Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Asphalt Binders
2.1.2. Bio-Derived Bio-Flux Additive
- − cobalt catalyst: 0.1 % m/m in converted to metal
- − polymerization initializer: cumene hydrogen peroxide 1.0% m/m
2.2. Methods
2.2.1. Design of Experiment
2.2.2. FTIR Measurements
3. Results
3.1. Evaluation of the FTIR Spectra of the Asphalt Binders and Bio-Flux Additive
3.2. Quantification of the FTIR Spectra Responses
3.2.1. Evaluation of Methods for the Quantification of the FTIR Spectra Responses
3.2.2. Effects on the FTIR Oxidative Ageing Indicators in Asphalt Binder
3.2.3. Effects on the Measured Bio-Flux Additive Content
4. Conclusions
- the ester functional group absorption peak (1741 cm−1) present in fatty acid methyl esters was found to be suitable for identifying the presence of bio-oil derived bio-flux additive;
- the absorption peaks at the 1741 cm−1 wavenumber characteristic to the RME based bio-flux additive were reasonably confined to the 1755–1730 cm−1 absorption band and therefore separated from the absorption bands affected by laboratory oxidative ageing (RTFOT, PAV);
- at higher concentrations of the bio-flux additive, the broad and intense ester absorption band impacted the carbonyl region of the asphalt binders, and a tangent baseline integration method of calculating peak areas was used;
- the presence of bio-flux additive decreased the amount of identified carbonyl compounds (ketone) in the asphalt binders before and after ageing;
- sulfoxide content and formation during ageing was mostly unaffected by the presence of bio-flux additive;
- the measured prevalence of ester functional groups in asphalt binders containing bio-flux additive, established based on the FTIR measurements, decreased in the course of RTFOT and PAV ageing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peng, B.; Cai, C.; Yin, G.; Li, W.; Zhan, Y. Evaluation system for CO2 emission of hot asphalt mixture. J. Traffic Transp. Eng. (Engl. Ed.) 2015, 2, 116–124. [Google Scholar] [CrossRef] [Green Version]
- Thives, L.P.; Ghisi, E. Asphalt mixtures emission and energy consumption: A review. Renew. Sustain. Energy Rev. 2017, 72, 473–484. [Google Scholar] [CrossRef]
- Xiu, M.; Wang, X.; Morawska, L.; Pass, D.; Beecroft, A.; Mueller, J.F.; Thai, P. Emissions of particulate matters, volatile organic compounds and polycyclic aromatic hydrocarbons from warm and hot asphalt mixes. J. Clean. Prod. 2020, 275, 123094. [Google Scholar] [CrossRef]
- Almeida-Costa, A.; Benta, A. Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt. J. Clean. Prod. 2016, 112, 2308–2317. [Google Scholar] [CrossRef]
- Remišová, E.; Holý, M. Changes of Properties of Bitumen Binders by Additives Application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 245, 032003. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.; Almeida-Costa, A.; Duarte, C.; Benta, A. Warm mix asphalt: Chemical additives’ effects on bitumen properties and limestone aggregates mixture compactibility. Int. J. Pavement Res. Technol. 2018, 11, 285–299. [Google Scholar] [CrossRef]
- Iwański, M.M. Synergistic Effect of F–T Synthetic Wax and Surface-Active Agent Content on the Properties and Foaming Characteristics of Bitumen 50/70. Materials 2021, 14, 300. [Google Scholar] [CrossRef]
- Ghabchi, R.; Singh, D.; Zaman, M. Laboratory evaluation of stiffness, low-temperature cracking, rutting, moisture damage, and fatigue performance of WMA mixes. Road Mater. Pavement Des. 2015, 16, 334–357. [Google Scholar] [CrossRef]
- Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Janus, K. Effects of zeolites and hydrated lime on volumetrics and moisture resistance of foamed warm mix asphalt concrete. Bull. Pol. Acad. Sci. Tech. Sci. 2021, 69, e136731. [Google Scholar] [CrossRef]
- Woszuk, A.; Franus, W. A review of the application of zeolite materials in warm mix asphalt technologies. Appl. Sci. 2017, 7, 293. [Google Scholar] [CrossRef] [Green Version]
- Zhu, C.; Xu, G.; Zhang, H.; Xiao, F.; Amirkhanian, S.; Wu, C. Influence of different anti-stripping agents on the rheological properties of asphalt binder at high temperature. Constr. Build. Mater. 2018, 164, 317–325. [Google Scholar] [CrossRef]
- Ahmadzadegan, F.; Sarkar, A. Mechanical properties of warm mix asphalt-stone matrix asphalt modified with nano zeolite material. J. Test. Eval. 2022, 50, 20200595. [Google Scholar] [CrossRef]
- Iwanski, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Resistance to moisture-induced damage of half-warm-mix asphalt concrete with foamed bitumen. Materials 2020, 13, 654. [Google Scholar] [CrossRef] [Green Version]
- Bairgi, B.K.; Mannan, U.A.; Tarefder, R.A. Tribological Evaluation for an In-Depth Understanding of Improved Workability of Foamed Asphalt. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 533–545. [Google Scholar] [CrossRef]
- Yin, F.; Arambula, E.; Newcomb, D.E. Effect of water content on binder foaming characteristics and foamed mixture properties. Transp. Res. Rec. 2015, 2506, 1–7. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Mazurek, G.; Buczyński, P.; Cholewińska, M.; Iwański, M.M.; Maciejewski, K.; Ramiączek, P. Effects of the Water-Based Foaming Process on the Basic and Rheological Properties of Bitumen 70/100. Materials 2021, 14, 2803. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, K.; Wu, C.; Liu, K.; Jiang, K. Preparation of bio-oil and its application in asphalt modification and rejuvenation: A review of the properties, practical application and life cycle assessment. Constr. Build. Mater. 2020, 262, 120528. [Google Scholar] [CrossRef]
- Oldham, D.; Rajib, A.; Dandamudi, K.P.R.; Liu, Y.; Deng, S.; Fini, E.H. Transesterification of Waste Cooking Oil to Produce a Sustainable Rejuvenator for Aged Asphalt. Resour. Conserv. Recycl. 2021, 168, 105297. [Google Scholar] [CrossRef]
- Li, H.; Feng, Z.; Ahmed, A.T.; Yombah, M.; Cui, C.; Zhao, G.; Guo, P.; Sheng, Y. Repurposing waste oils into cleaner aged asphalt pavement materials: A critical review. J. Clean. Prod. 2022, 334, 130230. [Google Scholar] [CrossRef]
- Cao, X.X.; Cao, X.J.; Tang, B.M.; Wang, Y.Y.; Li, X.L. Investigation on possibility of waste vegetable oil rejuvenating aged asphalt. Appl. Sci. 2018, 8, 765. [Google Scholar] [CrossRef] [Green Version]
- Zaumanis, M.; Mallick, R.B.; Poulikakos, L.; Frank, R. Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures. Comput. Chem. Eng. 2014, 71, 538–550. [Google Scholar] [CrossRef]
- Autelitano, F.; Garilli, E.; Giuliani, F. Half-warm mix asphalt with emulsion. An experimental study on workability and mechanical performances. Transp. Res. Procedia 2021, 55, 1081–1089. [Google Scholar] [CrossRef]
- Pasandín, A.R.; Pérez, I.; Gómez-Meijide, B. Performance of high RAP half-warm mix asphalt. Sustainability 2020, 12, 10240. [Google Scholar] [CrossRef]
- Iwański, M.M. Effect of Hydrated Lime on Indirect Tensile Stiffness Modulus of Asphalt Concrete Produced in Half-Warm Mix Technology. Materials 2020, 13, 4731. [Google Scholar] [CrossRef]
