Formation of Oriented Nanowires from Mixed Metal Oxides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Fabrication
2.2. Sample Characterization
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.; Zafar, H.; Zia, M.; ul Haq, I.; Phull, A.R.; Ali, J.S.; Hussain, A. Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 2016, 9, 49–67. [Google Scholar] [CrossRef]
- Materón, E.M.; Miyazaki, C.M.; Carr, O.; Joshi, N.; Picciani, P.H.S.; Dalmaschio, C.J.; Davis, F.; Shimizu, F.M. Magnetic nanoparticles in biomedical applications: A review. Appl. Surf. Sci. Adv. 2021, 6, 100163. [Google Scholar] [CrossRef]
- Li, F.; Shao, H.; Zhou, G.; Wang, B.; Xu, Y.; Liang, W.; Chen, L. The recent applications of nanotechnology in the diagnosis and treatment of common cardiovascular diseases. Vascul. Pharmacol. 2023, 152, 107200. [Google Scholar] [CrossRef]
- Monteserín, M.; Larumbe, S.; Martínez, A.V.; Burgui, S.; Francisco Martín, L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. J. Nanosci. Nanotechnol. 2021, 21, 2705–2741. [Google Scholar] [CrossRef]
- Laurent, S.; Bridot, J.-L.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles for biomedical applications. Future Med. Chem. 2010, 2, 427–449. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Samiei, M.; Davaran, S. Magnetic nanoparticles: Preparation, physical properties, and applications in biomedicine. Nanoscale Res. Lett. 2012, 7, 144. [Google Scholar] [CrossRef]
- Huang, S.H.; Juang, R.S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: A review. J. Nanopart Res. 2011, 13, 4411–4430. [Google Scholar] [CrossRef]
- Ling, D.; Hyeon, T. Chemical Design of Biocompatible Iron Oxide Nanoparticles for Medical Applications. Small 2012, 9, 1450–1466. [Google Scholar] [CrossRef]
- Chertok, B.; Moffat, B.A.; David, A.E.; Yu, F.; Bergemann, C.; Ross, B.D.; Yanga, V.C. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 2008, 29, 487–496. [Google Scholar] [CrossRef]
- Kim, S.J.; Lewis, B.; Steiner, M.-S.; Bissa, U.V.; Dose, C.; Frank, J.A. Superparamagnetic Iron Oxide Nanoparticles for Direct Labeling of Stem Cells and In Vivo MRI Tracking. Contrast Media Mol Imaging 2016, 11, 55–64. [Google Scholar] [CrossRef]
- Ivanov, Y.P.; Vázquez, M.; Chubykalo-Fesenko, O. Magnetic reversal modes in cylindrical nanowires. J. Phys. D Appl. Phys. 2013, 46, 485001. [Google Scholar] [CrossRef]
- Nana, A.B.A.; Marimuthu, T.; Kondiah, P.P.D.; Choonara, Y.E.; Du Toit, L.C.; Pillay, V. Multifunctional magnetic nanowires: Design, fabrication, and future prospects as cancer therapeutics. Cancers 2019, 11, 1956. [Google Scholar] [CrossRef] [PubMed]
- Andrade, R.G.D.; Veloso, S.R.S.; Castanheira, E.M.S. Shape Anisotropic Iron Oxide-Based Magnetic Nanoparticles: Synthesis and Biomedical Applications. Int. J. Mol. Sci. 2020, 21, 2455. [Google Scholar] [CrossRef] [PubMed]
