Facile Synthesis of Mesoporous Nanohybrid Two-Dimensional Layered Ni-Cr-S and Reduced Graphene Oxide for High-Performance Hybrid Supercapacitors
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals
2.2. Experimental Details on NiCr2S4 and NiCr2S4/rGO
2.3. Material Characterizations
2.4. Electrochemical Characterizations
3. Results and Discussion
4. Electrochemical Studies
Hybrid Supercapacitor
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lim, E.; Jo, C.; Lee, J. A mini review of designed mesoporous materials for energy-storage applications: From electric double-layer capacitors to hybrid supercapacitors. Nanoscale 2016, 8, 7827–7833. [Google Scholar]
- Olabi, A.G.; Abbas, Q.; Al Makky, A.; Abdelkareem, M.A. Supercapacitors as next generation energy storage devices: Properties and applications. Energy 2022, 248, 123617. [Google Scholar]
- Chodankar, N.R.; Pham, H.D.; Nanjundan, A.K.; Fernando, J.F.S.; Jayaramulu, K.; Golberg, D.; Han, Y.-K.; Dubal, D.P. True Meaning of Pseudocapacitors and Their Performance Metrics: Asymmetric versus Hybrid Supercapacitors. Small 2020, 16, 2002806. [Google Scholar] [CrossRef]
- Bulakhe, R.N.; Alfantazi, A.; Rok Lee, Y.; Lee, M.; Shim, J.-J. Chemically synthesized copper sulfide nanoflakes on reduced graphene oxide for asymmetric supercapacitors. J. Ind. Eng. Chem. 2021, 101, 423–429. [Google Scholar] [CrossRef]
- Gao, D.; Luo, Z.; Liu, C.; Fan, S. A survey of hybrid energy devices based on supercapacitors. Green Energy Environ. 2022, 8, 972–988. [Google Scholar]
- Dubal, D.P.; Ayyad, O.; Ruiz, V.; Gómez-Romero, P. Hybrid energy storage: The merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 2015, 44, 1777–1790. [Google Scholar] [CrossRef]
- Devi, M.; Moorthy, B.; Thangavel, R. Recent developments in zinc metal anodes, cathodes, and electrolytes for zinc-ion hybrid capacitors. Sustain. Energy Fuels 2023, 7, 3776–3795. [Google Scholar]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar]
- Huang, B.; Yao, D.; Yuan, J.; Tao, Y.; Yin, Y.; He, G.; Chen, H. Hydrangea-like NiMoO4-Ag/rGO as Battery-type electrode for hybrid supercapacitors with superior stability. J. Colloid Interf. Sci. 2022, 606, 1652–1661. [Google Scholar] [CrossRef]
- Shi, C.; Sun, J.; Pang, Y.; Liu, Y.; Huang, B.; Liu, B.-T. A new potassium dual-ion hybrid supercapacitor based on battery-type Ni(OH)2 nanotube arrays and pseudocapacitor-type V2O5-anchored carbon nanotubes electrodes. J. Colloid Interf. Sci. 2022, 607, 462–469. [Google Scholar] [CrossRef]
- Bulakhe, R.N.; Lee, J.; Tran, C.V.; In, J.B. Mesoporous nanohybrids of 2D layered Cu–Cr phosphate and rGO for high-performance asymmetric hybrid supercapacitors. J. Alloy Compd. 2022, 926, 166864. [Google Scholar]
- Sadavar, S.V.; Padalkar, N.S.; Shinde, R.B.; Patil, A.S.; Patil, U.M.; Magdum, V.V.; Chitare, Y.M.; Kulkarni, S.P.; Kale, S.B.; Bulakhe, R.N.; et al. Lattice engineering exfoliation-restacking route for 2D layered double hydroxide hybridized with 0D polyoxotungstate anions: Cathode for hybrid asymmetric supercapacitors. Energy Storage Mater. 2022, 48, 101–113. [Google Scholar]
- Yang, W.; Ni, M.; Ren, X.; Tian, Y.; Li, N.; Su, Y.; Zhang, X. Graphene in Supercapacitor Applications. Curr. Opin. Colloid Interface Sci. 2015, 20, 416–428. [Google Scholar]
- Padalkar, N.S.; Sadavar, S.V.; Shinde, R.B.; Patil, A.S.; Patil, U.M.; Magdum, V.V.; Chitare, Y.M.; Kulkarni, S.P.; Bulakhe, R.N.; Parale, V.G.; et al. 2D-2D nanohybrids of Ni–Cr-layered double hydroxide and graphene oxide nanosheets: Electrode for hybrid asymmetric supercapacitors. Electrochim. Acta 2022, 424, 140615. [Google Scholar]
