Preparation of Ganoderma Lucidum Bran-Based Biological Activated Carbon for Dual-Functional Adsorption and Detection of Copper Ions
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Materials
2.2. Preparation Process
2.2.1. Preparation of AC
2.2.2. Preparation of AC@CD
2.3. Characterization of Material
3. Results and Discussion
3.1. Preparation and Characterization of AC@CD
3.2. Adsorption Ability of AC@CD for Cu2+
3.2.1. Isothermal Adsorption and Kinetic Experiment
3.2.2. Fitting of Isothermal Adsorption Experimental Data
3.2.3. Dynamic Experiment Data Fitting
3.3. Fluorescence Property of AC@CD
3.3.1. Fluorescence Yield of AC@CD
3.3.2. Fluorescence Selective and Sensitive Detection for Metal Ions
3.3.3. Quantitative Measurement of AC@CD
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tesfay, T.; Godifey, T.; Mesfin, R.; Kalayu, G. Evaluation of waste paper for cultivation of oyster mushroom (Pleurotus ostreatus) with some added supplementary materials. AMB Express 2020, 10, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, Y.; Du, F.; Hu, Q.; Yuan, X.; Dai, D.; Zhu, M. Integration of Pleurotus tuoliensis cultivation and biogas production for utilization of lignocellulosic biomass as well as its benefit evaluation. Bioresour. Technol. 2020, 317, 124042. [Google Scholar] [CrossRef] [PubMed]
- Almahbashi, N.M.Y.; Kutty, S.R.M.; Ayoub, M.; Noor, A.; Salihi, I.U.; Al-Nini, A.; Jagaba, A.H.; Aldhawi, B.N.S.; Ghaleb, A.A.S. Optimization of Preparation Conditions of Sewage sludge based Activated Carbon. Ain Shams Eng. J. 2021, 12, 1175–1182. [Google Scholar] [CrossRef]
- Sun, S.; Yu, Q.; Li, M.; Zhao, H.; Wu, C. Preparation of coffee-shell activated carbon and its application for water vapor adsorption. Renew. Energy 2019, 142, 11–19. [Google Scholar] [CrossRef]
- Yeletsky, P.M.; Lebedeva, M.V.; Yakovlev, V.A. Today’s progress in the synthesis of porous carbons from biomass and their application for organic electrolyte and ionic liquid based supercapacitors. J. Energy Storage 2022, 50, 104225. [Google Scholar] [CrossRef]
- Yeletsky, P.M.; Dubinin, Y.V.; Yazykov, N.A.; Tabakaev, R.B.; Okotrub, K.A.; Yakovlev, V.A. Conversion of natural feedstocks to porous carbons via carbonization in fluidized catalyst bed followed by leaching the feedstock mineral template phase: A comparison of biomass and sedimentary raw materials. Fuel Process. Technol. 2022, 226, 107076. [Google Scholar] [CrossRef]
- Xia, C.; Zhu, S.; Feng, T.; Yang, M.; Yang, B. Evolution and Synthesis of Carbon Dots: From Carbon Dots to Carbonized Polymer Dots. Adv. Sci. 2019, 6, 1901316. [Google Scholar] [CrossRef]
- Yao, B.; Huang, H.; Liu, Y.; Kang, Z. Carbon Dots: A Small Conundrum. Trends Chem. 2019, 1, 235–246. [Google Scholar] [CrossRef]
- Yu, R.; Liang, S.; Ru, Y.; Li, L.; Wang, Z.; Chen, J.; Chen, L. A Facile Preparation of Multicolor Carbon Dots. Nanoscale Res. Lett. 2022, 17, 32. [Google Scholar] [CrossRef]
- Heidarinejad, Z.; Dehghani, M.H.; Heidari, M.; Javedan, G.; Ali, I.; Sillanpää, M. Methods for preparation and activation of activated carbon: A review. Environ. Chem. Lett. 2020, 18, 393–415. [Google Scholar] [CrossRef]
- Wang, H.; Xu, J.; Liu, X.; Sheng, L. Preparation of straw activated carbon and its application in wastewater treatment: A review. J. Clean. Prod. 2021, 283, 10. [Google Scholar] [CrossRef]
- Ao, W.; Fu, J.; Mao, X.; Kang, Q.; Ran, C.; Liu, Y.; Zhang, H.; Gao, Z.; Li, J.; Liu, G.; et al. Microwave assisted preparation of activated carbon from biomass: A review. Renew. Sustain. Energy Rev. 2018, 92, 958–979. [Google Scholar] [CrossRef]