- Teja, A.S.; Koh, P.-Y. Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog. Cryst. Growth Charact. Mater. 2009, 55, 22–45. [Google Scholar] [CrossRef]
- Jiang, W.Q.; Yang, H.C.; Yang, S.Y.; Horng, H.E.; Hung, J.C.; Chen, Y.C.; Hong, C.-Y. Preparation and properties of superparamagnetic nanoparticles with narrow size distribution and biocompatible. J. Magn. Magn. Mater. 2004, 283, 210–214. [Google Scholar] [CrossRef]
- Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Elst, L.V.; Muller, R.N. Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 2008, 108, 2064–2110. [Google Scholar] [CrossRef]
- Nedyalkov, N.; Nakajima, Y.; Terakawa, M. Magnetic nanoparticle composed nanowires fabricated by ultrashort laser ablation in air. Appl. Phys. Lett. 2016, 108, 043107. [Google Scholar] [CrossRef]
- Nikov, R.G.; Dikovska, A.O.; Atanasova, G.B.; Avdeev, G.V.; Nedyalkov, N.N. Magnetic field-assisted formation of oriented nanowires produced by PLD in open air. Appl. Surf. Sci. 2018, 458, 273–280. [Google Scholar] [CrossRef]
- Nikov, R.G.; Dikovska, A.O.; Avdeev, G.V.; Amoruso, S.; Ausanio, G.; Nedyalkov, N.N. PLD fabrication of oriented nanowires in magnetic field. Appl. Surf. Sci. 2019, 471, 368–374. [Google Scholar] [CrossRef]
- Nikov, R.G.; Dikovska, A.O.; Avdeev, G.V.; Atanasova, G.B.; Nedyalkov, N.N. Composite magnetic and non-magnetic oxide nanostructures fabricated by a laser-based technique. Appl. Surf. Sci. 2021, 549, 149204. [Google Scholar] [CrossRef]
- Nikov, R.G.; Dikovska, A.O.; Avdeev, G.V.; Atanasova, G.B.; Karashanova, D.B.; Amoruso, S.; Ausanio, G.; Nedyalkov, N.N. Single-step fabrication of oriented composite nanowires by pulsed laser deposition in magnetic field. Mater. Today Commun. 2021, 26, 101717. [Google Scholar] [CrossRef]
- Winsett, J.; Moilanen, A.; Paudel, K.; Kamali, S.; Ding, K.; Cribb, W.; Seifu, D.; Neupane, S. Quantitative determination of magnetite and maghemite in iron oxide nanoparticles using Mössbauer spectroscopy. SN Appl. Sci. 2019, 1, 1636. [Google Scholar] [CrossRef]
- Wareppam, B.; Kuzmann, E.; Garg, V.K.; Singh, L.H. Mössbauer spectroscopic investigations on iron oxides and modified nanostructures: A review. J. Mater. Res. 2023, 38, 937–957. [Google Scholar] [CrossRef]
- McCammon, C.A.; Price, D.C. Mössbauer spectra of FexO (x > 0.95). Phys. Chem. Miner. 1985, 11, 250–254. [Google Scholar] [CrossRef]
- Kopcewicz, M.; Grabias, A.; Kuryliszyn-Kudelska, I.; Dobrowolski, W. Mössbauer Effect Study of Superparamagnetic Behavior of ZnFe2O4 Nanoparticles Formed in ZnO Doped with Fe2O3. Phys. Status Solidi B 2019, 256, 1800223. [Google Scholar] [CrossRef]