- Li, Y.; Huang, B.; Zhao, X.; Luo, Z.; Liang, S.; Qin, H.; Chen, L. Zeolitic imidazolate framework-L-assisted synthesis of inorganic and organic anion-intercalated hetero-trimetallic layered double hydroxide sheets as advanced electrode materials for aqueous asymmetric super-capacitor battery. J. Power Sources 2022, 527, 231149. [Google Scholar] [CrossRef]
- Jadhav, S.B.; Malavekar, D.B.; Bulakhe, R.N.; Patil, U.M.; In, I.; Lokhande, C.D.; Pawaskar, P.N. Dual-Functional Electrodeposited Vertically Grown Ag-La2O3 Nanoflakes for Non-Enzymatic Glucose Sensing and Energy Storage Application. Surf. Interfaces 2021, 23, 101018. [Google Scholar] [CrossRef]
- Bulakhe, R.N.; Ryu, C.; Gunjakar, J.L.; In, J.B. Chemical route to the synthesis of novel ternary CuCr2S4 cathodes for asymmetric supercapacitors. J. Energy Storage 2022, 56, 106175. [Google Scholar]
- Thangavel, R.; Ganesan, B.K.; Thangavel, V.; Yoon, W.-S.; Lee, Y.-S. Emerging Materials for Sodium-Ion Hybrid Capacitors: A Brief Review. ACS Appl. Energy Mater. 2021, 4, 13376–13394. [Google Scholar] [CrossRef]
- Bhalerao, A.B.; Bulakhe, R.N.; Deshmukh, P.R.; Shim, J.-J.; Nandurkar, K.N.; Wagh, B.G.; Vattikuti, S.V.P.; Lokhande, C.D. Chemically synthesized 3D nanostructured polypyrrole electrode for high performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 2018, 29, 15699–15707. [Google Scholar] [CrossRef]
- Iqbal, M.Z.; Khan, M.W.; Shaheen, M.; Siddique, S.; Aftab, S.; Alzaid, M.; Iqbal, M.J. Evaluation of d-block metal sulfides as electrode materials for battery-supercapacitor energy storage devices. J. Energy Storage 2022, 55, 105418. [Google Scholar] [CrossRef]
- Khan Abdul, S.; Anuj, K.; Amjad, F.; Mohammad, T.; Muhammad, A.; Muhammad, U.; Akmal, A.; Saira, A.; Lujun, P.; Ghulam, Y. Benchmarking the charge storage mechanism in nickel cobalt sulfide nanosheets anchored on carbon nanocoils/carbon nanotubes nano-hybrid for high performance supercapacitor electrode. J. Energy Storage 2022, 56, 106041. [Google Scholar]
- Xu, H.; Chen, P.; Zhu, Y.; Bao, Y.; Ma, J.; Zhao, X.; Chen, Y. Self-assembly and controllable synthesis of high-rate porous NiCo2S4 electrode materials for asymmetric supercapacitors. J. Electroanal. Chem. 2022, 921, 116688. [Google Scholar] [CrossRef]
- Lv, X.; Min, X.; Feng, L.; Lin, X.; Ni, Y. A novel NiMn2O4@ NiMn2S4 core-shell nanoflower@ nanosheet as a high-performance electrode material for battery-type capacitors. Electrochim. Acta 2022, 415, 140204. [Google Scholar]
- Du, D.; Lan, R.; Humphreys, J.; Xu, W.; Xie, K.; Wang, H.; Tao, S. Synthesis of NiMoS4 for high-performance hybrid supercapacitors. J. Electrochem. Soc. 2017, 164, A2881. [Google Scholar] [CrossRef]
- Du, D.; Lan, R.; Humphreys, J.; Amari, H.; Tao, S. Preparation of nanoporous nickelcopper sulfide on carbon cloth for high-performance hybrid supercapacitors. Electrochim. Acta 2018, 273, 170–180. [Google Scholar] [CrossRef]
- Hai, Y.; Tao, K.; Dan, H.; Liu, L.; Gong, Y. Cr-doped (Co, Ni)3S4/Co9S8/Ni3S2 nanowires/nanoparticles grown on Ni foam for hybrid supercapacitor. J. Alloy Compd. 2020, 835, 155254. [Google Scholar]
- Zhao, C.S.; Gao, H.P.; Chen, C.M.; Wu, H. Reduction of graphene oxide in Li-ion batteries. J. Mater. Chem. A 2015, 3, 18360–18364. [Google Scholar] [CrossRef]
- Kim, S.; Park, G.; Sennu, P.; Lee, S.; Choi, K.; Oh, J.; Lee, Y.S.; Park, S. Effect of degree of reduction on the anode performance of reduced graphene oxide in Li-ion batteries. Rsc Adv. 2015, 5, 86237–86241. [Google Scholar] [CrossRef]