- Das, D.; Meikap, B.C. Role of amine-impregnated activated carbon in carbon dioxide capture. Indian Chem. Eng. 2021, 63, 435–447. [Google Scholar] [CrossRef]
- Fatoki, O.S.; Ayanda, O.S.; Adekola, F.A.; Ximba, B.J.; Opeolu, B.O. Preparation and Characterization of Activated Carbon-nFe3O4, Activated Carbon-nSiO2 and Activated Carbon-nZnO Hybrid Materials. Part. Part. Syst. Charact. 2012, 29, 178–191. [Google Scholar] [CrossRef]
- Macias-Garcia, A.; Gomez Corzo, M.; Alfaro Dominguez, M.; Alexandre Franco, M.; Martinez Naharro, J. Study of the adsorption and electroadsorption process of Cu (II) ions within thermally and chemically modified activated carbon. J. Hazard. Mater. 2017, 328, 46–55. [Google Scholar] [CrossRef]
- Jiang, Q.; Xie, W.; Han, S.; Wang, Y.; Zhang, Y. Enhanced adsorption of Pb(II) onto modified hydrochar by polyethyleneimine or H3PO4: An analysis of surface property and interface mechanism. Coll. Surf. A Physicochem. Eng. Asp. 2019, 583, 20. [Google Scholar] [CrossRef]
- Das, D.; Samal, D.P.; Bc, M. Preparation of Activated Carbon from Green Coconut Shell and its Characterization. J. Chem. Eng. Process Technol. 2015, 6, 241. [Google Scholar] [CrossRef]
- Mandal, S.; Calderon, J.; Marpu, S.B.; Omary, M.A.; Shi, S.Q. Mesoporous activated carbon as a green adsorbent for the removal of heavy metals and Congo red: Characterization, adsorption kinetics, and isotherm studies. J. Contam. Hydrol. 2021, 243, 103869. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, T.; Zhang, H.; Liu, Y.; Xing, B. Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism. Sci Total Env. 2021, 757, 143910. [Google Scholar] [CrossRef]
- Shi, G.; He, S.; Chen, G.; Ruan, C.; Ma, Y.; Chen, Q.; Jin, X.; Liu, X.; He, C.; Du, C.; et al. Crayfish shell-based micro-mesoporous activated carbon: Insight into preparation and gaseous benzene adsorption mechanism. Chem. Eng. J. 2022, 428, 15. [Google Scholar] [CrossRef]
- Wei, H.; Chen, H.; Fu, N.; Chen, J.; Lan, G.; Qian, W.; Liu, Y.; Lin, H.; Han, S. Excellent electrochemical properties and large CO2 capture of nitrogen-doped activated porous carbon synthesised from waste longan shells. Electrochim. Acta 2017, 231, 403–411. [Google Scholar] [CrossRef]
- Sambaza, S.S.; Masheane, M.L.; Malinga, S.P.; Nxumalo, E.N.; Mhlanga, S.D. Polyethyleneimine-carbon nanotube polymeric nanocomposite adsorbents for the removal of Cr6+ from water. Phys. Chem. Earth Parts A/B/C 2017, 100, 236–246. [Google Scholar] [CrossRef]
- Rahmi; Lelifajri; Nurfatimah, R. Preparation of polyethylene glycol diglycidyl ether (PEDGE) crosslinked chitosan/activated carbon composite film for Cd(2+) removal. Carbohydr. Polym. 2018, 199, 499–505. [Google Scholar] [CrossRef] [PubMed]
- Nazir, M.A.; Najam, T.; Jabeen, S.; Wattoo, M.A.; Bashir, M.S.; Shah, S.S.A.; Rehman, A.U. Facile synthesis of Tri-metallic layered double hydroxides (NiZnAl-LDHs): Adsorption of Rhodamine-B and methyl orange from water. Inorg. Chem. Commun. 2022, 145, 110008. [Google Scholar] [CrossRef]
- Runtti, H.; Tuomikoski, S.; Kangas, T.; Lassi, U.; Kuokkanen, T.; Ramo, J. Chemically activated carbon residue from biomass gasification as a sorbent for iron(II), copper(II) and nickel(II) ions. J. Water Process Eng. 2014, 4, 12–24. [Google Scholar] [CrossRef]
- Cherono, F.; Mburu, N.; Kakoi, B. Adsorption of lead, copper and zinc in a multi-metal aqueous solution by waste rubber tires for the design of single batch adsorber. Heliyon 2021, 7, 08254. [Google Scholar] [CrossRef]
