Effects of Post-Annealing on the Properties of ZnO:Ga Films with High Transparency (94%) and Low Sheet Resistance (29 Ω/square)
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Jong, M.P.; Simons, D.P.L.; Reijme, M.A.; Van Ijzendoorn, L.J.; Van Der Gon, A.D.; De Voigt, M.J.A.; Brongersma, H.H.; Gymer, R.W. Indium diffusion in model polymer light-emitting diodes. Synth. Met. 2000, 110, 1–6. [Google Scholar] [CrossRef]
- Sky, T.N.; Johansen, K.M.; Frodason, Y.K.; Aarholt, T.; Riise, H.N.; Prytz, Ø.; Svensson, B.G.; Vines, L. Diffusion of indium in single crystal zinc oxide: A comparison between group III donors. Semicond. Sci. Technol. 2019, 34, 025011. [Google Scholar] [CrossRef]
- Zhao, L.; Shao, G.; Song, S.; Qin, X.; Han, S. Development on transparent conductive ZnO thin films doped with various impurity elements. Rare Met. 2011, 30, 175–182. [Google Scholar] [CrossRef]
- Zhang, W.; Li, P.; Li, Y.; Chen, H.; Wang, X.; Ma, J.; Zhao, X. Structural, optical and electrical properties of sol-gel spin-coated Ga and F Co-doped ZnO films. Thin Solid Film. 2022, 746, 139121. [Google Scholar] [CrossRef]
- Shewale, P.; Lee, S.; Yu, Y. Pulse repetition rate dependent structural, surface morphological and optoelectronic properties of Ga-doped ZnO thin films grown by pulsed laser deposition. J. Alloys Compd. 2017, 725, 1106–1114. [Google Scholar] [CrossRef]
- You, Z.; Hua, G. Electrical, optical and microstructural properties of transparent conducting GZO thin films deposited by magnetron sputtering. J. Alloys Compd. 2012, 530, 11–17. [Google Scholar] [CrossRef]
- Wu, J.-L.; Lin, H.Y.; Su, B.Y.; Chen, Y.C.; Chu, S.Y.; Liu, S.Y.; Chang, C.C.; Wu, C.J. Comparison of physical and electrical properties of GZO/ZnO buffer layer and GZO as source and drain electrodes of α-IGZO thin-film transistors. J. Alloys Compd. 2014, 592, 35–41. [Google Scholar] [CrossRef]
- Boujnah, M.; Boumdyan, M.; Naji, S.; Benyoussef, A.; El Kenz, A.; Loulidi, M. High efficiency of transmittance and electrical conductivity of V doped ZnO used in solar cells applications. J. Alloys Compd. 2016, 671, 560–565. [Google Scholar] [CrossRef]
- Jo, G.; Koh, J.-H. Laser annealing effects on Ga dopants for ZnO thin films for transparent conducting oxide applications. Ceram. Int. 2019, 45, 6190–6197. [Google Scholar] [CrossRef]
- BOh, Y.; Jeong, M.-C.; Myoung, J.-M. Stabilization in electrical characteristics of hydrogen-annealed ZnO: Al films. Appl. Surf. Sci. 2007, 253, 7157–7161. [Google Scholar]
- Zhu, B.L.; Wang, J.; Zhu, S.J.; Wu, J.; Wu, R.; Zeng, D.W.; Xie, C.S. Influence of hydrogen introduction on structure and properties of ZnO thin films during sputtering and post-annealing. Thin Solid Film. 2011, 519, 3809–3815. [Google Scholar] [CrossRef]
- Weston, L.; Ton-That, C.; Phillips, M. Doping properties of hydrogen in ZnO. J. Mater. Res. 2012, 27, 2220–2224. [Google Scholar] [CrossRef]
