Chitin-Derived Nanocatalysts for Reductive Amination Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Equipment
2.2. Synthesis of Supported Palladium Nanoparticles on Chitin-Derived N-Doped Carbonaceous Materials
2.3. Material Characterization
2.4. Typical CF-Reductive Amination Reaction and Products Analysis
3. Results and Discussion
3.1. Synthetic Approach
3.2. Materials Characterization
3.3. Catalytic Activity
Influence of Temperature and Pressure
3.4. Catalyst Stability
3.5. Reaction Pathway
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roy, S.; Kumar, P.; Chhunji, K.; Singh, A.; Jacob, S.; Chandra, R. Recent Nanobiotechnological Advancements in Lignocellulosic Biomass Valorization: A Review. J. Environ. Manag. 2021, 297, 113422. [Google Scholar] [CrossRef]
- Song, B.; Lin, R.; Ho, C.; Wu, H.; Tsui, T.; Yu, Y. Recent Advances and Challenges of Inter-Disciplinary Biomass Valorization by Integrating Hydrothermal and Biological Techniques. Renew. Sustain. Energy Rev. 2021, 135, 110370. [Google Scholar] [CrossRef]
- Vinícius, S.; Augusto, D.; Pacheco, D.J.; Schwengber, C.; Caro, D. The Missing Link of Circularity in Small Breweries ’ Value Chains: Unveiling Strategies for Waste Management and Biomass Valorization. J. Clean. Prod. 2022, 336, 130275. [Google Scholar] [CrossRef]
- Polidoro, D.; Perosa, A.; Selva, M. Tunable Multi-Phase System for Highly Chemo-Selective Oxidation of Hydroxymethyl-Furfural. ChemSusChem 2022, 15, e202201059. [Google Scholar] [CrossRef]
- Bellè, A.; Kusada, K.; Kitagawa, H.; Perosa, A.; Castoldi, L.; Polidoro, D.; Selva, M. Carbon-Supported WO x–Ru-Based Catalysts for the Selective Hydrogenolysis of Glycerol to 1,2-Propanediol. Catal. Sci. Technol. 2022, 12, 259–272. [Google Scholar] [CrossRef]
- Rodríguez-Padrón, D.; Puente-Santiago, A.R.; Balu, A.M.; Muñoz-Batista, M.J.; Luque, R. Environmental Catalysis: Present and Future. ChemCatChem 2019, 11, 18–38. [Google Scholar] [CrossRef]
- Polidoro, D.; Perosa, A.; Barbaro, E.; Feltracco, M.; Argiriadis, E.; Selva, M. Multiphase Hydrogenation of d -Glucosamine Hydrochloride, N-Acetyl- d -Glucosamine, d -Glucose, and d -Maltose over Ru/C with Integrated Catalyst Recovery. ACS Sustain. Chem. Eng. 2022, 10, 2844–2858. [Google Scholar] [CrossRef]
- Rigo, D.; Polidoro, D.; Perosa, A.; Selva, M. Diversified Upgrading of HMF via Acetylation, Aldol Condensation, Carboxymethylation, Vinylation and Reductive Amination Reactions. Mol. Catal. 2021, 514, 111838. [Google Scholar] [CrossRef]
- Luque, R. Recent Catalytic Routes for the Preparation and the Upgrading of Biomass Derived Furfural. Chem. Soc. Rev. 2020, 49, 4273–4306. [Google Scholar] [CrossRef]
- Altuğ, C.; Muñoz-Batista, M.J.; Rodríguez-Padrón, D.; Balu, A.M.; Romero, A.A.; Luque, R. Continuous flow synthesis of amines from the cascade reactions of nitriles and carbonyl-containing compounds promoted by Pt-modified titania catalysts. Green Chem. 2019, 21, 300–306. [Google Scholar] [CrossRef]
- Ronda-leal, M.; Espro, C.; Lazaro, N.; Selva, M.; Perosa, A.; Osman, S.M. Efficient and Stable Titania-Based Nanocatalytic Materials for the Reductive Amination of Furfural. Mater. Today Chem. 2022, 24, 100873. [Google Scholar] [CrossRef]
- Polidoro, D.; Espro, C.; Lazaro, N.; Trentin, O.; Perosa, A.; Luque, R.; Selva, M.; Osman, S.M.; Rodríguez-padr, D. Catalytic Screening of the Cascade Reductive Amination Reaction of Furfural and Acetonitrile. Catal. Today 2022, in press. [CrossRef]
- Schlögl, R. Catalytic Synthesis of Ammonia—A “Never-Ending Story”? Angew. Chemie-Int. Ed. 2003, 42, 2004–2008. [Google Scholar] [CrossRef]
- Guan, Y.; Chaffart, D.; Liu, G.; Tan, Z.; Zhang, D.; Wang, Y.; Li, J.; Ricardez-sandoval, L. Machine Learning in Solid Heterogeneous Catalysis: Recent Developments, Challenges and Perspectives. Chem. Eng. Sci. 2022, 248, 117224. [Google Scholar] [CrossRef]
- Vogt, C.; Weckhuysen, B.M. The Concept of Active Site in Heterogeneous Catalysis. Nat. Rev. Chem. 2022, 6, 89–111. [Google Scholar] [CrossRef]
- Mukhtar, A.; Saqib, S.; Lin, H.; Ul, M.; Shah, H.; Ullah, S.; Younas, M.; Rezakazemi, M.; Ibrahim, M.; Mahmood, A.; et al. Current Status and Challenges in the Heterogeneous Catalysis for Biodiesel Production. Renew. Sustain. Energy Rev. 2022, 157, 112012. [Google Scholar] [CrossRef]
