Influence of Oil Viscosity on the Tribological Behavior of a Laser-Textured Ti6Al4V Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Tribological Testing
3.1.1. Coefficient of Friction
3.1.2. Wear
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fatehallah, H.S.; Hammoudi, Z.S.; Zidane, L.Y. Study the Effect of Oil Viscosity on Friction Coefficient at Point Contact Elasto-Hydrodynamic Lubrication Based on Experimental Analysis. Diyala J. Eng. Sci. 2020, 13, 17–21. [Google Scholar] [CrossRef]
- Zhou, F.; Wang, X.; Kato, K.; Dai, Z. Friction and wear property of a-CNx coatings sliding against Si3N4 balls in water. Wear 2007, 263, 1253–1258. [Google Scholar] [CrossRef]
- Matta, C.; Joly-Pottuz, L.; Bouchet, M.I.D.B.; Martin, J.M.; Kano, M.; Zhang, Q.; Goddard, W.A. Superlubricity and tribochemistry of polyhydric alcohols. Phys. Rev. B 2008, 78, 085436. [Google Scholar] [CrossRef]
- Klein, J.; Kumacheva, E.; Mahalu, D.; Perahia, D.; Fetters, L.J. Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 1994, 370, 634–636. [Google Scholar] [CrossRef]
- Guo, Z.-W.; Yuan, C.-Q.; Bai, X.-Q.; Yan, X.-P. Experimental Study on Wear Performance and Oil Film Characteristics of Surface Textured Cylinder Liner in Marine Diesel Engine. Chin. J. Mech. Eng. 2018, 31, 52. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Q.; Zhang, P.; Gao, X.; Zhang, Z.; Huang, P. Correlation between Lubricating Oil Characteristic Parameters and Friction Characteristics. Coatings 2023, 13, 881. [Google Scholar] [CrossRef]
- Szpunar, M.; Trzepieciński, T.; Żaba, K.; Ostrowski, R.; Zwolak, M. Effect of Lubricant Type on the Friction Behaviours and Surface Topography in Metal Forming of Ti-6Al-4V Titanium Alloy Sheets. Materials 2021, 14, 3721. [Google Scholar] [CrossRef]
- Sharif, M.Z.; Azmi, W.H.; Ghazali, M.F.; Zawawi, N.N.M.; Ali, H.M. Viscosity and Friction Reduction of Double-End-Capped Polyalkylene Glycol Nanolubricants for Eco-Friendly Refrigerant. Lubricants 2023, 11, 129. [Google Scholar] [CrossRef]
- Björling, M.; Isaksson, P.; Marklund, P.; Larsson, R. The Influence of DLC Coating on EHL Friction Coefficient. Tribol. Lett. 2012, 47, 285–294. [Google Scholar] [CrossRef]
- Michaelis, K.; Höhn, B.; Hinterstoißer, M. Influence factors on gearbox power loss. Ind. Lubr. Tribol. 2011, 63, 46–55. [Google Scholar] [CrossRef]
- Hu, C.; Ai, J.; Ma, L.; Wen, P.; Fan, M.; Zhou, F.; Liu, W. Ester Oils Prepared from Fully Renewable Resources and Their Lubricant Base Oil Properties. ACS Omega 2021, 6, 16343–16355. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Wang, M.; Sun, W.; Shipway, P.; Li, X. Modeling the effectiveness of oil lubrication in reducing both friction and wear in a fretting contact. Wear 2019, 426–427, 770–777. [Google Scholar] [CrossRef]
- Kubiak, K.J.; Mathia, T.G. Influence of roughness on contact interface in fretting under dry and boundary lubricated sliding regimes. Wear 2009, 267, 315–321. [Google Scholar] [CrossRef]
- Lin, L. Assessment of Effects of Surface Roughness and Oil Viscosity on Friction Coefficient under Lubricated Rolling-sliding Conditions (Analysis of Lubrication Modes Based on EHL Theory). Komatsu Tech. Rep. 2013, 59, 1–7. [Google Scholar]
- Yang, Y.; Zhang, C.; Dai, Y.; Luo, J. Tribological properties of titanium alloys under lubrication of SEE oil and aqueous solutions. Tribol. Int. 2017, 109, 40–47. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, M.X.; Cai, Z.B.; Peng, J.F.; Zhu, M.H. Study on dual rotary fretting wear behavior of Ti6Al4V titanium alloy. Wear 2017, 376–377, 670–679. [Google Scholar] [CrossRef]
- Aniołek, K.; Kupka, M.; Barylski, A. Sliding wear resistance of oxide layers formed on a titanium surface during thermal oxidation. Wear 2016, 356–357, 23–29. [Google Scholar] [CrossRef]
- Vazquez-Martinez, J.M.; Botana, M.; Botana, F.J.; Del Sol, I.; Salguero, J.; Marcos, M. Thermal laser oxidation based texturing as finishing treatment for improving surface properties of UNS R56400. Procedia Manuf. 2017, 13, 372–379. [Google Scholar] [CrossRef]
