Fully Physically Crosslinked Conductive Hydrogel with Ultrastretchability, Transparency, and Self-Healing Properties for Strain Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Hydrogels
2.3. Characterizations
2.4. Mechanical Test of Hydrogels
2.5. Self-Healing Test of Hydrogels
2.6. Sensing Performance Test and Application of Hydrogel-Based Strain Sensor
3. Results
3.1. Preparation of Hydrogel
3.2. Structure and Morphology Characterization of Hydrogel
3.3. Mechanical Property of Hydrogels
3.4. Self-Healing Property of Hydrogel
3.5. Conductivity of Hydrogel
3.6. Sensing Performance of Hydrogel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, J.; Chen, G.; Han, T.; Yi, C.; Zhang, Y.; Ding, L.; Sun, T.; Jin, T.; Zhou, S. Ultrafast and facile construction of programmable, multidimensional wrinkled-patterned polyacrylamide/sodium alginate hydrogels for human skin-like tactile perception. Carbohydr. Polym. 2023, 319, 121196. [Google Scholar] [CrossRef]
- Lei, Z.; Wang, Q.; Sun, S.; Zhu, W.; Wu, P. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321. [Google Scholar] [CrossRef]
- Bao, Z.; Chen, X. Flexible and stretchable devices. Adv. Mater. 2016, 28, 4177–4179. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Heo, J.; Kwak, J.; Park, C.; Kim, I.; Lee, M.; Park, H.; Kim, Y.; Lee, S.; et al. Heterogeneous structure omnidirectional strain sensor arrays with cognitively learned neural networks. Adv. Mater. 2023, 35, 2208184. [Google Scholar] [CrossRef]
- Hu, Y.; Liu, N.; Chen, K.; Liu, M.; Wang, F.; Liu, P.; Zhang, Y.; Zhang, T.; Xiao, X. Resilient and self-healing hyaluronic acid/chitosan hydrogel with ion conductivity, low water loss, and freeze-tolerance for flexible and wearable strain sensor. Front. Bioeng. Biotechnol. 2022, 10, 880942. [Google Scholar]
- Chen, X.; An, J.; Cai, G.; Zhang, J.; Chen, W.; Dong, X.; Zhu, L.; Tang, B.; Wang, J.; Wang, X. Environmentally friendly flexible strain sensor from waste cotton fabrics and natural rubber latex. Polymers 2019, 11, 404. [Google Scholar] [CrossRef]
- Georgopoulou, A.; Kummerlowe, C.; Clemens, F. Effect of the elastomer matrix on thermoplastic elastomer-based strain sensor fiber composites. Sensors 2020, 20, 2399. [Google Scholar] [CrossRef]
- Rahmani, P.; Shojaei, A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv. Colloid Interface Sci. 2021, 298, 102553. [Google Scholar] [CrossRef]
- Tang, L.; Wu, S.; Qu, J.; Gong, L.; Tang, J. A review of conductive hydrogel used in flexible strain sensor. Materials 2020, 13, 3947. [Google Scholar] [CrossRef]
- Li, G.; Li, C.; Li, G.; Yu, D.; Song, Z.; Wang, H.; Liu, X.; Liu, H.; Liu, W. Development of conductive hydrogels for fabricating flexible strain sensors. Small 2022, 18, 2101518. [Google Scholar] [CrossRef]
- Zhan, Y.; Hao, S.; Li, Y.; Santillo, C.; Zhang, C.; Sorrentino, L.; Lavorgna, M.; Xia, H.; Chen, Z. High sensitivity of multi-sensing materials based on reduced graphene oxide and natural rubber: The synergy between filler segregation and macro-porous morphology. Compos. Sci. Technol. 2021, 205, 108689. [Google Scholar] [CrossRef]
- Qu, M.; Qin, Y.; Sun, Y.; Xu, H.; Schubert, D.; Zheng, K.; Xu, W.; Nilsson, F. Biocompatible, flexible strain sensor fabricated with polydopamine-coated nanocomposites of nitrile rubber and carbon black. ACS Appl. Mater. Interfaces 2020, 12, 42140–42152. [Google Scholar] [CrossRef]
