Preparation Optimization of CFRP and EPDM Composite by the Co-Curing Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of EPDM Rubber
2.3. Preparation of Epoxy Resin Prepreg
2.4. Preparation of CFRP/EPDM Composites by the Co-Curing Method
2.5. Characterizations
3. Results and Discussion
3.1. The Crosslink Density of EPDM Rubber
3.2. The Adhesive Strength of CFRP/EPDM
3.3. Interphase Profiles of CFRP/EPDM Composites
3.4. TGA Analysis of EPDM Rubbers
3.5. ILSS of CFRP
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, Q.C.; Xu, J.S.; Chen, X.; Zhou, C.S. Review of the adhesively bonded interface in a solid rocket motor. J. Adhes. 2016, 92, 402–428. [Google Scholar] [CrossRef]
- Vescovini, A.; Lomazzi, L.; Giglio, M.; Manes, A. Damage assessment of CFRP laminate plate subjected to close-range blast loading: Hydrocode methodology validation and case study. Procedia Struct. Integr. 2022, 37, 439–446. [Google Scholar] [CrossRef]
- Shin, K.C.; Lim, J.O.; Lee, J.J. The manufacturing process of co-cured single and double lap joints and evaluation of the load-bearing capacities of co-cured joints. J. Mater. Process. Tech. 2003, 138, 89–96. [Google Scholar] [CrossRef]
- Studer, J.; Dransfeld, C.; Masania, K. An analytical model for B-stage joining and co-curing of carbon fibre epoxy composites. Compos. Part A Appl. Sci. Manuf. 2016, 87, 282–289. [Google Scholar] [CrossRef]
- Farajpour, T.; Bayat, Y.; Abdollahi, M.; Keshavarz, M.H. Effect of borax on the thermal and mechanical properties of ethylene-propylene-diene terpolymer rubber-based heat insulator. J. Appl. Polym. Sci. 2015, 132, 41936. [Google Scholar] [CrossRef]
- Ji, Y.; Han, S.D.; Xia, L.C.; Li, C.H.; Wu, H.; Guo, S.Y.; Yan, N.; Li, H.Y.; Luan, T. Synergetic effect of aramid fiber and carbon fiber to enhance ablative resistance of EPDM-based insulators via constructing high-strength char layer. Compos. Sci. Technol. 2021, 201, 108494. [Google Scholar] [CrossRef]
- Nardelli, F.; Calucci, L.; Carignani, E.; Borsacchi, S.; Cettolin, M.; Arimondi, M.; Giannini, L.; Geppi, M.; Martini, F. Influence of sulfur-curing conditions on the dynamics and crosslinking of rubber networks: A time-domain NMR study. Polymers 2022, 14, 767. [Google Scholar] [CrossRef] [PubMed]
- Rallini, M.; Puri, I.; Torre, L.; Natali, M. Boron based fillers as char enhancers of EPDM based heat shielding materials for SRMs: A comparative analysis. Compos. Struct. 2018, 198, 73–83. [Google Scholar] [CrossRef]
- Wu, S.J.; Zhang, S.K.; Akram, R.; Yasir, A.; Wang, B.W.; Han, Z.Q.; Wu, Z.P.; Wu, D.Z. EPDM-based heat-shielding materials modified by hybrid elastomers of silicone or polyphosphazene. High Perform. Polym. 2019, 31, 1112–1121. [Google Scholar] [CrossRef]
- Toscano, A.M.; Lato, M.R.; Fontanarosa, D.; De Giorgi, M.G. Optical diagnostics for solid rocket plumes characterization: A review. Energies 2022, 15, 1470. [Google Scholar] [CrossRef]
- Grythe, K.F.; Hansen, F.K.; Olsen, T. Adhesion in solid propellant rocket motors. J. Adhes. 2007, 83, 223–254. [Google Scholar] [CrossRef]
- Amado, J.C.Q.; Ross, P.G.; Sanches, N.B.; Pinto, J.R.A.; Dutra, J.C.N. Evaluation of elastomeric heat shielding materials as insulators for solid propellant rocket motors: A short review. Open Chem. 2020, 18, 1452–1467. [Google Scholar] [CrossRef]