- Park, H.-W.; Chung, K.-B.; Park, J.-S. A role of oxygen vacancy on annealed ZnO film in the hydrogen atmosphere. Curr. Appl. Phys. 2012, 12, S164–S167. [Google Scholar] [CrossRef]
- Fang, Z.; Yan, Z.; Tan, Y.; Liu, X.; Wang, Y. Influence of post-annealing treatment on the structure properties of ZnO films. Appl. Surf. Sci. 2005, 241, 303–308. [Google Scholar] [CrossRef]
- Tong, H.; Deng, Z.; Liu, Z.; Huang, C.; Huang, J.; Lan, H.; Wang, C.; Cao, Y. Effects of post-annealing on structural, optical and electrical properties of Al-doped ZnO thin films. Appl. Surf. Sci. 2011, 257, 4906–4911. [Google Scholar] [CrossRef]
- Ahn, B.D.; Oh, S.H.; Lee, C.H.; Kim, G.H.; Kim, H.J.; Lee, S.Y. Influence of thermal annealing ambient on Ga-doped ZnO thin films. J. Cryst. Growth 2007, 309, 128–133. [Google Scholar] [CrossRef]
- Lee, M.-J.; Lim, J.; Bang, J.; Lee, W.; Myoung, J.-M. Effect of the thickness and hydrogen treatment on the properties of Ga-doped ZnO transparent conductive films. Appl. Surf. Sci. 2008, 255, 3195–3200. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, W.; Zhang, L. Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J. Mater. Sci. Technol. 2015, 31, 175–181. [Google Scholar] [CrossRef]
- Kee, Y.Y.; Tan, S.S.; Yong, T.K.; Nee, C.H.; Yap, S.S.; Tou, T.Y.; Sáfrán, G.; Horváth, Z.E.; Moscatello, J.P.; Yap, Y.K. Low-temperature synthesis of indium tin oxide nanowires as the transparent electrodes for organic light emitting devices. Nanotechnology 2011, 23, 025706. [Google Scholar] [CrossRef]
- Sahai, A.; Kumar, Y.; Agarwal, V.; Olive-Méndez, S.; Goswami, N. Doping concentration driven morphological evolution of Fe doped ZnO nanostructures. J. Appl. Phys. 2014, 116, 164315. [Google Scholar] [CrossRef]
- Lim, W.Y.S.; Zhang, D.; Duran, S.S.F.; Tan, X.Y.; Tan CK, I.; Xu, J.; Suwardi, A. Physical Intuition to Improve Electronic Properties of Thermoelectrics. Front. Phys. 2021, 9, 683. [Google Scholar]
- Heaney, M.B. Electrical conductivity and resistivity. In Electrical Measurement, Signal Processing, and Displays; CRC Press: Boca Raton, FL, USA, 2003; Volume 7. [Google Scholar]
- Bandyopadhyay, S.; Paul, G.; Roy, R.; Sen, S.; Sen, S. Study of structural and electrical properties of grain-boundary modified ZnO films prepared by sol–gel technique. Mater. Chem. Phys. 2002, 74, 83–91. [Google Scholar]
- Studenikin, S.; Golego, N.; Cocivera, M. Carrier mobility and density contributions to photoconductivity transients in polycrystalline ZnO films. J. Appl. Phys. 2000, 87, 2413–2421. [Google Scholar]
- Portillo-Cortez, K.; Islas, S.R.; Serrano-Lázaro, A.; Ortiz, A.; García-Sánchez, M.F.; Alonso, J.C.; Martínez, A.; Ramos, C.; Dutt, A.; Santana, G. A novel soft deposition methodology for textured ZnO: Al thin films as efficient transparent conductive oxide layers. Appl. Surf. Sci. Adv. 2022, 9, 100255. [Google Scholar]
- Yang, W.; Liu, Z.; Peng, D.L.; Zhang, F.; Huang, H.; Xie, Y.; Wu, Z. Room-temperature deposition of transparent conducting Al-doped ZnO films by RF magnetron sputtering method. Appl. Surf. Sci. 2009, 255, 5669–5673. [Google Scholar] [CrossRef]