- Chang, X.; Chen, L.; Chen, J.; Zhu, Y.; Guo, Z. Advances in transparent and stretchable strain sensors. Adv. Compos. Hybrid Mater. 2021, 4, 435–450. [Google Scholar] [CrossRef]
- Cho, J.; Ha, S.; Kim, J. Transparent and stretchable strain sensors based on metal nanowire microgrids for human motion monitoring. Nanotechnology 2018, 29, 155501. [Google Scholar] [CrossRef]
- Li, X.; Ye, F.; Zhang, H.; Ahmad, M.; Zeng, Z.; Wang, S.; Wang, S.; Gao, D.; Zhang, Q. Ternary rGO decorated W18O49 @g-C3N4 composite as a full-spectrum-responded Z-scheme photocatalyst for efficient photocatalytic H2O2 production and water disinfection. J. Environ. Chem. Eng. 2023, 11, 110329. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y.; Zhang, L.; Zhou, J.; Lu, A. Transparent, ultra-stretching, tough, adhesive carboxyethyl chitin/polyacrylamide hydrogel toward high-performance soft electronics. Nano-Micro Lett. 2023, 15, 8. [Google Scholar] [CrossRef]
- Wang, W.; Deng, X.; Tian, Z.; Luo, C. Anisotropic, ultra-sensitive, self-adhesive, biocompatible, and conductive hydrogels prepared for wearable sensors. Eur. Polym. J. 2023, 196, 112277. [Google Scholar] [CrossRef]
- Xie, T.; Lv, X.; Tian, S.; Xie, Y.; Lv, A.; Lv, Z.; Jiang, L.; Zhao, Y.; Sun, S. Simple fabrication of silica amino sphere-reinforced ionic liquids/graphene conductive hydrogel sensors with super toughness, self-healing, and strain sensitivity properties. Macromolecules 2023, 56, 6256–6266. [Google Scholar] [CrossRef]
- Li, R.; Ren, J.; Li, M.; Zhang, M.; Li, Y.; Yang, W. Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors. Soft Matter 2023, 19, 5723–5736. [Google Scholar] [CrossRef]
- Guo, X.; Sun, Y.; Sun, X.; Li, J.; Wu, J.; Shi, Y.; Pan, L. Doping engineering of conductive polymers and their application in physical sensors for healthcare monitoring. Macromol. Rapid Commun. 2023, 2300246. [Google Scholar] [CrossRef]
- Zhu, T.; Cheng, Y.; Cao, C.; Mao, J.; Li, L.; Huang, J.; Gao, S.; Dong, X.; Chen, Z.; Lai, Y. A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem. Eng. J. 2020, 385, 123912. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, W. Highly stretchable and transparent double-network hydrogel ionic conductors as flexible thermal-mechanical dual sensors and electroluminescent devices. ACS Appl. Mater. Inter. 2019, 11, 16765–16775. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Wang, P.; Cai, Y.; Jiang, K.; Li, H. Tough, self-healing double network hydrogels crosslinked via multiple dynamic non-covalent bonds for strain sensor. J. Polym. Sci. 2023, 61, 1675–1687. [Google Scholar] [CrossRef]
- Qiao, H.; Qi, P.; Zhang, X.; Wang, L.; Tan, Y.; Luan, Z.; Xia, Y.; Li, Y.-H.; Sui, K. Multiple weak h-bonds lead to highly sensitive, stretchable, self-adhesive, and self-healing ionic sensors. ACS Appl. Mater. Interfaces 2019, 11, 7755–7763. [Google Scholar] [CrossRef]
- Hu, R.; Zhao, J.; Wang, Y.; Li, Z.; Zheng, J. A highly stretchable, self-healing, recyclable and interfacial adhesion gel: Preparation, characterization and applications. Chem. Eng. J. 2019, 360, 334–341. [Google Scholar] [CrossRef]