- Polidoro, D.; Perosa, A.; Rodríguez-Castellón, E.; Canton, P.; Castoldi, L.; Rodríguez-Padrón, D.; Selva, M. Metal-Free N-Doped Carbons for Solvent-Less CO2 Fixation Reactions: A Shrimp Shell Valorization Opportunity. ACS Sustain. Chem. Eng. 2022, 10, 13835–13848. [Google Scholar] [CrossRef]
- Xiong, M.; Gao, Z.; Qin, Y. Spillover in Heterogeneous Catalysis: New Insights and Opportunities. ACS Catal. 2021, 11, 3159–3172. [Google Scholar] [CrossRef]
- Rangraz, Y.; Heravi, M.M. Recent advances in metal-free heteroatom-doped carbon heterogonous catalysts. RSC Adv. 2021, 11, 23725–23778. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.; Lim, J.S.; Kim, J.H.; Joo, S.H. Heteroatom-doped carbon-based oxygen reduction electrocatalysts with tailored four-electron and two-electron selectivity. Chem. Commun. 2021, 57, 7350–7361. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ji, S.; Liu, Y.; Cao, X.; Tian, S.; Chen, Y.; Niu, Z.; Li, Y. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem. Rev. 2020, 120, 623–682. [Google Scholar] [CrossRef] [PubMed]
- Samikannu, A.; Konwar, L.J.; Mäki-Arvela, P.; Mikkola, J.P. Renewable N-Doped Active Carbons as Efficient Catalysts for Direct Synthesis of Cyclic Carbonates from Epoxides and CO2. Appl. Catal. B Environ. 2019, 241, 41–51. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, S.; Geng, J.; Wang, G. Cobalt Single Atom Catalysts for the efficient Electrosynthesis of Hydrogen Peroxide. Inorg. Chem. Front. 2021, 8, 2829–2834. [Google Scholar] [CrossRef]
- Liu, H.; Fu, J.; Li, H.; Sun, J.; Liu, X.; Qiu, Y. Applied Catalysis B: Environmental Single Palladium Site in Ordered Porous Heteroatom-Doped Carbon for High-Performance Alkaline Hydrogen Oxidation. Appl. Catal. B Environ. 2022, 306, 121029. [Google Scholar] [CrossRef]
- Huang, Y.; Yan, H.; Zhang, C.; Wang, Y.; Wei, Q.; Zhang, R. Interfacial Electronic Effects in CO@N-Doped Carbon Shells Heterojunction Catalyst for Semi-Hydrogenation of Phenylacetylene. Nanomaterials 2021, 11, 2776. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Wang, Z.; Hu, L.; Du, X.; Wu, Z.; Strømme, M.; Zhang, Q.; Xu, C. Dual-functional ionic porous organic framework for palladium scavenging and heterogeneous catalysis. Nanoscale 2021, 13, 3967–3973. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, L.; Zhao, B.; Huang, L.; Yu, S.; Ragauskas, A.J. Journal of Colloid and Interface Science Highly Selective Hydrogenation of Phenol to Cyclohexanone over a Pd-Loaded N-Doped Carbon Catalyst Derived from Chitosan. J. Colloid Interface Sci. 2022, 605, 82–90. [Google Scholar] [CrossRef]
- Caballero, A.; Xu, C.; Puente-santiago, A.R.; Rodr, D.; Balu, A.M.; Romero, A.A.; Mun, M.J.; Luque, R. Controllable Design of Polypyrrole-Iron Oxide Nanocoral Architectures for Supercapacitors with Ultrahigh Cycling Stability. ACS Appl. Energy Mater. 2019, 2, 2161–2168. [Google Scholar] [CrossRef]
- Gilkey, M.J.; Xu, B. Heterogeneous Catalytic Transfer Hydrogenation as an effective Pathway in Biomass Upgrading. ACS Catal. 2016, 6, 1420–1436. [Google Scholar] [CrossRef]
Material | SBET (m2/g) a | DBJH (nm) b | VBJH (cm3/g) c | Pd Concentration/mg g−1 d | Pd Concentration/wt.% e |
---|---|---|---|---|---|
N/C | 320 | 3.9 | 0.35 | N.D. f | N.D. f |
Pd-N/Ca | 300 | 4.3 | 0.25 | 7.1 | 6.0 |
Pd-N/Cb | 311 | 4.0 | 0.28 | 6.9 | 5.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polidoro, D.; Rodriguez-Padron, D.; Perosa, A.; Luque, R.; Selva, M. Chitin-Derived Nanocatalysts for Reductive Amination Reactions. Materials 2023, 16, 575. https://doi.org/10.3390/ma16020575
Polidoro D, Rodriguez-Padron D, Perosa A, Luque R, Selva M. Chitin-Derived Nanocatalysts for Reductive Amination Reactions. Materials. 2023; 16(2):575. https://doi.org/10.3390/ma16020575
Chicago/Turabian StylePolidoro, Daniele, Daily Rodriguez-Padron, Alvise Perosa, Rafael Luque, and Maurizio Selva. 2023. "Chitin-Derived Nanocatalysts for Reductive Amination Reactions" Materials 16, no. 2: 575. https://doi.org/10.3390/ma16020575
APA StylePolidoro, D., Rodriguez-Padron, D., Perosa, A., Luque, R., & Selva, M. (2023). Chitin-Derived Nanocatalysts for Reductive Amination Reactions. Materials, 16(2), 575. https://doi.org/10.3390/ma16020575