- Zhang, J.; Song, J.-M.; Niu, H.-L.; Mao, C.-J.; Zhang, S.-Y.; Shen, Y.-H. ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone. Sens. Act. B 2015, 221, 55–62. [Google Scholar] [CrossRef]
- Yamashita, T.; Hayes, P. Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 2008, 254, 2441–2449. [Google Scholar] [CrossRef]
- Xu, X.; Chen, D.; Yi, Z.; Jiang, M.; Wang, L.; Zhou, Z.; Fan, X.; Wang, Y.; Hui, D. Antimicrobial Mechanism Based on H2O2 Generation at Oxygen Vacancies in ZnO Crystals. Langmuir 2013, 29, 5573–5580. [Google Scholar] [CrossRef]
- Zhang, L.; Yin, Y. Large-scale synthesis of flower-like ZnO nanorods via a wet-chemical route and the defect-enhanced ethanol-sensing properties. Sens. Act. B 2013, 183, 110–116. [Google Scholar] [CrossRef]
- Kolasinski, K.W.; Gupta, M.C.; Zhigilei, L.V. Plume and Nanoparticle Formation During Laser Ablation. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Wandelt, K., Ed.; Elsevier: Oxford, UK, 2018; Volume 2, pp. 594–603. [Google Scholar] [CrossRef]
- Cobos, M.A.; de la Presa, P.; Llorente, I.; García-Escorial, A.; Hernando, A.; Jimenez, J.A. Effect of preparation methods on magnetic properties of stoichiometric zinc ferrite. J. Alloys Compd. 2020, 849, 156353. [Google Scholar] [CrossRef]
- Schwaminger, S.P.; Bauer, D.; Fraga-García, P.; Wagner, F.E.; Berensmeier, S. Oxidation of magnetite nanoparticles: Impact on surface and crystal properties. Cryst. Eng. Comm. 2017, 19, 246–255. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, C.; Wang, H.; Ma, L.; Xu, M.; Xi, L. Structure, principle, and application of magnetic field-assisted pulsed laser deposition: An overview. Vacuum 2023, 211, 111912. [Google Scholar] [CrossRef]
- Huotari, J.; Kekkonen, V.; Haapalainen, T.; Leidinger, M.; Sauerwald, T.; Puustinen, J.; Liimatainen, J.; Lappalainen, J. Pulsed laser deposition of metal oxide nanostructures for highly sensitive gas sensor applications. Sens. Act B 2016, 236, 978–987. [Google Scholar] [CrossRef]
Sample Deposited from Target | Fe3O4, ICSD 98-015-8741 | N0 | N1 | N2 | N3 | N4 | N5 | ZnFe2O4, ICSD 98-007-6981 | |
---|---|---|---|---|---|---|---|---|---|
Lattice parameter, Å | ns ablation | 8.3860 | 8.396 (3) | 8.407 (4) | 8.415 (4) | 8.414 (8) | 8.423 (8) | 8.432 (8) | 8.4220 |
ps ablation | 8.388 (2) | 8.389 (2) | 8.394 (2) | 8.417 (2) | 8.416 (3) | 8.437 (2) |
Sample | Components | IS, | 2ε/QS, | Bhf, | FWHM, | A, |
---|---|---|---|---|---|---|
mm/s | mm/s | T | mm/s | % | ||
NW0ns | Sx1-α-Fe2O3 | 0.36 | −0.17 | 51.2 | 0.25 | 7 |
Sx2-Fe3−xO4 | 0.27 | 0.02 | 48.7 | 0.39 | 34 | |
Sx3-Fe3−xO4 | 0.64 | 0.03 | 44.9 | 0.58 | 43 | |
Db1-Fe1−xO | 0.98 | 1.02 | - | 0.50 | 16 | |
NW1ns | Sx1-α-Fe2O3 | 0.36 | −0.22 | 51.6 | 0.30 | 8 |
Sx2-Fe3−xO4 | 0.29 | 0.01 | 48.9 | 0.35 | 26 | |
Sx3-Fe3−xO4 | 0.61 | 0.03 | 45.1 | 0.67 | 46 | |
Db1-Fe1−xO | 0.90 | 0.78 | - | 0.68 | 14 | |