- Kim, D.K.; Kim, H.B. Room temperature deposition of Al-doped ZnO thin films on glass by RF magnetron sputtering under different Ar gas pressure. J. Alloys Compd. 2011, 509, 421–425. [Google Scholar]
- Ponja, S.D.; Sathasivam, S.; Parkin, I.P.; Carmalt, C.J. Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Sci. Rep. 2020, 10, 638. [Google Scholar]
- Li, T.; Wang, M.; Liu, X.; Jin, M.; Huang, F. Hydrogen impurities in ZnO: Shallow donors in ZnO semiconductors and active sites for hydrogenation of carbon species. J. Phys. Chem. Lett. 2020, 11, 2402–2407. [Google Scholar]
- Li, X.; Zhang, H.; Lu, X.; Fang, Z.; Yao, R.; Wang, Y.; Tao, H.; Liang, H.; Ning, H.; Peng, J. Effect of oxygen pressure on GZO film as active layer of the TFT fabricated at room temperature. Superlattices Microstruct. 2020, 137, 106317. [Google Scholar]
- Kalabukhov, A.; Gunnarsson, R.; Börjesson, J.; Olsson, E.; Claeson, T.; Winkler, D. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3∕SrTiO3 interface. Phys. Rev. B 2007, 75, 121404. [Google Scholar] [CrossRef]
- Kim, S.Y.; Lee, J.-L.; Kim, K.-B.; Tak, Y.-H. Effect of ultraviolet–ozone treatment of indium–tin–oxide on electrical properties of organic light emitting diodes. J. Appl. Phys. 2004, 95, 2560–2563. [Google Scholar] [CrossRef]
- Boppidi, P.K.R.; Joshna, P.; Som, D.; Renuka, H.; Biswas, P.; Bhattacharyya, D.; Kanungo, S.; Banerjee, S.; Kundu, S. Understanding the efficacy of Cu in creating oxygen vacancies and temperature dependent electrical transport in solution processed Cu: ZnO thin films. Mater. Sci. Semicond. Process. 2020, 120, 105311. [Google Scholar] [CrossRef]
- Kim, J.H.; Ahn, B.D.; Kim, C.H.; Jeon, K.A.; Kang, H.S.; Lee, S.Y. Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters. Thin Solid Film. 2008, 516, 1330–1333. [Google Scholar] [CrossRef]
- Lunca-Popa, P.; Chemin, J.B.; Adjeroud, N.; Kovacova, V.; Glinsek, S.; Valle, N.; El Hachemi, M.; Girod, S.; Bouton, O.; Maris, J.P. Study of Gallium-Doped Zinc Oxide Thin Films Processed by Atomic Layer Deposition and RF Magnetron Sputtering for Transparent Antenna Applications. ACS Omega 2023, 8, 5475–5485. [Google Scholar] [CrossRef]
- Pham, A.T.T.; Ta, H.K.T.; Liu, Y.R.; Aminzare, M.; Wong, D.P.; Nguyen, T.H.; Le, T.B.N.; Seetawan, T.; Ju, H.; Cho, S.; et al. Effect of annealing temperature on thermoelectric properties of Ga and In dually doped-ZnO thin films. J. Alloys Compd. 2018, 747, 156–165. [Google Scholar] [CrossRef]
- Yang, S.; Sun, B.; Liu, Y.; Zhu, J.; Song, J.; Hao, Z.; Zeng, X.; Zhao, X.; Shu, Y.; Chen, J.; et al. Effect of ITO target crystallinity on the properties of sputtering deposited ITO films. Ceram. Int. 2020, 46, 6342–6350. [Google Scholar] [CrossRef]
- Chang, H.-P.; Wang, F.-H.; Chao, J.-C.; Huang, C.-C.; Liu, H.-W. Effects of thickness and annealing on the properties of Ti-doped ZnO films by radio frequency magnetron sputtering. Curr. Appl. Phys. 2011, 11, S185–S190. [Google Scholar]