- Jan, K.; Radziszewski, P.; Piłat, J.; Kowalski, K.J.; Matraszek, K.; Świerzewski, P.; Gorol, J. WMA technologies in the aspect of modifying the properties of asphalt binders. MMAC project. Part 2. Mag. Autostrady 2011, 7, 16–20. (In Polish) [Google Scholar]
- Yin, F.; Arámbula-Mercado, E.; Newcomb, D. Effect of laboratory foamer on asphalt foaming characteristics and foamed mixture properties. Int. J. Pavement Eng. 2017, 18, 358–366. [Google Scholar] [CrossRef]
- Maciejewski, K.; Chomicz-Kowalska, A.; Remisova, E. Effects of water-foaming and liquid warm mix additive on the properties and chemical composition of asphalt binders in terms of short term ageing process. Constr. Build. Mater. 2022, 341, 127756. [Google Scholar] [CrossRef]
- Maciejewski, K.; Ramiaczek, P.; Remisova, E. Effects of short-term ageing temperature on conventional and high-temperature properties of paving-grade bitumen with anti-stripping and wma additives. Materials 2021, 14, 6229. [Google Scholar] [CrossRef]
- Iwanski, M.M.; Chomicz-Kowalska, A.; Maciejewski, K. Impact of Additives on the Foamability of a Road Paving Bitumen. IOP Conf. Ser. Mater. Sci. Eng. 2019, 603, 042040. [Google Scholar] [CrossRef]
- Iwański, M.; Mazurek, G.; Buczyński, P.; Zapała-Sławeta, J. Multidimensional analysis of foaming process impact on 50/70 bitumen ageing. Constr. Build. Mater. 2021, 266, 121231. [Google Scholar] [CrossRef]
- Iwański, M.M.; Nemchinov, M.V. The Influence of Water Foaming and Ageing on the Properties of Bitumen 50/70. Mater. Sci. Forum 2022, 1073, 175–180. [Google Scholar] [CrossRef]
- Somé, S.C.; Gaudefroy, V.; Delaunay, D. Effect of vegetable oil additives on binder and mix properties: Laboratory and field investigation. Mater. Struct. Constr. 2016, 49, 2197–2208. [Google Scholar] [CrossRef]
- Rasman, M.; Hassan, N.A.; Hainin, M.R.; Jaya, R.P.; Haryati, Y.; Shukry, N.A.M.; Abdullah, M.E.; Kamaruddin, N.H.M. Engineering properties of bitumen modified with bio-oil. MATEC Web Conf. 2018, 250, 02003. [Google Scholar] [CrossRef]
- Pucułek, M.; Liphardt, A.; Radziszewski, P. Evaluation of the possibility of reduction of highly modified binders technological temperatures. Arch. Civ. Eng. 2021, 67, 557–570. [Google Scholar] [CrossRef]
- Król, J.B.; Kowalski, K.J.; Niczke, Ł.; Radziszewski, P. Effect of bitumen fluxing using a bio-origin additive. Constr. Build. Mater. 2016, 114, 194–203. [Google Scholar] [CrossRef]
- Plewa, A. Asphalt mixtures with binders fluidized by addition of vegetable origin oil for applications as flexible anti-crack layers. Roads Bridg. Drog. Most. 2019, 18, 181–192. [Google Scholar] [CrossRef]
- Kowalski, K.J.; Król, J.B.; Bańkowski, W.; Radziszewski, P.; Sarnowski, M. Thermal and fatigue evaluation of asphalt mixtures containing RAP treated with a bio-agent. Appl. Sci. 2017, 7, 216. [Google Scholar] [CrossRef] [Green Version]
- Piłat, J.; Gaweł, I.; Radziszewski, P.; Niczke, Ł.; Król, J.B.; Sarnowski, M. Cut-Back Asphalt and Method for Producing the Cut-Back Asphalt (Asfalt fluksowany i sposób wytwarzania asfaltu fluksowanego). Polish Patent No. PL 214138, 18 October 2012. [Google Scholar]
- Gawel, I.; Pilat, J.; Radziszewski, P.; Niczke, L.; Krol, J.; Sarnowski, M. Bitumen fluxes of vegetable origin. Polimery 2010, 55, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Król, J.B.; Niczke, Ł.; Kowalski, K.J. Towards understanding the polymerization process in Bitumen bio-fluxes. Materials 2017, 10, 1058. [Google Scholar] [CrossRef] [Green Version]
