The Use of PCB Scrap in the Reduction in Metallurgical Copper Slags
Abstract
:1. Introduction
2. Materials and Methods
- Preparation of PCB waste for the reduction process.
- Conducting thermogravimetric tests of selected fractions of PCB waste.
- Conducting reductive remelting of copper slags with the use of PCB waste reducer.
- Remove all capacitors from materials.
- Guillotine cutting of motherboards into fragments smaller than 4 × 4 cm.
- Grinding the obtained mainboard fragments on a Schröder grinder.
- Classification of the fragmented material into four material fractions with a grain size of: <1.6 mm, 1.6 ÷ 3.15 mm, 3.15 ÷ 6.3 mm, >6.3 mm, respectively.
- weight of the reducer 10, 15 and 30 g,
- duration of the reduction process 1, 2, 3 and 4.5 h,
- electronic scrap grain fraction.
3. Research Results and Their Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, Z.; Li, J.; Zhang, H. Printed circuits board recycling: A state-of-the-art survey. IEEE Trans. Electron. Packag. Manuf. 2004, 27, 33–42. [Google Scholar] [CrossRef]
- Vasile, C.; Brebu, M.A.; Totolin, M.; Yanik, J.; Karayildirim, T.; Darie, H. Feedstock Recycling from the Printed Circuit Boards of Used Computers. Energy Fuels 2008, 22, 1658–1665. [Google Scholar] [CrossRef]
- Hino, T.; Agawa, R.; Moriya, Y.; Nishida, M.; Tsugita, Y.; Araki, T. Techniques to separate metal from waste printed circuit boards from discarded personal computers. J. Matter Cycles Waste Manag. 2009, 11, 42–54. [Google Scholar] [CrossRef]
- Zhou, G.; Luo, Z.; Zhai, X. Experimental Study on Metal Recycling from Waste PCB. In Proceedings of the International Conference on Sustainable Solid Waste Management, Chennai, India, 5–7 September 2007; pp. 155–162. [Google Scholar]
- Hageluken, C. Metals Recovery from e-scrap in a global environment. Technical capabilities, challenges & experience gained. Umicore PMR. In Proceedings of the 6th Session of OEWG Basel Convention, Geneva, Switzerland, 7 September 2007. [Google Scholar]
- Kim, B.; Lee, J.; Seo, S.; Park, Y.; Sohn, H. A process for extracting precious metals from spent printed circuit boards and automobile catalysts. JOM 2004, 56, 55–58. [Google Scholar] [CrossRef]
- Kogan, V. Process for the Recovery of Precious Metals Scrap by Means of Hydrometallurgical Technique. Patent Application WO 6006/013568 A3, 9 February 2006. [Google Scholar]
- Shuey, S.A.; Vildal, E.E.; Taylor, P.R. Pyrometallurgical Processing of Electronic Waste. In Proceedings of the SME Annual Meeting, St. Louis, MO, USA, 27–29 March 2006; pp. 6–37. [Google Scholar]
- Zhang, S.; Forssberg, E. Intelligent liberation and classification of electronic scrap. Powder Technol. 1999, 105, 295–301. [Google Scholar] [CrossRef]
- Iji, M.; Yokoyama, S. Recycling of printed wiring boards with mounted electronic components. Inst. Electr. Electron. Eng. 1997, 23, 10–15. [Google Scholar] [CrossRef]
- Zhao, Y.; Wen, X.; Li, B.; Tao, D. Recovery of copper from waste printed circuit boards. Min. Metall. Explor. 2004, 21, 99–102. [Google Scholar] [CrossRef]
