9 nm | 4.2 ns (0.9%) | 53.9 ns (12.2%) | 266 ns (86.9%) |
4.8 nm | 5.1 ns (1.8%) | 49.5 ns (15.6%) | 251 ns (82.6%) |
5.8 nm | 3.3 ns (2.6%) | 36.7 ns (21.1%) | 215 ns (76.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smith, L.; Harbison, K.E.; Diroll, B.T.; Fedin, I. Acceleration of Near-IR Emission through Efficient Surface Passivation in Cd3P2 Quantum Dots. Materials 2023, 16, 6346. https://doi.org/10.3390/ma16196346
Smith L, Harbison KE, Diroll BT, Fedin I. Acceleration of Near-IR Emission through Efficient Surface Passivation in Cd3P2 Quantum Dots. Materials. 2023; 16(19):6346. https://doi.org/10.3390/ma16196346
Chicago/Turabian StyleSmith, Logan, K. Elena Harbison, Benjamin T. Diroll, and Igor Fedin. 2023. "Acceleration of Near-IR Emission through Efficient Surface Passivation in Cd3P2 Quantum Dots" Materials 16, no. 19: 6346. https://doi.org/10.3390/ma16196346
APA StyleSmith, L., Harbison, K. E., Diroll, B. T., & Fedin, I. (2023). Acceleration of Near-IR Emission through Efficient Surface Passivation in Cd3P2 Quantum Dots. Materials, 16(19), 6346. https://doi.org/10.3390/ma16196346