- Maciejewski, K.; Chomicz-Kowalska, A. Foaming Performance and FTIR Spectrometric Analysis of Foamed Bituminous Binders Intended for Surface Courses. Materials 2021, 14, 2055. [Google Scholar] [CrossRef]
- Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Radziszewski, P.; Liphardt, A.; Król, J.B.; Sarnowski, M.; Kowalski, K.J.; Pokorski, P. Warm Mix Asphalt Binder Utilizing Water Foaming and Fluxing Using Bio-Derived Agent. Materials 2022, 15, 8873. [Google Scholar] [CrossRef]
- Mouillet, V.; Lamontagne, J.; Durrieu, F.; Planche, J.-P.; Lapalu, L. Infrared microscopy investigation of oxidation and phase evolution in bitumen modified with polymers. Fuel 2008, 87, 1270–1280. [Google Scholar] [CrossRef]
- Xiaohu, L.; Isacsson, U. Chemical and rheological evaluation of ageing properties of sbs polymer modified bitumens. Fuel 1998, 77, 961–972. [Google Scholar] [CrossRef]
- Hofko, B.; Porot, L.; Cannone, A.F.; Poulikakos, L.; Huber, L.; Lu, X.; Mollenhauer, K.; Grothe, H. FTIR spectral analysis of bituminous binders: Reproducibility and impact of ageing temperature. Mater. Struct. 2018, 51, 45. [Google Scholar] [CrossRef]
- Feng, Z.G.; Wang, S.J.; Bian, H.J.; Guo, Q.L.; Li, X.J. FTIR and rheology analysis of aging on different ultraviolet absorber modified bitumens. Constr. Build. Mater. 2016, 115, 48–53. [Google Scholar] [CrossRef]
- Hung, A.M.; Goodwin, A.; Fini, E.H. Effects of water exposure on bitumen surface microstructure. Constr. Build. Mater. 2017, 135, 682–688. [Google Scholar] [CrossRef] [Green Version]
- Valcke, E.; Rorif, F.; Smets, S. Ageing of EUROBITUM bituminised radioactive waste: An ATR-FTIR spectroscopy study. J. Nucl. Mater. 2009, 393, 175–185. [Google Scholar] [CrossRef]
- Nivitha, M.R.; Prasad, E.; Krishnan, J.M. Transitions in unmodified and modified bitumen using FTIR spectroscopy. Mater. Struct. Constr. 2019, 52, 7. [Google Scholar] [CrossRef]
- Ding, H.; Hesp, S.A.M. Variable-temperature Fourier-transform infrared spectroscopy study of wax precipitation and melting in Canadian and Venezuelan asphalt binders. Constr. Build. Mater. 2020, 264, 120212. [Google Scholar] [CrossRef]
- Petersen, J.C. A Review of the Fundamentals of Asphalt Oxidation: Chemical, Physicochemical, Physical Property, and Durability Relationships. Transp. Res. Circ. 2009. Available online: https://trid.trb.org/view/902386 (accessed on 13 December 2022).
- Yut, I.; Zofka, A. Correlation between rheology and chemical composition of aged polymer-modified asphalts. Constr. Build. Mater. 2014, 62, 109–117. [Google Scholar] [CrossRef]
- Hofko, B.; Alavi, M.Z.; Grothe, H.; Jones, D.; Harvey, J. Repeatability and sensitivity of FTIR ATR spectral analysis methods for bituminous binders. Mater. Struct. Constr. 2017, 50, 187. [Google Scholar] [CrossRef] [Green Version]
- Torres, A.; Fuentes, B.; Rodríguez, K.E.; Brito, A.; Díaz, L. Analysis of the Content of Fatty Acid Methyl Esters in Biodiesel by Fourier-Transform Infrared Spectroscopy: Method and Comparison with Gas Chromatography. J. Am. Oil Chem. Soc. 2020, 97, 651–661. [Google Scholar] [CrossRef]
- Lu, Y.; Du, C.; Shao, Y.; Zhou, J. Characterization of rapeseed oil using FTIR-ATR spectroscopy. J. Food Sci. Eng. 2014, 4, 244–249. [Google Scholar]
- WT-2 2014; Asphalt Mixes. Technical Requirements. Appendix to Ordinance No. 54 of the General Director of National Roads and Highways. Generalna Dyrekcja Dróg Krajowych i Autostrad (General Directorate of National Roads and Highways): Warsaw, Poland, 2014.