- Tran, C.V.; Khandelwal, M.; Lee, J.; Nguyen, A.P.; In, J.B. Controllable self-propagating reduction of graphene oxide films for energy-efficient fabrication. Int. J. Energ. Res. 2022, 46, 6876–6888. [Google Scholar] [CrossRef]
- Ruidíaz-Martínez, M.; Álvarez, M.A.; López-Ramón, M.V.; Cruz-Quesada, G.; Rivera-Utrilla, J.; Sánchez-Polo, M. Hydrothermal Synthesis of rGO-TiO2 Composites as High-Performance UV Photocatalysts for Ethylparaben Degradation. Catalysts 2020, 10, 520. [Google Scholar] [CrossRef]
- Chen, Y.; An, D.; Sun, S.; Gao, J.; Qian, L. Reduction and Removal of Chromium VI in Water by Powdered Activated Carbon. Materials 2018, 11, 269. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Zhu, Y.; Liu, X.; Chi, Z. Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): Selenium removal mechanism. Environ. Sci. Pollut. Res. 2023, 30, 27560–27569. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, W.; Li, Z.; Song, M.; Zhu, W.; Tian, L. Synergistic improvement in electron transport and active sites exposure over RGO supported NiP/Fe4P for oxygen evolution reaction. Ionics 2022, 28, 1359–1366. [Google Scholar] [CrossRef]
- Ling, L.; Zhang, C.; Lai, D.; Su, M.; Gao, F.; Lu, Q. Simultaneous phosphorization and sulfuration to Synergistically promote the supercapacitor performance of heterogeneous (CoxNi1-x)2P/CoxNi1-xS hydrangea-like microspheres. J. Power Sources 2023, 581, 233487. [Google Scholar] [CrossRef]
- Chen, W.; Yuan, P.; Guo, S.; Gao, S.; Wang, J.; Li, M.; Liu, F.; Wang, J.; Cheng, J.P. Formation of mixed metal sulfides of NixCu1-xCo2S4 for high-performance supercapacitors. J. Electroanal. Chem. 2019, 836, 134–142. [Google Scholar] [CrossRef]
- Fu, Z.; Hu, J.; Hu, W.; Yang, S.; Luo, Y. Quantitative analysis of Ni2+/Ni3+ in Li[NixMnyCoz]O2 cathode materials: Non-linear least-squares fitting of XPS spectra. Appl. Surf. Sci. 2018, 441, 1048–1056. [Google Scholar] [CrossRef]
- Liang, H.; Ma, K.; Zhao, X.; Geng, Z.; She, D.; Hu, H. Enhancement of Cr(VI) adsorption on lignin-based carbon materials by a two-step hydrothermal strategy: Performance and mechanism. Int. J. Biol. Macromol. 2023, 252, 126432. [Google Scholar] [CrossRef]
- Bulakhe, R.N.; Arote, S.A.; Kwon, B.; Park, S.; In, I. Facile synthesis of nickel cobalt sulfide nano flowers for high performance supercapacitor applications. Mater. Today Chem. 2020, 15, 100210. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Z.; Wang, D.; Deng, C.; Zhao, Y.; Tang, F. Simple hydrothermal preparation of sulfur fluoride-doped g-C3N4 and its photocatalytic degradation of methyl orange. Mater. Sci. Eng. B 2023, 288, 116216. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, J.; Liu, J.; Gu, Z.-G.; Yan, X. Sulfur-doped NiCo carbonate hydroxide with surface sulfate groups for highly enhanced electro-oxidation of urea. Electrochim. Acta 2022, 426, 140792. [Google Scholar] [CrossRef]
- Xue, Y.; Fang, X.; Jiang, H.; Wu, J.; Liu, H.; Li, X.; He, P.; Li, F.; Qi, Y.; Gao, Q.; et al. Hierarchical microsphere Flower-like SnIn4S8 with active sulfur sites for adsorption and removal of mercury from coal-fired flue gas. Chem. Eng. J. 2023, 472, 145105. [Google Scholar] [CrossRef]
- Ding, J.; Yue, R.; Zhu, X.; Liu, W.; Pei, H.; He, S.; Mo, Z. Flower-like Co3Ni1B nanosheets based on reduced graphene oxide (rGO) as an efficient electrocatalyst for the oxygen evolution reaction. New J. Chem. 2022, 46, 13524–13532. [Google Scholar] [CrossRef]
- Bulakhe, R.N.; Shin, S.C.; In, J.B.; In, I. Chemically synthesized mesoporous nickel cobaltite electrodes of different morphologies for high-performance asymmetric supercapacitors. J. Energy Storage 2022, 55, 105730. [Google Scholar]