Db2-ZnFe2O4 | 0.35 | 0.42 | - | 0.50 | 6 | |
NW2ns | Sx1-Fe3−xO4 | 0.28 | 0.01 | 47.9 | 0.30 | 15 |
Sx2-Fe3−xO4 | 0.66 | 0.01 | 45.8 | 0.52 | 30 | |
Db1-Fe1−xO | 1.10 | 0.41 | - | 0.40 | 19 | |
Db2-ZnFe2O4 | 0.32 | 0.38 | - | 0.44 | 36 | |
NW3ns | Db1-Fe1−xO | 1.11 | 0.40 | - | 0.30 | 18 |
Db2-ZnFe2O4 | 0.32 | 0.41 | - | 0.34 | 82 | |
NW4ns | Db1-Fe1−xO | 1.12 | 0.09 | - | 0.50 | 12 |
Db2-ZnFe2O4 | 0.32 | 0.48 | - | 0.40 | 88 | |
NW5ns | Db-ZnFe2O4 | 0.32 | 0.45 | - | 0.46 | 100 |
Sample | Components | IS, | 2ε/QS, | Bhf, | FWHM, | A, |
---|---|---|---|---|---|---|
mm/s | mm/s | T | mm/s | % | ||
NW0ps | Sx1-α-Fe2O3 | 0.36 | −0.21 | 51.5 | 0.26 | 26 |
Sx2-Fe3−xO4 | 0.28 | 0.01 | 48.9 | 0.34 | 31 | |
Sx3-Fe3−xO4 | 0.64 | 0.00 | 45.7 | 0.45 | 36 | |
Db-Fe3+ | 0.32 | 0.49 | - | 0.35 | 7 | |
NW1ps | Sx1-α-Fe2O3 | 0.36 | −0.20 | 51.5 | 0.29 | 45 |
Sx2-Fe3−xO4 | 0.28 | 0.02 | 48.9 | 0.32 | 17 | |
Sx3-Fe3−xO4 | 0.61 | 0.02 | 45.1 | 0.51 | 29 | |
Db-ZnFe2O4 | 0.33 | 0.43 | - | 0.35 | 9 | |
NW2ps | Sx1-α-Fe2O3 | 0.34 | −0.19 | 52.1 | 0.26 | 15 |
Sx2-Fe3−xO4 | 0.27 | 0.01 | 49.3 | 0.35 | 28 | |
Sx3-Fe3−xO4 | 0.57 | 0.02 | 45.8 | 0.66 | 48 | |
Db-ZnFe2O4 | 0.33 | 0.42 | - | 0.45 | 9 | |
NW3ps | Sx1-α-Fe2O3 | 0.37 | −0.19 | 51.8 | 0.45 | 5 |
Sx2-Fe3−xO4 | 0.29 | 0.01 | 49.4 | 0.50 | 27 | |
Sx3-Fe3−xO4 | 0.62 | 0.02 | 45.8 | 0.71 | 50 | |
Db-ZnFe2O4 | 0.34 | 0.43 | - | 0.40 | 18 | |
NW4ps | Sx-γ-Fe2O3 | 0.34 | 0.02 | 47.9 | 0.40 | 7 |
Db-ZnFe2O4 | 0.34 | 0.36 | - | 0.32 | 93 | |
NW5ps | Sx-γ-Fe2O3 | 0.34 | 0.03 | 47.3 | 0.30 | 23 |
Db-ZnFe2O4 | 0.33 | 0.44 | - | 0.67 | 77 |
Sample Deposited from Target | N1 | N2 | N3 | N4 | N5 | |
---|---|---|---|---|---|---|
Sample Fe/Zn ratio | ns ablation | 10.3 | 6.7 | 2.3 | 1.4 | 1.1 |
ps ablation | 13.4 | 6.3 | 3.1 | 1.9 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dikovska, A.; Atanasova, G.; Nikov, R.; Avdeev, G.; Cherkezova-Zheleva, Z.; Paneva, D.; Nedyalkov, N. Formation of Oriented Nanowires from Mixed Metal Oxides. Materials 2023, 16, 6446. https://doi.org/10.3390/ma16196446
Dikovska A, Atanasova G, Nikov R, Avdeev G, Cherkezova-Zheleva Z, Paneva D, Nedyalkov N. Formation of Oriented Nanowires from Mixed Metal Oxides. Materials. 2023; 16(19):6446. https://doi.org/10.3390/ma16196446
Chicago/Turabian StyleDikovska, Anna, Genoveva Atanasova, Rumen Nikov, Georgi Avdeev, Zara Cherkezova-Zheleva, Daniela Paneva, and Nikolay Nedyalkov. 2023. "Formation of Oriented Nanowires from Mixed Metal Oxides" Materials 16, no. 19: 6446. https://doi.org/10.3390/ma16196446
APA StyleDikovska, A., Atanasova, G., Nikov, R., Avdeev, G., Cherkezova-Zheleva, Z., Paneva, D., & Nedyalkov, N. (2023). Formation of Oriented Nanowires from Mixed Metal Oxides. Materials, 16(19), 6446. https://doi.org/10.3390/ma16196446