- Ji, F.; Zeng, Y.; Yu, Q.; Zhu, J.; Xu, J.; Guo, J.; Zhou, Q.; Luo, S.; Li, J. Fully physically crosslinked organohydrogel with ultrastretchability, transparency, freezing-tolerant, self-healing, and adhesion properties for strain sensor. Polymer 2023, 268, 125718. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Ren, X.; Wu, G. Flexible strain sensors with rapid self-healing by multiple hydrogen bonds. Polymer 2020, 202, 122657. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, Y.; Zhang, Y.; Yang, F.; Liu, Y.; Wang, X.; Yang, J.; Gong, X.; Zheng, J. Highly stretchable, self-adhesive, biocompatible, conductive hydrogels as fully polymeric strain sensors. J. Mater. Chem. A 2020, 8, 20474–20485. [Google Scholar] [CrossRef]
- Ji, F.; Jiang, M.; Yu, Q.; Hao, X.; Zhang, Y.; Zhu, J.; Luo, S.; Li, J. Ionic conductive hydroxypropyl methyl cellulose reinforced hydrogels with extreme stretchability, self-adhesion and anti-freezing ability for highly sensitive skin-like sensors. Front. Chem. 2021, 9, 758844. [Google Scholar] [CrossRef]
- Toumi, S.; Yahoum, M.; Lefnaoui, S.; Hadjsadok, A. Synthesis, characterization and potential application of hydrophobically modified carrageenan derivatives as pharmaceutical excipients. Carbohydr. Polym. 2021, 251, 116997. [Google Scholar] [CrossRef]
- Yu, F.; Cui, T.; Yang, C.; Dai, X.; Ma, J. k-Carrageenan/Sodium alginate double-network hydrogel with enhanced mechanical properties, anti-swelling, and adsorption capacity. Carbohydr. Polym. 2021, 251, 116997. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Shi, Z.; Wang, Y.; Song, X.; Wang, L.; Han, M.; Du, H.; He, C.; Zhao, W.; et al. Anticoagulant chitosan-kappa-carrageenan composite hydrogel sorbent for simultaneous endotoxin and bacteria cleansing in septic blood. Carbohydr. Polym. 2020, 243, 116470. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Li, L. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Appl. Mater. Interfaces 2017, 9, 26429–26437. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Han, S.; Yang, T.; Li, Z.; Wu, Z.; Gui, X.; Tao, K.; Miao, J.; Norford, L.; Liu, C. Highly stretchable and transparent thermistor based on self-healing double network hydrogel. ACS Appl. Mater. Interfaces 2018, 10, 19097–19105. [Google Scholar] [CrossRef]
- Yu, X.; Li, Y.; Yang, J.; Chen, F.; Tang, Z.; Zhu, L.; Qin, G.; Dai, Y.; Chen, Q. Nanoclay reinforced self-cross-linking poly(n-hydroxyethyl acrylamide) hydrogels with integrated high performances. Macromol. Mater. Eng. 2018, 303, 1800295. [Google Scholar] [CrossRef]
- Huang, X.; Luo, X.; Liu, L.; Dong, K.; Yang, R.; Lin, C.; Song, H.; Li, S.; Huang, Q. Formation mechanism of egg white protein/κ-carrageenan composite film and its application to oil packaging. Food Hydrocoll. 2020, 105, 105780. [Google Scholar] [CrossRef]
- Evangelista, T.; Andrade, G.; Nascimento, K.; Santos, S.; Santos, M.; Doca, C.; Estevam, C.; Gimenez, I.; Almeida, L. Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr. Polym. 2020, 245, 116592. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Duan, L.; Gao, G. Self-healing carrageenan-driven polyacrylamide hydrogels for strain sensing. Sci. China Technol. Sci. 2020, 12, 2677–2686. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Yu, W. Simultaneously improved strength and toughness in κ-carrageenan/polyacrylamide double networkhydrogel via synergistic interaction. Carbohydr. Polym. 2020, 230, 115596. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Lu, X.; Han, S.; Yang, B.; Gui, X.; Tao, K.; Miao, J.; Liu, C. Ultrastretchable and stable strain sensors based on antifreezing and self-healing ionic organohydrogels for human motion monitoring. ACS Appl. Mater. Interfaces 2019, 11, 9405–9414. [Google Scholar] [CrossRef]