- Hu, T.; Hu, L. Tribological Properties of Lubricating Films on the Al-Si Alloy Surface via Laser Surface Texturing. Tribol. Trans. 2011, 54, 800–805. [Google Scholar] [CrossRef]
- Pou-Álvarez, P.; Riveiro, A.; Nóvoa, X.; Fernández-Arias, M.; del Val, J.; Comesaña, R.; Boutinguiza, M.; Lusquiños, F.; Pou, J. Nanosecond, picosecond and femtosecond laser surface treatment of magnesium alloy: Role of pulse length. Surf. Coatings Technol. 2021, 427, 127802. [Google Scholar] [CrossRef]
- Moldovan, E.; Doria, C.C.; Moreno, J.O.; Baltes, L.; Stanciu, E.; Croitoru, C.; Pascu, A.; Tierean, M. Geometry Characterization of AISI 430 Stainless Steel Microstructuring Using Laser. Arch. Metall. Mater. 2022, 67, 645–652. [Google Scholar] [CrossRef]
- Lin, N.; Li, D.; Zou, J.; Xie, R.; Wang, Z.; Tang, B. Surface Texture-Based Surface Treatments on Ti6Al4V Titanium Alloys for Tribological and Biological Applications: A Mini Review. Materials 2018, 11, 487. [Google Scholar] [CrossRef] [PubMed]
- Attanasio, A.; Gelfi, M.; Pola, A.; Ceretti, E.; Giardini, C. Influence of Material Microstructures in Micromilling of Ti6Al4V Alloy. Materials 2013, 6, 4268–4283. [Google Scholar] [CrossRef] [PubMed]
- Attar, H.; Ehtemam-Haghighi, S.; Kent, D.; Okulov, I.; Wendrock, H.; Bönisch, M.; Volegov, A.; Calin, M.; Eckert, J.; Dargusch, M. Nanoindentation and wear properties of Ti and Ti-TiB composite materials produced by selective laser melting. Mater. Sci. Eng. A Process 2017, 688, 20–26. [Google Scholar] [CrossRef]
- Gregorčič, P.; Conradi, M.; Hribar, L.; Hočevar, M. Long-Term Influence of Laser-Processing Parameters on (Super)hydrophobicity Development and Stability of Stainless-Steel Surfaces. Materials 2018, 11, 15. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014, 7, 1709–1800. [Google Scholar] [CrossRef] [PubMed]
- Babu, D.P.; Vignesh, S.; Vignesh, M.; Balamurugan, C. Enhancement of wear resistance of Ti-6Al-4V alloy by picosecond laser surface micro texturing process. J. Cent. South Univ. 2018, 25, 1836–1848. [Google Scholar] [CrossRef]
- Conradi, M.; Kocijan, A.; Klobčar, D.; Godec, M. Influence of Laser Texturing on Microstructure, Surface and Corrosion Properties of Ti-6Al-4V. Metals 2020, 10, 1504. [Google Scholar] [CrossRef]
- Wang, X.; Adachi, K.; Otsuka, K.; Kato, K. Optimization of the surface texture for silicon carbide sliding in water. Appl. Surf. Sci. 2006, 253, 1282–1286. [Google Scholar] [CrossRef]
- Kovalchenko, A.; Ajayi, O.; Erdemir, A.; Fenske, G.; Etsion, I. The Effect of Laser Texturing of Steel Surfaces and Speed-Load Parameters on the Transition of Lubrication Regime from Boundary to Hydrodynamic. Tribol. Trans. 2004, 47, 299–307. [Google Scholar] [CrossRef]
- Wagner, J.J.; Jenson, A.D.; Sundararajan, S. The effect of contact pressure and surface texture on running-in behavior of case carburized steel under boundary lubrication. Wear 2017, 376–377, 851–857. [Google Scholar] [CrossRef]
Oil | Viscosity at 40° [mm2/s] |
---|---|
T9 | 8.9 |
VG46 | 50.6 |
VG100 | 110 |
Pattern Type | Diameter of Circles [µm] | Centre-to-Centre Distance [µm] | Processing Time [s] |
---|---|---|---|
50–100 | 50 | 100 | 2508 |
50–200 | 50 | 200 | 736 |
100–200 | 100 | 200 | 467 |
100–400 | 100 | 400 | 220 |
Sample | TD [%] |
---|---|
50–100 | 40 |
50–200 | 15 |
100–200 | 30 |
100–400 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conradi, M.; Kocijan, A.; Podgornik, B. Influence of Oil Viscosity on the Tribological Behavior of a Laser-Textured Ti6Al4V Alloy. Materials 2023, 16, 6615. https://doi.org/10.3390/ma16196615
Conradi M, Kocijan A, Podgornik B. Influence of Oil Viscosity on the Tribological Behavior of a Laser-Textured Ti6Al4V Alloy. Materials. 2023; 16(19):6615. https://doi.org/10.3390/ma16196615
Chicago/Turabian StyleConradi, Marjetka, Aleksandra Kocijan, and Bojan Podgornik. 2023. "Influence of Oil Viscosity on the Tribological Behavior of a Laser-Textured Ti6Al4V Alloy" Materials 16, no. 19: 6615. https://doi.org/10.3390/ma16196615
APA StyleConradi, M., Kocijan, A., & Podgornik, B. (2023). Influence of Oil Viscosity on the Tribological Behavior of a Laser-Textured Ti6Al4V Alloy. Materials, 16(19), 6615. https://doi.org/10.3390/ma16196615