- Sarlin, E.; Heinonen, E.; Vuorinen, J.; Vippola, M.; Lepisto, T. Adhesion properties of novel corrosion resistant hybrid structures. Int. J. Adhes. Adhes. 2014, 49, 51–57. [Google Scholar] [CrossRef]
- Park, S.J.; Choi, S.H.; Lee, S.W.; Jeon, J.J.; Park, J.H. Study on the improvement of adhesion strength between composite solid propellant, liner, and heat-resistant material. Propellants Explos. Pyrotech. 2020, 45, 1227–1233. [Google Scholar] [CrossRef]
- Lionetto, F.; Morilas, M.N.; Pappada, S.; Buccoliero, G.; Villegas, I.F.; Maffezzoli, A. Hybrid welding of carbon-fiber reinforced epoxy based composites. Compos. Part A Appl. Sci. Manuf. 2018, 104, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; He, J.; Su, Y.H.; Li, S.H. Thermo-stamping co-curing process for CFRP/steel hybrid sheets and its interface strength improvement. Compos. Struct. 2020, 241, 112108. [Google Scholar] [CrossRef]
- Ashcroft, I.A.; Hughes, D.J.; Shaw, S.J. Mode I fracture of epoxy bonded composite joints: 1. Quasi-static loading. Int. J. Adhes. Adhes. 2001, 21, 87–99. [Google Scholar] [CrossRef]
- Jia, D.; Zheng, J.; Chen, X.; Yu, J.Q. Modeling the temperature-dependent mode I fracture behavior of adhesively bonded joints. J. Adhes. 2017, 93, 481–503. [Google Scholar] [CrossRef]
- Ucsnik, S.; Scheerer, M.; Zaremba, S.; Pahr, D.H. Experimental investigation of a novel hybrid metal-composite joining technology. Compos. Part A Appl. Sci. Manuf. 2010, 41, 369–374. [Google Scholar] [CrossRef]
- Kim, H.S.; Park, S.W.; Lee, D.G. Smart cure cycle with cooling and reheating for co-cure bonded steel/carbon epoxy composite hybrid structures for reducing thermal residual stress. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1708–1721. [Google Scholar] [CrossRef]
- Shin, K.C.; Lee, J.J. Bond parameters to improve tensile load bearing capacities of co-cured single and double lap joints with steel and carbon fiber-epoxy composite adherends. J. Compos. Mater. 2003, 37, 401–420. [Google Scholar] [CrossRef]
- Streitferdt, A.; Rudolph, N.; Taha, I. Co-curing of CFRP-steel hybrid joints using the vacuum assisted resin infusion process. Appl. Compos. Mater. 2017, 24, 1137–1149. [Google Scholar] [CrossRef]
- Dasilva, S.; Jimenez-Suarez, A.; Rodriguez, E.; Prolongo, S.G. Influence of manufacturing process in structural health monitoring and mechanical behaviour of CNT reinforced CFRP and Ti6Al4V multi-material joints. Polymers 2021, 13, 2488. [Google Scholar] [CrossRef]
- Zheng, C.S.; Wang, S.Q.; Liang, S. Interface bonding mechanisms of co-cured damping carbon fiber reinforced epoxy matrix composites. J. Alloy. Compd. 2020, 822, 153739. [Google Scholar] [CrossRef]
- Zheng, C.S.; Liang, S. Improving interfacial shear strength of co-cured sandwich composites by designing novel damping layer. J. Alloy. Compd. 2021, 854, 157175. [Google Scholar] [CrossRef]
- Zheng, C.S.; Duan, F.H.; Liang, S. Manufacturing and mechanical performance of novel epoxy resin matrix carbon fiber reinforced damping composites. Compos. Struct. 2021, 256, 113099. [Google Scholar] [CrossRef]