- Ogunniyi, I.O.; Vermaak, M.K.G.; Groot, D.R. Chemical composition and liberation characterization of printed circuit board comminution fines for beneficiation investigations. Waste Manag. 2009, 29, 2140–2146. [Google Scholar] [CrossRef] [Green Version]
- Regel-Rosocka, M. Electronic wastes. Phys. Sci. Rev. 2018, 3, 121–156. [Google Scholar]
- Cui, J.; Zhang, L. Metallurgical recovery of metals from electronic waste: A review. J. Hazard. Mater. 2008, 158, 228–256. [Google Scholar] [CrossRef]
- Hagelüken, C. Recycling of electronic scrap at Umicore’s integrated metals smelter and refinery. World Metall.—ERZMETALL. 2006, 59, 152–161. [Google Scholar]
- Rocchetti, L.; Vegliò, F.; Kopacek, B.; Beolchini, F. Environmental impact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant. Environ. Sci. Technol. 2013, 47, 1581–1588. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, L.; Giovanardi, R.; Lancellotti, I.; Michelazzi, M. A new environmentally friendly process for the recovery of gold from electronic waste. Environ. Chem. Lett. 2010, 8, 171–178. [Google Scholar] [CrossRef]
- Bizzo, W.A.; Figueiredo, R.A.; Valdelis, F. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation. Materials 2014, 7, 4555–4566. [Google Scholar] [CrossRef]
- Birloaga, I.; Vegliò, F. Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. J. Environ. Chem. Eng. 2016, 4, 20–29. [Google Scholar] [CrossRef]
- Behnamfard, A.; Salarirad, M.M.; Veglio, F. Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Manag. 2013, 33, 2354–2363. [Google Scholar] [CrossRef]
- Yang, J.; Retegan, T.; Ekberg, C. Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy 2013, 137, 68–77. [Google Scholar] [CrossRef]
- Yang, J.; Ekberg, C.; Retegan, T. Optimization of indium recovery and separation from LCD waste by solvent extraction with bis(2-ethylhexyl)phosphate (D2EHPA). Int. J. Chem. Eng. 2014, 2014, 186768. [Google Scholar] [CrossRef] [Green Version]
- Virolainen, S.; Ibana, D.; Paatero, E. Recovery of indium from indium-tin-oxide by solvent extraction. Hydrometallurgy 2011, 107, 56–61. [Google Scholar] [CrossRef]
- Li, J.; Gao, S.; Duan, H.; Liu, L. Recovery of valuable materials from waste liquid crystal display panel. Waste Manag. 2009, 29, 2033–2039. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, J.; Zhou, B.; Yao, S.; Li, H.; Xu, W. Synthesis of coated solvent impregnated resin for the adsorption of indium (III). Hydrometallurgy 2010, 101, 148–155. [Google Scholar] [CrossRef]
- Wei, S.; Liu, J.; Zhang, S.; Chen, X.; Liu, Q.; Zhu, L.; Guo, L.; Liu, X. Stoichiometry, isotherms and kinetics of adsorption of In(III) on Cyanex 923 impregnated HZ830 resin from hydrochloric acid solutions. Hydrometallurgy 2016, 164, 219–227. [Google Scholar] [CrossRef]
- Syed, S. A green technology for recovery of gold from non-metallic secondary sources. Hydrometallurgy 2006, 82, 48–53. [Google Scholar] [CrossRef]
- Hyk, W.; Kitka, K. Highly efficient and selective leaching of silver from electronic scrap in the base-activated persulfate-ammonia system. Waste Manag. 2017, 60, 601–608. [Google Scholar] [CrossRef]
