Energy in Construction and Building Materials
Conflicts of Interest
References
- European Commission, Causes of Climate Change. Available online: https://ec.europa.eu/clima/change/causes_en (accessed on 1 March 2022).
- IEA, Key World Energy Statistics. Available online: https://www.iea.org/reports/key-world-energy-statistics-2020 (accessed on 1 March 2022).
- Peralta, I.; Fachinotti, V.D.; Koenders, E.A.; Caggiano, A. Computational design of a Massive Solar-Thermal Collector enhanced with Phase Change Materials. Energy Build. 2022, 274, 112437. [Google Scholar] [CrossRef]
- Sam, M.; Caggiano, A.; Dubyey, L.; Dauvergne, J.L.; Koenders, E. Thermo-physical and mechanical investigation of cementitious composites enhanced with microencapsulated phase change materials for thermal energy storage. Constr. Build. Mater. 2022, 340, 127585. [Google Scholar] [CrossRef]
- Gilka-Bötzow, A.; Folino, P.; Maier, A.; Koenders, E.A.; Caggiano, A. Triaxial Failure Behavior of Highly Porous Cementitious Foams Used as Heat Insulation. Processes 2021, 9, 1373. [Google Scholar] [CrossRef]
- Saber, H.H.; Maref, W.; Hajiah, A.E. Effective R-value of enclosed reflective space for different building applications. J. Build. Phys. 2020, 43, 398–427. [Google Scholar] [CrossRef]
- Khoukhi, M. The combined effect of heat and moisture transfer dependent thermal conductivity of polystyrene insulation material: Impact on building energy performance. Energy Build. 2018, 169, 228–235. [Google Scholar] [CrossRef]
- Atsonios, I.A.; Mandilaras, I.D.; Kontogeorgos, D.A.; Founti, M.A. A comparative assessment of the standardized methods for the in–situ measurement of the thermal resistance of building walls. Energy Build. 2017, 154, 198–206. [Google Scholar] [CrossRef]
- Bre, F.; Caggiano, A.; Koenders, E.A. Multiobjective Optimization of Cement-Based Panels Enhanced with Microencapsulated Phase Change Materials for Building Energy Applications. Energies 2022, 15, 5192. [Google Scholar] [CrossRef]
- Tarpani, E.; Piselli, C.; Fabiani, C.; Pigliautile, I.; Kingma, E.J.; Pioppi, B.; Pisello, A.L. Energy Communities Implementation in the European Union: Case Studies from Pioneer and Laggard Countries. Sustainability 2022, 14, 12528. [Google Scholar] [CrossRef]
- Almusaed, A.; Yitmen, I.; Almsaad, A.; Akiner, İ.; Akiner, M.E. Coherent investigation on a smart kinetic wooden façade based on material passport concepts and environmental profile inquiry. Materials 2021, 14, 3771. [Google Scholar] [CrossRef]
- Ghalambaz, M.; Mohammed, H.I.; Naghizadeh, A.; Islam, M.S.; Younis, O.; Mahdi, J.M.; Chatroudi, I.S.; Talebizadehsardari, P. Optimum placement of heating tubes in a multi-tube latent heat thermal energy storage. Materials 2021, 14, 1232. [Google Scholar] [CrossRef]
- Masdeu, F.; Carmona, C.; Horrach, G.; Muñoz, J. Effect of Iron (III) Oxide Powder on Thermal Conductivity and Diffusivity of Lime Mortar. Materials 2021, 14, 998. [Google Scholar] [CrossRef] [PubMed]
- Frattini, D.; Occhicone, A.; Ferone, C.; Cioffi, R. Fibre-reinforced geopolymer concretes for sensible heat thermal energy storage: Simulations and environmental impact. Materials 2021, 14, 414. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Zhang, W.; Zhang, J.; Ding, Y.; Zhou, R. Pyrolysis kinetic properties of thermal insulation waste extruded polystyrene by multiple thermal analysis methods. Materials 2020, 13, 5595. [Google Scholar] [CrossRef] [PubMed]
- Iffa, E.; Tariku, F.; Simpson, W.Y. Highly insulated wall systems with exterior insulation of polyisocyanurate under different facer materials: Material characterization and long-term hygrothermal performance assessment. Materials 2020, 13, 3373. [Google Scholar] [CrossRef]
- Yang, I.H.; Park, J. A study on the thermal properties of high-strength concrete containing CBA fine aggregates. Materials 2020, 13, 1493. [Google Scholar] [CrossRef] [Green Version]
- Pochwała, S.; Makiola, D.; Anweiler, S.; Böhm, M. The heat conductivity properties of hemp–lime composite material used in single-family buildings. Materials 2020, 13, 1011. [Google Scholar] [CrossRef] [Green Version]
- Respondek, Z. Heat transfer through insulating glass units subjected to climatic loads. Materials 2020, 13, 286. [Google Scholar] [CrossRef] [Green Version]
- Goracci, G.S.; Dolado, J. Elucidation of conduction mechanism in graphene nanoplatelets (GNPs)/Cement composite using dielectric spectroscopy. Materials 2020, 13, 275. [Google Scholar] [CrossRef] [Green Version]
- Pavelek, M.; Adamová, T. Bio-waste thermal insulation panel for sustainable building construction in steady and unsteady-state conditions. Materials 2019, 12, 2004. [Google Scholar] [CrossRef] [Green Version]
- Guardia, C.; Barluenga, G.; Palomar, I. PCM Cement-Lime Mortars for Enhanced Energy Efficiency of Multilayered Building Enclosures under Different Climatic Conditions. Materials 2020, 13, 4043. [Google Scholar] [CrossRef]
- Fachinotti, V.D.; Bre, F.; Mankel, C.; Koenders, E.A.; Caggiano, A. Optimization of multilayered walls for building envelopes including PCM-based composites. Materials 2020, 13, 2787. [Google Scholar] [CrossRef] [PubMed]
- Sam, M.N.; Caggiano, A.; Mankel, C.; Koenders, E. A comparative study on the thermal energy storage performance of bio-based and paraffin-based PCMs using DSC procedures. Materials 2020, 13, 1705. [Google Scholar] [PubMed] [Green Version]
- Mankel, C.; Caggiano, A.; König, A.; Schicchi, D.S.; Sam, M.N.; Koenders, E. Modelling the thermal energy storage of cementitious mortars made with PCM-recycled brick aggregates. Materials 2020, 13, 1064. [Google Scholar] [CrossRef] [Green Version]
- Kurdi, A.; Almoatham, N.; Mirza, M.; Ballweg, T.; Alkahlan, B. Potential Phase Change Materials in Building Wall Construction—A Review. Materials 2021, 14, 5328. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caggiano, A. Energy in Construction and Building Materials. Materials 2023, 16, 504. https://doi.org/10.3390/ma16020504
Caggiano A. Energy in Construction and Building Materials. Materials. 2023; 16(2):504. https://doi.org/10.3390/ma16020504
Chicago/Turabian StyleCaggiano, Antonio. 2023. "Energy in Construction and Building Materials" Materials 16, no. 2: 504. https://doi.org/10.3390/ma16020504
APA StyleCaggiano, A. (2023). Energy in Construction and Building Materials. Materials, 16(2), 504. https://doi.org/10.3390/ma16020504