- Silverstein, R.M.; Webster, F.X.; Kiemle, D.J. Spectrometric Identification of Organic Compounds; John Wiley & Sons: New York, NY, USA, 2005; ISBN 978-0-470-61637-6. [Google Scholar]
- Yao, H.; Dai, Q.; You, Z. Fourier Transform Infrared Spectroscopy characterization of aging-related properties of original and nano-modified asphalt binders. Constr. Build. Mater. 2015, 101, 1078–1087. [Google Scholar] [CrossRef]
- Masson, J.F.; Pelletier, L.; Collins, P. Rapid FTIR method for quantification of styrene-butadiene type copolymers in bitumen. J. Appl. Polym. Sci. 2001, 79, 1034–1041. [Google Scholar] [CrossRef]
- Porot, L.; Jellema, E.; Bell, D. Long Lasting Asphalt Materials with Highly Modified Asphaltic Binder. In Lecture Notes in Civil Engineering, Proceedings of the 9th International Conference on Maintenance and Rehabilitation of Pavements—Mairepav9, Zurich, Switzerland, 1–3 July 2020; Springer: Cham, Switzerland, 2020; pp. 517–527. [Google Scholar]
- Zofka, A.; Maliszewska, D.; Maliszewski, M.; Boratyński, J. Application of FTIR ATR method to examine the polymer content in the modified bitumen and to assess susceptibility of bitumen to ageing. Roads Bridg. Drog. Most. 2015, 14, 163–174. [Google Scholar] [CrossRef]
- Schrader, B. (Ed.) Infrared and Raman Spectroscopy: Methods and Applications; VCH: Vancouver, BC, Canada, 1995; Volume 380, ISBN 3-527-26446-9. [Google Scholar]
- Camargo, I.G.D.N.; Hofko, B.; Mirwald, J.; Grothe, H. Effect of thermal and oxidative aging on asphalt binders rheology and chemical composition. Materials 2020, 13, 4438. [Google Scholar] [CrossRef]
- Curtis, C.W.; Hanson, D.I.; Chen, S.T.; Shieh, G.J.; Ling, M. Quantitative determination of polymers in asphalt cements and hot-mix asphalt mixes. Transp. Res. Rec. 1995, 52–61. Available online: https://trid.trb.org/view/452531 (accessed on 13 December 2022).
- Lamontagne, J. Comparison by Fourier transform infrared (FTIR) spectroscopy of different ageing techniques: Application to road bitumens. Fuel 2001, 80, 483–488. [Google Scholar] [CrossRef]
- Nasrazadani, S.; Mielke, D.; Springfield, T.; Ramasamy, N. Practical Applications of FTIR to Characterize Paving Materials; Technical Report 0-5608-1; University of North Texas: Denton, TX, USA, 2009. [Google Scholar]
- Fernández-Berridi, M.J.; González, N.; Mugica, A.; Bernicot, C. Pyrolysis-FTIR and TGA techniques as tools in the characterization of blends of natural rubber and SBR. Thermochim. Acta 2006, 444, 65–70. [Google Scholar] [CrossRef]
Property | Unit of Measurement | Base Asphalt Binders | Testing Method | ||||
---|---|---|---|---|---|---|---|
20/30 | 50/70 | 25/55–60 | 45/80–55 | 45/80–80 | |||
Penetration at 25 °C | 0.1 mm | 26 | 65 | 40 | 71 | 75 | EN 1426 |
Softening point | °C | 62.00 | 48.2 | 63.4 | 57.8 | 95.5 | EN 1427 |
Fraass breaking point | °C | −11 | −13 | −13 | −18 | −22 | EN 12593 |