- Akcil, A.; Erust, C.; Gahan, C.S.; Ozgun, M.; Sahin, M.; Tuncuk, A. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants—A review. Waste Manag. 2015, 45, 258–271. [Google Scholar] [CrossRef] [PubMed]
- Hilson, G.; Monhemius, A.J. Alternatives to cyanide in the gold mining industry: What prospects for the future. J. Clean. Prod. 2006, 14, 1158–1167. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, Z. A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. J. Clean. Prod. 2016, 127, 19–36. [Google Scholar] [CrossRef]
- Zhang, W.; Ren, J.; Liu, S.; Yuan, Z. Mechanism and clean procedure to extract gold from printed circuit board. Procedia Environ. Sci. 2016, 31, 171–177. [Google Scholar] [CrossRef] [Green Version]
- Silveira, A.V.M.; Fuchs, M.S.; Pinheiro, D.K.; Tanabe, E.H.; Bertuol, D.A. Recovery of indium from LCD screens of discarded cell phones. Waste Manag. 2015, 45, 334–342. [Google Scholar] [CrossRef]
- Grimes, S.M.; Yasri, N.G.; Chaudhary, A.J. Recovery of critical metals from dilute leach solutions-separation of indium from tin and lead. Inorg. Chim. Acta 2017, 461, 161–166. [Google Scholar] [CrossRef]
- Chen, W.S.; Wang, Y.C.; Chiu, K.L. The separation and recovery of indium, gallium, and zinc from spent GZO(IGZO) targets. J. Environ. Chem. Eng. 2017, 5, 381–390. [Google Scholar] [CrossRef]
- Argenta, A.B.; Reis, C.M.; Mello, G.P.; Dotto, G.L.; Tanabe, E.H.; Bertuol, D.A. Supercritical CO2 extraction of indium present in liquid crystal displays from discarded cell phones using organic acids. J. Supercrit. Fluids 2017, 120, 95–101. [Google Scholar] [CrossRef]
- Kato, T.; Igarashi, S.; Ishiwatari, Y.; Furukawa, M.; Yamaguchi, H. Separation and concentration of indium from a liquid crystal display via homogeneous liquid–liquid extraction. Hydrometallurgy 2013, 137, 148–155. [Google Scholar] [CrossRef]
- Gorai, B.; Jana, R.K. Characteristics and Utilization of Copper Slag. Resour. Conserv. Recycl. 2002, 39, 299–313. [Google Scholar] [CrossRef]
- Heo, J.; Kim, B.; Park, J.H. Effect of CaO Addition on Iron Recovery from Copper Smelting Slags by Carbon. Metall. Mater. Trans. B-Proc. 2013, 44, 1352–1363. [Google Scholar] [CrossRef]
- Erdenebold, U.; Choi, M.H.; Wang, J.P. Recovery of pig iron from coper smelting slag by reduction smelting. Arch. Metall. Mater. 2018, 63, 1793–1798. [Google Scholar]
- Seo, K.; Fruehan, R.J. Reduction of FeO in Slag with Coal Char. ISIJ Int. 2000, 40, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Siwiec, G.; Sozańska, M.; Blacha, L.; Smalcerz, A. Behaviour of iron during reduction of slag obtained from copper flash smelting. Metalurgija 2015, 54, 113–115. [Google Scholar]
- Łabaj, J.; Blacha, L.; Jodkowski, M.; Smalcerz, A.; Fröhlichová, M.; Findorak, R. The use of waste carbonaceous material in the process of cooper slag reduction. J. Clean. Prod. 2021, 288, 1–10. [Google Scholar] [CrossRef]
- Blacha, L.; Łabaj, J.; Jodkowski, M.; Smalcerz, A. Research on the reduction of copper slag using an alternative coal range. Metalurgija 2020, 59, 329–333. [Google Scholar]