- Condon, J.B. Surface Area and Porosity Determinations by Physisorption: Measurement, Classical Theories and Quantum Theory; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Palem, R.R.; Shimoga, G.; Rabani, I.; Bathula, C.; Seo, Y.-S.; Kim, H.-S.; Kim, S.-Y.; Lee, S.-H. Ball-milling route to design hierarchical nanohybrid cobalt oxide structures with cellulose nanocrystals interface for supercapacitors. Int. J. Energ. Res. 2022, 46, 8398–8412. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Xu, C.; Jiang, H.; Li, C.; Zhang, L.; Lin, J.; Shen, Z.X. Advanced Energy Storage Devices: Basic Principles, Analytical Methods, and Rational Materials Design. Adv. Sci. 2018, 5, 1700322. [Google Scholar] [CrossRef]
- Ertas, M.; Walczak, R.M.; Das, R.K.; Rinzler, A.G.; Reynolds, J.R. Supercapacitors based on polymeric dioxypyrroles and single walled carbon nanotubes. Chem. Mater. 2012, 24, 433–443. [Google Scholar] [CrossRef]
- Kumar, A.; Das, D.; Sarkar, D.; Nanda, K.K.; Patil, S.; Shukla, A. Asymmetric Supercapacitors with Nanostructured RuS2. Energy Fuels 2021, 35, 12671–12679. [Google Scholar] [CrossRef]
- Pazhamalai, P.; Krishnamoorthy, K.; Sahoo, S.; Mariappan, V.K.; Kim, S.J. Copper tungsten sulfide anchored on Ni-foam as a high-performance binder free negative electrode for asymmetric supercapacitor. Chem. Eng. J. 2019, 359, 409–418. [Google Scholar] [CrossRef]
- Wang, Z.; Zhu, Z.; Zhang, Q.; Zhai, M.; Gao, J.; Chen, C.; Yang, B. Fabrication of N-doped carbon coated spinel copper cobalt sulfide hollow spheres to realize the improvement of electrochemical performance for supercapacitors. Ceram. Int. 2019, 45, 21286–21292. [Google Scholar] [CrossRef]
- Kandhasamy, N.; Preethi, L.K.; Mani, D.; Walczak, L.; Mathews, T.; Venkatachalam, R. RGO nanosheet wrapped β-phase NiCu2S nanorods for advanced supercapacitor applications. Environ. Sci. Pollut. Res. 2023, 30, 18546–18562. [Google Scholar]
- Sathish, S.; Navamathavan, R. Electrochemical Investigation of Ni-Co-Zn-S/AC Nano Composite for High-Performance Energy Storage Applications. ECS J. Solid State Sci. Technol. 2022, 11, 101010. [Google Scholar]
- Mathis, T.S.; Kurra, N.; Wang, X.; Pinto, D.; Simon, P.; Gogotsi, Y. Energy Storage Data Reporting in Perspective—Guidelines for Interpreting the Performance of Electrochemical Energy Storage Systems. Adv. Energy Mater. 2019, 9, 1902007. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulakhe, R.N.; Nguyen, A.P.; Ryu, C.; Kim, J.M.; In, J.B. Facile Synthesis of Mesoporous Nanohybrid Two-Dimensional Layered Ni-Cr-S and Reduced Graphene Oxide for High-Performance Hybrid Supercapacitors. Materials 2023, 16, 6598. https://doi.org/10.3390/ma16196598
Bulakhe RN, Nguyen AP, Ryu C, Kim JM, In JB. Facile Synthesis of Mesoporous Nanohybrid Two-Dimensional Layered Ni-Cr-S and Reduced Graphene Oxide for High-Performance Hybrid Supercapacitors. Materials. 2023; 16(19):6598. https://doi.org/10.3390/ma16196598
Chicago/Turabian StyleBulakhe, Ravindra N., Anh Phan Nguyen, Changyoung Ryu, Ji Man Kim, and Jung Bin In. 2023. "Facile Synthesis of Mesoporous Nanohybrid Two-Dimensional Layered Ni-Cr-S and Reduced Graphene Oxide for High-Performance Hybrid Supercapacitors" Materials 16, no. 19: 6598. https://doi.org/10.3390/ma16196598
APA StyleBulakhe, R. N., Nguyen, A. P., Ryu, C., Kim, J. M., & In, J. B. (2023). Facile Synthesis of Mesoporous Nanohybrid Two-Dimensional Layered Ni-Cr-S and Reduced Graphene Oxide for High-Performance Hybrid Supercapacitors. Materials, 16(19), 6598. https://doi.org/10.3390/ma16196598