Dynamic viscosity at 135 °C | Pa·s | 1.38 | 0.45 | 1.70 | 1.11 | 2.81 | EN 13702-2 |
Dynamic viscosity at 135 °C after RTFOT | Pa·s | 2.31 | 0.65 | 2.51 | 1.51 | 3.77 | EN 13702-2 |
Elastic recovery after RTFOT | % | - | - | 65 | 83 | 92 | EN 13398 |
Property | Rapeseed Methyl Esters, RME |
---|---|
Iodine number, g I2/100 g | ≥100 |
Viscosity at 25 °C, Pa· | ≤0.008 |
Acid number, mg KOH/g | ≤0.50 |
Flashpoint, °C | ≥180 |
Reference Calculation Approach | Wavenumbers (cm−1) | Asphalt Binder | Area, Mean (-) | max−min (-) | Standard Deviation (-) | Coefficient of Variance (%) |
---|---|---|---|---|---|---|
(1) Aliphatic group | 1525–1350 * [63] | 20/30 | 7.815 | 0.520 | 0.066 | 0.85% |
25/55–60 | 7.886 | 0.748 | 0.107 | 1.36% | ||
50/70 | 7837 | 0.242 | 0.048 | 0.61% | ||
45/80–55 | 7.876 | 0.455 | 0.084 | 1.06% | ||
45/80–80 | 7.990 | 0.595 | 0.212 | 2.65% | ||
(2) Sum of peaks | 2000–600 * [58] | 20/30 | 10.734 | 0.623 | 0.180 | 1.68% |
25/55–60 | 10.643 | 1.131 | 0.218 | 2.05% | ||
50/70 | 10.579 | 0.693 | 0.167 | 1.58% | ||
45/80–55 | 10.473 | 0.840 | 0.213 | 2.04% | ||
45/80–80 | 10.357 | 1.224 | 0.340 | 3.28% | ||
(3) Sum of peaks | 2953–699 * [52] | 20/30 | 50.863 | 1.065 | 0.162 | 0.32% |
25/55–60 | 51.184 | 0.779 | 0.185 | 0.36% | ||
50/70 | 51.022 | 0.625 | 0.132 | 0.26% | ||
45/80–55 | 51.207 | 0.996 | 0.205 | 0.40% | ||
45/80–80 | 51.635 | 1.331 | 0.394 | 0.76% |
Chemical Index | Chemical Bond, Excitation Mode | Peak Wavenumber (Absorption Band), cm−1 | Chemical Index Expression: |
---|---|---|---|
Ester (bio-flux indicator) | C=O, stretching | 1741 (1755–1730) | |
Carbonyl (ketones) | C=O, stretching | 1700 (1715–1664) | |
Sulfoxide | S=O, stretching | 1030 (1045–986) |
Asphalt Binder | 20/30 | 25/55–60 | 50/70 | 45/80–55 | 45/80–80 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Model Parameters: IC=O | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value |
Intercept: | 0.3838 | <0.001 | 0.2839 | <0.001 | 0.2430 | <0.001 | 0.2389 | <0.001 | 0.2170 | <0.001 |
Bio-flux additive: | −0.0644 | <0.001 | −0.0201 | <0.001 | −0.0312 | <0.001 | −0.0378 | <0.001 | −0.0483 | <0.001 |
Ageing: | ||||||||||
RTFOT | 0.0524 | <0.001 | 0.1618 | <0.001 | 0.1297 | <0.001 | 0.1400 | <0.001 | 0.2296 | <0.001 |
PAV | 0.2987 | <0.001 | 0.3616 | <0.001 | 0.3381 | <0.001 | 0.3575 | <0.001 | 0.3953 | <0.001 |
Bio-flux | ||||||||||
additive * ageing: | ||||||||||
RTFOT | 0.0479 | <0.001 | −0.0081 | <0.001 | 0.0133 | <0.001 | 0.0111 | <0.001 | −0.0044 | <0.001 |
PAV | 0.0461 | <0.001 | 0.0141 | <0.001 | 0.0154 | <0.001 | 0.0238 | <0.001 | 0.0337 | <0.001 |
Adj. R2 | 0.9826 | 0.9536 | 0.9795 | 0.9869 | 0.9577 |
Asphalt Binder | 20/30 | 25/55–60 | 50/70 | 45/80–55 | 45/80–80 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Model Parameters: IS=O | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value |