- Nagasaka, T.; Hino, M.; Ban-Ya, S. Interfacial kinetics of hydrogen with liquid slag containing iron oxide. Metall. Mater. Trans. B-Proc. 2000, 31, 945–955. [Google Scholar] [CrossRef]
- Utigard, T.; Sanchez, G.; Manriquez, J. Reduction kinetics of liquid iron oxide-containing slags by carbon monoxide. Metall. Mater. Trans. B-Proc. 1997, 28, 821–826. [Google Scholar] [CrossRef]
- Tarasov, A.V.; Klushin, S.D. Removal of Copper from Slag with the Aid of Reducing and Sulfiding Gas Mixtures. In Proceedings of the 4th International Symposium on Recycling of Metals and Engineered Materials, Warrendale, PA, USA, 22–25 October 2000; pp. 493–503. [Google Scholar]
- Zhou, S.; Wei, Y.; Li, B.; Wang, H. Cleaner recycling of iron from waste copper slag by using walnut shell char as green reductant. J. Clean. Prod. 2019, 217, 423–431. [Google Scholar] [CrossRef]
- Zhou, S.; Wei, Y.; Zhang, S.; Li, B.; Wang, H.; Yang, Y.; Barati, M. Reduction of copper smelting slag using waste cooking oil. J. Clean. Prod. 2019, 236. [Google Scholar] [CrossRef]
- Li, B.; Wei, Y.; Wang, H.; Yang, Y. Reduction of magnetite from copper smelting slag using petrodiesel and biodiesel. ISIJ Int. 2018, 58, 1168–1174. [Google Scholar] [CrossRef]
- Qu, G.; Wei, Y.; Li, B.; Wang, H.; Yang, Y. Mclean, A. Recovery of Copper Smelting Slag Using a Green Reductant. In 11th International Symposium on High-Temperature Metallurgical Processing; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2020; pp. 417–429. [Google Scholar] [CrossRef]
- Zuo, Z.; Yu, Q.; Wei, M.; Xie, H.; Duan, W.; Wang, K.; Qin, Q. Thermogravimetric study of the reduction of copper slag by biomass. J. Therm. Anal. Calorim. 2016, 126, 481–491. [Google Scholar] [CrossRef]
- Zuo, Z.; Yu, Q.; Xie, H.; Qin, Q.; Wei, M. Direct Reduction of Copper Slag Composite Pellets Within Lignite Using Biomass as Binder. In Energy Technology 2018; The Minerals, Metals & Materials Series; Springer: Cham, Switzerland, 2018; pp. 65–75. [Google Scholar] [CrossRef]
- Zuo, Z.; Yu, Q.; Luo, S.; Zhang, J.; Zhou, E. Effect of Two-Step Reduction Characteristics of Copper Slag Using Biochar as Reducer-Thermodynamic and Kinetics. Energy Fuels 2020, 34, 491–500. [Google Scholar] [CrossRef]
- Moltó, J.; R. Font, R.; Gálvez, A.; Conesa, J.A. Pyrolysis and combustion of electronic wastes. J. Anal. Appl. Pyrolysis 2009, 84, 68–78. [Google Scholar] [CrossRef] [Green Version]
- Ortuno, N.; Molto, J.; Egea, S.; Font, R.; Conesa, J. Thermogravimetric study of the decomposition of printed circuit boards from mobile phones. J. Anal. Appl. Pyrolysis 2013, 103, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Kowalska, E.; Radomska, J.; Konarski, P.; Diduszko, R.; Oszczudłowski, J.; Opalińska, T.; Więch, M.; Duszyc, Z. Thermogravimetric investigation of wastes from electrical and electronic equipment (WEEE). J. Therm. Anal. Calorim. 2006, 86, 137–140. [Google Scholar] [CrossRef]
- HSC Chemistry ver. 6.1. Outocumpu Research Oy. Pori. Available online: http://www.hsc-chemistry.net/ (accessed on 13 November 2022).