- Wei, B.X.; Yi, X.T.; Xiong, Y.J.; Wei, X.J.; Wu, Y.D.; Huang, Y.D.; He, J.M.; Bai, Y.P. The preparation and characterization of a carbon fiber-reinforced epoxy resin and EPDM composite using the co-curing method. RSC Adv. 2020, 10, 20588–20594. [Google Scholar] [CrossRef]
- Saleesung, T.; Reichert, D.; Saalwachter, K.; Sirisinha, C. Correlation of crosslink densities using solid state NMR and conventional techniques in peroxide-crosslinked EPDM rubber. Polymer 2015, 56, 309–317. [Google Scholar] [CrossRef]
- Valentin, J.L.; Posadas, P.; Fernandez-Torres, A.; Malmierca, M.A.; Gonzalez, L.; Chasse, W.; Saalwachter, K. Inhomogeneities and chain dynamics in diene rubbers vulcanized with different cure systems. Macromolecules 2010, 43, 4210–4222. [Google Scholar] [CrossRef]
- Gronski, W.; Hoffmann, U.; Simon, G.; Wutzler, A.; Straube, E. Structure and density of cross-links in natural-rubber vulcanizates-a combined analysis by NMR-spectroscopy, mechanical measurements, and rubber-elastic theory. Rubber Chem. Technol. 1992, 65, 63–77. [Google Scholar] [CrossRef]
- Chenwi, I.N.; Ramotowski, T.; LeBlanc, J.; Shukla, A. Effects of prolonged saline water exposure on the peel strength of polyurea/monel 400 interface. J. Adhes. 2022, 97, 1377–1393. [Google Scholar] [CrossRef]
- Nishino, M.; Okazaki, Y.; Seto, Y.; Uehara, T.; Endo, K.; Yamamura, K.; Ohkubo, Y. Adhesive-Free Adhesion between plasma-treated glass-cloth-containing polytetrafluoroethylene (GC-PTFE) and stainless steel: Comparison between GC-PTFE and pure PTFE. Polymers 2022, 14, 394. [Google Scholar] [CrossRef]
- Wu, Z.J.; Cui, H.Y.; Chen, L.; Jiang, D.W.; Weng, L.; Ma, Y.Y.; Li, X.J.; Zhang, X.H.; Liu, H.; Wang, N.; et al. Interfacially reinforced unsaturated polyester carbon fiber composites with a vinyl ester-carbon nanotubes sizing agent. Compos. Sci. Technol. 2018, 164, 195–203. [Google Scholar] [CrossRef]
- Poltabtim, W.; Wimolmala, E.; Saenboonruang, K. Properties of lead-free gamma-ray shielding materials from metal oxide/EPDM rubber composites. Radiat. Phys. Chem. 2018, 153, 1–9. [Google Scholar] [CrossRef]
- Kruzelak, J.; Sykora, R.; Hudec, I. Peroxide vulcanization of natural rubber. Part I: Effect of temperature and peroxide concentration. J. Polym. Eng. 2014, 34, 617–624. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wang, R.; Chen, X.F.; Kong, Y.R.; Huang, Y.J.; Lv, Y.D.; Li, G.X. Effect of non-rubber components on the crosslinking structure and thermo-oxidative degradation of natural rubber. Polym. Degrad. Stab. 2022, 196, 109845. [Google Scholar] [CrossRef]
- Baroncini, E.A.; Kumar Yadav, S.; Palmese, G.R.; Stanzione, J.F., III. Recent advances in bio-based epoxy resins and bio-based epoxy curing agents. J. Appl. Polym. Sci. 2016, 133, 44103. [Google Scholar] [CrossRef] [Green Version]
- Lawandy, S.N.; Moustafa, H.; Zahran, M.A.H.; Rabee, M. Effect of bio-alkyd resin oil content and viscosity on the adhesion of EPDM to polyester fabric. J. Adhes. Sci. Technol. 2018, 32, 302–316. [Google Scholar] [CrossRef]
- Mahesh, V.; Joladarashi, S.; Kulkarni, S.M. An experimental study on adhesion, flexibility, interlaminar shear strength, and damage mechanism of jute/rubber-based flexible “green” composite. J. Thermoplast. Compos. 2022, 35, 149–176. [Google Scholar] [CrossRef]