- Wu, J.; Wu, Z.; Xu, H.; Wu, Q.; Liu, C.; Yang, B.R.; Gui, X.; Xie, X.; Tao, K.; Shen, Y. An intrinsically stretchable humidity sensor based on anti-drying, self-healing and transparent organohydrogels. Mater. Horiz. 2019, 6, 595–603. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, Y.; Cao, Y.; Wang, X.; Chen, Y.; Liu, H.; Gao, Y.; Wang, J.; Liu, C.; Wang, W.; et al. Anti-freezing, resilient and tough hydrogels for sensitive and large-range strain and pressure sensors. Chem. Eng. J. 2021, 404, 126559. [Google Scholar] [CrossRef]
- Jiang, M.; Hao, X.; Ye, L.; Luo, S.; Ji, F. Preparation and properties of poly(N-hydroxyethyl acrylamide)-gelatin-based hydrogel sensor. Polym. Mater. Sci. Eng. 2022, 38, 149–158. [Google Scholar]
- Wu, S.; Tang, L.; Xu, Y.; Yao, J.; Tang, G.; Dai, B.; Wang, W.; Tang, J.; Gong, L. A self-powered flexible sensing system based on a super-tough, high ionic conductivity supercapacitor and a rapid self-recovering fully physically crosslinked double network hydrogel. J. Mater. Chem. C 2022, 10, 3027. [Google Scholar] [CrossRef]
- Yu, Q.; Qin, Z.; Ji, F.; Chen, S.; Luo, S.; Yao, M.; Wu, X.; Liu, W.; Sun, X.; Zhang, H.; et al. Low-temperature tolerant strain sensors based on triple crosslinked organohydrogels with ultrastretchability. Chem. Eng. J. 2021, 404, 126559. [Google Scholar] [CrossRef]
- Yang, B.; Yuan, W. Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl. Mater. Interfaces 2019, 11, 40620–40628. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, Y.; Wang, X.; Xing, L.; Shi, L.; Ran, R. Stable, strain-sensitive conductive hydrogel with antifreezing capability, remoldability, and reusability. ACS Appl. Mater. Interfaces 2018, 10, 44000–44010. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, F.; Shang, P.; Lai, Y.; Wang, J.; Zhang, G.; Lin, D.; Xu, J.; Cai, D.; Qin, Z. Fully Physically Crosslinked Conductive Hydrogel with Ultrastretchability, Transparency, and Self-Healing Properties for Strain Sensors. Materials 2023, 16, 6491. https://doi.org/10.3390/ma16196491
Ji F, Shang P, Lai Y, Wang J, Zhang G, Lin D, Xu J, Cai D, Qin Z. Fully Physically Crosslinked Conductive Hydrogel with Ultrastretchability, Transparency, and Self-Healing Properties for Strain Sensors. Materials. 2023; 16(19):6491. https://doi.org/10.3390/ma16196491
Chicago/Turabian StyleJi, Feng, Pengbo Shang, Yingkai Lai, Jinmei Wang, Guangcai Zhang, Dengchao Lin, Jing Xu, Daniu Cai, and Zhihui Qin. 2023. "Fully Physically Crosslinked Conductive Hydrogel with Ultrastretchability, Transparency, and Self-Healing Properties for Strain Sensors" Materials 16, no. 19: 6491. https://doi.org/10.3390/ma16196491
APA StyleJi, F., Shang, P., Lai, Y., Wang, J., Zhang, G., Lin, D., Xu, J., Cai, D., & Qin, Z. (2023). Fully Physically Crosslinked Conductive Hydrogel with Ultrastretchability, Transparency, and Self-Healing Properties for Strain Sensors. Materials, 16(19), 6491. https://doi.org/10.3390/ma16196491