- Kucharski, M. Solubility of copper in Outokumpu slag. Met. Technol. 1979, 6, 354–356. [Google Scholar] [CrossRef]
- Chychko, A.; Teng, L.; Seetharaman, S. Energy saving effect of slag foaming by carbonate additions in EAF process. Arch. Metall. Mater. 2004, 55, 178–180. [Google Scholar] [CrossRef]
- Busolic, D.; Parada, F.; Parra, R.; Sanchez, M.; Palacios, J.; Hino, M. Recovery of iron from copper flash smelting slags. Miner. Process. Extr. Metall. 2011, 120, 32–36. [Google Scholar] [CrossRef]
- Pomianek, T.; Adamkiewicz, L.; Bratek, S. Analiza termodynamiczna procesu odmiedziowania żużla z pieca zawiesinowego. Prace Inst. Met. Nieżel. 1980, 9, 5–11. [Google Scholar]
- Sun, S.; Jahanshahi, S. Redox equilibria and kinetics of gas-slag reactions. Metall. Mater. Trans. B 2000, 31, 937–943. [Google Scholar] [CrossRef]
- Smieszek, Z.; Czernecki, J.; Botor, J.; Sobierajski, S. Analiza procesu redukcji tlenku miedziawego z żużla zawiesinowego. Prace Inst. Met. Nieżel. 1982, 10, 5–12. [Google Scholar]
- Kucharski, M. Effect of thermodynamic and physical properties of flash smelting slags on copper losses during slags cleaning in an electric furnace. Arch. Hut. 1987, 32, 307–323. [Google Scholar]
- Heo, J.H.; Hung, Y.; Park, J.H. Recovery of iron and removal of hazardous elements from waste copper slag via novel aluminothermic smelting reduction (ASR) process. J. Clean. Prod. 2016, 137, 777–787. [Google Scholar] [CrossRef]
- Sarfo, P.; Wyss, G.; Ma, G.; Das, A. Carbothermal Reduction of Copper Smelter Slag for Recycling into Pig Iron and Glass. Miner. Eng. 2017, 107, 8–19. [Google Scholar] [CrossRef]
- Karwan, T.; Nowakowski, J.; Gostyński, Z.; Konefał, R. Structure of slags from fluidized-bed proces. In Proceedings of the Conference Materials Metals Metali Nieżelaznych, Krakow, Poland, 17–19 November 2014; pp. 1–11. [Google Scholar]
- Czernecki, J.; Gostyński, Z.; Byszyński, L. Rozwój Pirometalurgii Miedzi W Polsce. In Proceedings of the 50th Anniversary Copper Metallurgy, Krakow, Poland, 26–28 October 2011; pp. 39–54. [Google Scholar]
Type of Material | Min. Content, wt.% | Max. Content, wt.% | Average Content, wt.% | |
---|---|---|---|---|
Metals | Cu | 10 | 26.8 | 18.4 |
Al | 1.33 | 7 | 4.165 | |
Pb | 0.60 | 4.2 | 2.4 | |
Zn | 0.16 | 2.17 | 1.165 | |
Ni | 0.11 | 2.35 | 1.23 | |
Fe | 0.22 | 8 | 4.11 | |
Sn | 1 | 6.48 | 3.74 | |
Sb | 0.06 | 1.97 | 1.015 | |
Ag | 0.011 | 0.363 | 0.187 | |
Sr | 0.65 | 0.65 | 0.65 | |
Ta | 0.07 | 0.07 | 0.07 | |
Au | 0.0076 | 0.1 | 0.0538 | |
Ca | 9.96 | 9.96 | 9.96 | |
Fe | 2.08 | 2.08 | 2.08 | |
Cr | 0.003 | 0.356 | 0.1795 | |
Mo | 0.016 | 0.016 | 0.016 | |
Mn | 0.05 | 0.05 | 0.05 | |
Pd | 0.001 | 0.0294 | 0.0152 | |
Br | 4.94 | 6.5 | 5.72 | |
Ceramics | SiO2 | 11.3 | 41.86 | 26.58 |
Al2O3 | 6 | 9.35 | 7.675 | |
CaO | 1.9 | 6.7 | 4.3 | |