- Shimizu, K.; Miyata, T.; Nagao, T.; Kumagai, A.; Jinnai, H. Visualization of the tensile fracture behaviors at adhesive interfaces between brass and sulfur-containing rubber studied by transmission electron microscopy. Polymer 2019, 181, 121789. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Hoa, S.V. Thermal insulation by heat resistant polymers for solid rocket motor insulation. J. Compos. Mater. 2012, 46, 1549–1559. [Google Scholar] [CrossRef]
- El-Nemr, K.F. Effect of different curing systems on the mechanical and physico-chemical properties of acrylonitrile butadiene rubber vulcanizates. Mater. Des. 2011, 32, 3361–3369. [Google Scholar] [CrossRef]
- Lou, W.T.; Xie, C.Y.; Guan, X.F. Coupled effects of temperature and compressive strain on aging of silicone rubber foam. Polym. Degrad. Stab. 2022, 195, 109810. [Google Scholar] [CrossRef]
- Liu, Q.; Li, J.; Jiang, Y.; Cong, C.; Xu, L.; Zhang, Y.; Meng, X.; Zhou, Q. Effect of crosslinked structure on the chemical degradation of EPDM rubber in an acidic environment. Polym. Degrad. Stab. 2021, 185, 109475. [Google Scholar] [CrossRef]
- Zavatta, N.; Rondina, F.; Falaschetti, M.P.; Donati, L. Effect of thermal ageing on the mechanical strength of carbon fibre reinforced epoxy composites. Polymers 2021, 13, 2006. [Google Scholar] [CrossRef]
Formulation Name | EPDM (phr) | DCP (phr) | S (phr) | TAIC (phr) |
---|---|---|---|---|
EPDM-DCP | 100 | 3.5 | 0 | 0 |
EPDM-DCP-S | 100 | 3.5 | 0.5 | 0 |
EPDM-DCP-TAIC | 100 | 3.5 | 0 | 5.8 |
Preparation Conditions | First Stage | Second Stage | Third Stage | Final Stage |
---|---|---|---|---|
1 | 80 °C for 2 h | 120 °C for 2 h | 140 °C for 1 h | 160 °C for 1 h |
2 | 80 °C for 2 h | 120 °C for 2 h | 140 °C for 1 h | 170 °C for 1 h |
3 | 80 °C for 2 h | 120 °C for 2 h | 140 °C for 1 h | 180 °C for 1 h |
4 | 80 °C for 2 h | 120 °C for 2 h | 140 °C for 1 h | 160 °C for 20 min |
5 | 80 °C for 2 h | 120 °C for 2 h | 140 °C for 1 h | 160 °C for 30 min |
6 | 80 °C for 2 h | 120 °C for 2 h | 140 °C for 1 h | 160 °C for 40 min |
Sample | Ti (°C) | Tp (°C) | Tf (°C) | Char Yield (%) |
---|---|---|---|---|
EPDM/DCP | 456.83 | 482.21 | 499.63 | 1.379 |
EPDM/DCP/S | 463.45 | 486.76 | 508.83 | 0.339 |
EPDM/DCPTAIC | 462.31 | 483.8 | 508.83 | 0.123 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, B.; Yu, C.; Bai, Y.; Liu, L.; He, J. Preparation Optimization of CFRP and EPDM Composite by the Co-Curing Method. Materials 2023, 16, 503. https://doi.org/10.3390/ma16020503
Wei B, Yu C, Bai Y, Liu L, He J. Preparation Optimization of CFRP and EPDM Composite by the Co-Curing Method. Materials. 2023; 16(2):503. https://doi.org/10.3390/ma16020503
Chicago/Turabian StyleWei, Binxiao, Chen Yu, Yongping Bai, Li Liu, and Jinmei He. 2023. "Preparation Optimization of CFRP and EPDM Composite by the Co-Curing Method" Materials 16, no. 2: 503. https://doi.org/10.3390/ma16020503
APA StyleWei, B., Yu, C., Bai, Y., Liu, L., & He, J. (2023). Preparation Optimization of CFRP and EPDM Composite by the Co-Curing Method. Materials, 16(2), 503. https://doi.org/10.3390/ma16020503