Intercept | 0.3395 | <0.001 | 0.2930 | <0.001 | 0.3167 | <0.001 | 0.2978 | <0.001 | 0.3849 | <0.001 |
Bio-flux additive | 0.0054 | 0.527 | 0.0271 | 0.001 | 0.0084 | 0.051 | 0.0162 | 0.026 | 0.0068 | <0.001 |
Ageing: | ||||||||||
RTFOT | 0.2294 | <0.001 | 0.2406 | <0.001 | 0.2219 | <0.001 | 0.2190 | <0.001 | 0.2302 | <0.001 |
PAV | 0.4596 | <0.001 | 0.5286 | <0.001 | 0.6085 | <0.001 | 0.5365 | <0.001 | 0.6779 | <0.001 |
Bio-flux | ||||||||||
additive * ageing: | ||||||||||
RTFOT | −0.0049 | 0.675 | −0.0185 | 0.073 | −0.0006 | 0.913 | −0.0058 | 0.558 | −0.0114 | 0.123 |
PAV | 0.0095 | 0.412 | 0.0068 | 0.514 | 0.0106 | 0.078 | 0.0106 | 0.303 | −0.0036 | 0.626 |
Adj. R2 | 0.9721 | 0.9843 | 0.9963 | 0.9846 | 0.9952 |
Asphalt Binder | 20/30 | 25/55–60 | 50/70 | 45/80–55 | 45/80–80 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Model Parameters: IBio | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value | Effect Estimate | p-Value |
Intercept | −0.0935 | 0.059 | −0.0339 | 0.206 | 0.0060 | 0.755 | 0.0123 | 0.360 | −0.0025 | 0.821 |
Bio-flux additive | 0.0256 | <0.001 | 0.3277 | <0.001 | 0.3151 | <0.001 | 0.3224 | <0.001 | 0.3408 | <0.001 |
Ageing: | ||||||||||
RTFOT | 0.0410 | 0.523 | 0.0134 | 0.706 | −0.0426 | 0.125 | −0.0251 | 0.171 | −0.0245 | 0.127 |
PAV | 0.0941 | 0.153 | 0.0168 | 0.653 | −0.0450 | 0.100 | −0.0386 | 0.068 | −0.0150 | 0.346 |
Bio-flux | ||||||||||
additive * ageing: | ||||||||||
RTFOT | −0.1926 | <0.001 | −0.1591 | <0.001 | −0.0791 | <0.001 | −0.1164 | <0.001 | −0.1194 | <0.001 |
PAV | −0.3744 | <0.001 | −0.2241 | <0.001 | −0.1414 | <0.001 | −0.1716 | <0.001 | −0.1914 | <0.001 |
Adj. R2 | 0.9314 | 0.9649 | 0.9827 | 0.9923 | 0.9946 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwański, M.; Chomicz-Kowalska, A.; Maciejewski, K.; Iwański, M.M.; Radziszewski, P.; Liphardt, A.; Król, J.B.; Sarnowski, M.; Kowalski, K.J.; Pokorski, P. Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders. Materials 2023, 16, 513. https://doi.org/10.3390/ma16020513
Iwański M, Chomicz-Kowalska A, Maciejewski K, Iwański MM, Radziszewski P, Liphardt A, Król JB, Sarnowski M, Kowalski KJ, Pokorski P. Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders. Materials. 2023; 16(2):513. https://doi.org/10.3390/ma16020513
Chicago/Turabian StyleIwański, Marek, Anna Chomicz-Kowalska, Krzysztof Maciejewski, Mateusz M. Iwański, Piotr Radziszewski, Adam Liphardt, Jan B. Król, Michał Sarnowski, Karol J. Kowalski, and Piotr Pokorski. 2023. "Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders" Materials 16, no. 2: 513. https://doi.org/10.3390/ma16020513
APA StyleIwański, M., Chomicz-Kowalska, A., Maciejewski, K., Iwański, M. M., Radziszewski, P., Liphardt, A., Król, J. B., Sarnowski, M., Kowalski, K. J., & Pokorski, P. (2023). Effects of Laboratory Ageing on the FTIR Measurements of Water-Foamed Bio-Fluxed Asphalt Binders. Materials, 16(2), 513. https://doi.org/10.3390/ma16020513