MgO | 0.081 | 0.22 | 0.1505 | |
BaO | 0.0022 | 0.16 | 0.0811 | |
Plastics | - | 30 | 32.14 | 31.07 |
Slag Component Content, wt.% | ||||||
---|---|---|---|---|---|---|
Cu | Fe | Pb | SiO2 | Al2O3 | MgO | CaO |
10.3 | 11.1 | 2.25 | 34.5 | 8.2 | 3.99 | 14.1 |
Work temperature | to 1350 °C |
Work atmosphere | Air |
Rated power | 13.5 kW |
Rated current | 19.57 A |
Sample Number | Sample Grain Size, mm | Loss of Weight, % |
---|---|---|
1 | <1.6 | 36.60 |
2 | 1.6 ÷ 3.15 | 13.28 |
3 | 3.15 ÷ 6.3 | 39.36 |
4 | >6.3 | 25.03 |
No. | Charge Components | Reduction Time, h | Alloy Weight, g | Chemical Composition of Waste Slag, wt.% | ||||
---|---|---|---|---|---|---|---|---|
Slag, g | Electronics | Cu | Pb | Fe | ||||
Mass, g | Fraction, mm | |||||||
1 | 65 | 10 | >6.3 | 1 | 5.45 | 1.36 | 1.45 | 10.28 |
2 | 10 | 2 | 5.47 | 1.11 | 2.22 | 10.99 | ||
3 | 10 | 3 | 6.67 | 1.82 | 2.2 | 10.89 | ||
4 | 15 | 3 | 7.64 | 2.08 | 2.08 | 10.76 | ||
5 | 30 | 3 | 17.57 | 0.6 | 1.61 | 11.21 | ||
6 | 10 | 3.15 ÷ 6.3 | 1 | 5.02 | 2.13 | 1.92 | 9.87 | |
7 | 10 | 2 | 3.96 | 1.81 | 2.19 | 11.07 | ||
8 | 10 | 3 | 6.67 | 1.77 | 2.11 | 10.91 | ||
9 | 15 | 3 | 10.75 | 0.61 | 0.84 | 10.96 | ||
10 | 30 | 3 | 16.52 | 0.31 | 0.19 | 9.67 | ||
11 | 10 | 1.6 ÷ 3.15 | 1 | 5.45 | 1.19 | 1.4 | 8.66 | |
12 | 10 | 2 | 4.27 | 1.42 | 1.6 | 9.75 | ||
13 | 10 | 3 | 4.58 | 1.91 | 2.08 | 9.94 | ||
14 | 15 | 3 | 11.98 | 0.71 | 1.08 | 9.89 | ||
15 | 30 | 3 | 18.84 | 0.51 | 1.49 | 10.38 | ||
16 | 10 | <1.6 | 1 | 2.53 | 2.97 | 2.54 | 11.42 | |
17 | 10 | 2 | 4.4 | 1.94 | 1.84 | 8.87 | ||
18 | 10 | 3 | 3.99 | 1.92 | 1.91 | 10.26 | ||
19 | 15 | 3 | 10.82 | 0.69 | 1.13 | 9.7 | ||
20 | 30 | 3 | 20.55 | 0.73 | 1.26 | 11.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smalcerz, A.; Matula, T.; Slusorz, M.; Wojtasik, J.; Chaberska, W.; Kluska, S.; Kortyka, L.; Mycka, L.; Blacha, L.; Labaj, J. The Use of PCB Scrap in the Reduction in Metallurgical Copper Slags. Materials 2023, 16, 625. https://doi.org/10.3390/ma16020625
Smalcerz A, Matula T, Slusorz M, Wojtasik J, Chaberska W, Kluska S, Kortyka L, Mycka L, Blacha L, Labaj J. The Use of PCB Scrap in the Reduction in Metallurgical Copper Slags. Materials. 2023; 16(2):625. https://doi.org/10.3390/ma16020625
Chicago/Turabian StyleSmalcerz, Albert, Tomasz Matula, Michal Slusorz, Julia Wojtasik, Weronika Chaberska, Szymon Kluska, Lukasz Kortyka, Lukasz Mycka, Leszek Blacha, and Jerzy Labaj. 2023. "The Use of PCB Scrap in the Reduction in Metallurgical Copper Slags" Materials 16, no. 2: 625. https://doi.org/10.3390/ma16020625
APA StyleSmalcerz, A., Matula, T., Slusorz, M., Wojtasik, J., Chaberska, W., Kluska, S., Kortyka, L., Mycka, L., Blacha, L., & Labaj, J. (2023). The Use of PCB Scrap in the Reduction in Metallurgical Copper Slags. Materials, 16(2), 625. https://doi.org/10.3390/ma16020625