- Lee, J.-H.; Park, B.-O. Characteristics of Al-doped ZnO thin films obtained by ultrasonic spray pyrolysis: Effects of Al doping and an annealing treatment. Mater. Sci. Eng. B 2004, 106, 242–245. [Google Scholar] [CrossRef]
- Kim, C.E.; Moon, P.; Kim, S.; Myoung, J.M.; Jang, H.W.; Bang, J.; Yun, I. Effect of carrier concentration on optical bandgap shift in ZnO: Ga thin films. Thin Solid Film. 2010, 518, 6304–6307. [Google Scholar] [CrossRef]
- Yim, K.; Kim, H.; Lee, C. Effects of annealing on structure, resistivity and transmittance of Ga doped ZnO films. Mater. Sci. Technol. 2007, 23, 108–112. [Google Scholar] [CrossRef]
- Drewelow, G.; Reed, A.; Stone, C.; Roh, K.; Jiang, Z.T.; Truc, L.N.T.; No, K.; Park, H.; Lee, S. Work function investigations of Al-doped ZnO for band-alignment in electronic and optoelectronic applications. Appl. Surf. Sci. 2019, 484, 990–998. [Google Scholar] [CrossRef]
- Jiang, X.; Wong, F.; Fung, M.; Lee, S. Aluminum-doped zinc oxide films as transparent conductive electrode for organic light-emitting devices. Appl. Phys. Lett. 2003, 83, 1875–1877. [Google Scholar] [CrossRef]
- Davis, K.; Yarbrough, R.; Froeschle, M.; White, J.; Rathnayake, H. Band gap engineered zinc oxide nanostructures via a sol–gel synthesis of solvent driven shape-controlled crystal growth. RSC Adv. 2019, 9, 14638–14648. [Google Scholar] [CrossRef]
- Jamwal, N.S.; Kiani, A. Gallium oxide nanostructures: A review of synthesis, properties and applications. Nanomaterials 2022, 12, 2061. [Google Scholar] [CrossRef]
Sample Name | FWHM (Degree) | Grain Size (nm) | Sample Name | FWHM (Degree) | Grain Size (nm) |
---|---|---|---|---|---|
As-deposited | 0.54 | 14.02 | As-deposited | 0.54 | 14.02 |
HN400 | 0.46 | 16.20 | N400 | 0.53 | 15.30 |
HN450 | 0.45 | 16.85 | N450 | 0.52 | 15.80 |
HN500 | 0.47 | 16.12 | N500 | 0.54 | 15.01 |
As-Deposited | HN400 | HN450 | HN500 | |
---|---|---|---|---|
Photon energy (eV) | 3.6 | 3.6 | 3.7 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.-W.; Chu, S.-Y. Effects of Post-Annealing on the Properties of ZnO:Ga Films with High Transparency (94%) and Low Sheet Resistance (29 Ω/square). Materials 2023, 16, 6463. https://doi.org/10.3390/ma16196463
Wang L-W, Chu S-Y. Effects of Post-Annealing on the Properties of ZnO:Ga Films with High Transparency (94%) and Low Sheet Resistance (29 Ω/square). Materials. 2023; 16(19):6463. https://doi.org/10.3390/ma16196463
Chicago/Turabian StyleWang, Li-Wen, and Sheng-Yuan Chu. 2023. "Effects of Post-Annealing on the Properties of ZnO:Ga Films with High Transparency (94%) and Low Sheet Resistance (29 Ω/square)" Materials 16, no. 19: 6463. https://doi.org/10.3390/ma16196463
APA StyleWang, L. -W., & Chu, S. -Y. (2023). Effects of Post-Annealing on the Properties of ZnO:Ga Films with High Transparency (94%) and Low Sheet Resistance (29 Ω/square). Materials, 16(19), 6463. https://doi.org/10.3390/ma16196463