- Vunain, E.; Kenneth, D.; Biswick, T. Synthesis and characterization of low-cost activated carbon prepared from Malawian baobab fruit shells by H3PO4 activation for removal of Cu(II) ions: Equilibrium and kinetics studies. Appl. Water Sci. 2017, 7, 4301–4319. [Google Scholar] [CrossRef] [Green Version]
- Nejadshafiee, V.; Islami, M.R. Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine (vol 12, pg 214, 2020). Environ. Sci. Pollut. Res. 2020, 27, 1640–1649. [Google Scholar] [CrossRef] [Green Version]
- Mariana, M.; Abdul, K.; Mistar, E.M.; Yahya, E.B.; Alfatah, T.; Danish, M.; Amayreh, M. Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption. J. Water Process Eng. 2021, 43, 102221. [Google Scholar] [CrossRef]
- Aguayo-Villarreal, I.A.; Bonilla-Petriciolet, A.; Muñiz-Valencia, R. Preparation of activated carbons from pecan nutshell and their application in the antagonistic adsorption of heavy metal ions. J. Mol. Liq. 2017, 230, 686–695. [Google Scholar] [CrossRef]
- Nazir, M.A.; Najam, T.; Shahzad, K.; Wattoo, M.A.; Hussain, T.; Tufail, M.K.; Shah, S.S.A.; ur Rehman, A. Heterointerface engineering of water stable ZIF-8@ZIF-67: Adsorption of rhodamine B from water. Surf. Interfaces 2022, 34, 102324. [Google Scholar] [CrossRef]
- Shahrokhi-Shahraki, R.; Benally, C.; El-Din, M.G.; Park, J. High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: Insights into the adsorption mechanisms. Chemosphere 2021, 264 Pt 1, 128455. [Google Scholar] [CrossRef]
- Li, L.Y.; Gong, X.; Abida, O. Waste-to-resources: Exploratory surface modification of sludge-based activated carbon by nitric acid for heavy metal adsorption. Waste Manag. 2019, 87, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; An, Z.; Zhang, R.; Wei, X.; Lai, B. Efficiencies and mechanisms of heavy metals adsorption on waste leather-derived high-nitrogen activated carbon. J. Clean. Prod. 2021, 293, 126215. [Google Scholar] [CrossRef]
- Zheng, H.Z.; Wang, Q.L.; Long, Y.J.; Zhang, H.J.; Huang, X.X.; Zhu, R. Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 2011, 47, 10650–10652. [Google Scholar] [CrossRef]
- Ganguly, S.; Das, P.; Banerjee, S.; Das, N.C. Advancement in science and technology of carbon dot-polymer hybrid composites: A review. Funct. Compos. Struct. 2019, 1, 022001. [Google Scholar] [CrossRef]
- Ma, X.H.; Dong, Y.H.; Sun, H.Y.; Chen, N.S. Highly fluorescent carbon dots from peanut shells as potential probes for copper ion: The optimization and analysis of the synthetic process. Mater. Today Chem. 2017, 5, 1–10. [Google Scholar] [CrossRef]
- Tan, X.W.; Romainor, A.N.B.; Chin, S.F.; Ng, S.M. Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. J. Anal. Appl. Pyrolysis 2014, 105, 157–165. [Google Scholar] [CrossRef]
- Zheng, X.C.; Ren, S.T.; Wang, L.L.; Gai, Q.X.; Dong, Q.L.; Liu, W.J. Controllable functionalization of carbon dots as fluorescent sensors for independent Cr(VI), Fe(III) and Cu(II) ions detection. J. Photochem. Photobiol. A-Chem. 2021, 417, 113359. [Google Scholar] [CrossRef]
- Lin, Y.S.; Yang, Z.Y.; Anand, A.; Huang, C.C.; Chang, H.T. Carbon dots with polarity-tunable characteristics for the selective detection of sodium copper chlorophyllin and copper ions. Anal. Chim. Acta 2022, 1191, 339311. [Google Scholar] [CrossRef]
Material | Activator | Mass Ratio | Temperature (°C) | Time (h) | SBET (m2 g−1) | Vg (cm3 g−1) | Dpore (nm) |
---|---|---|---|---|---|---|---|
AC-precursor | - | - | 300 | 3 | 12.0 | 0.02 | 12.6 |
AC-1 | KOH | 1:2 | 300 | 3 | 1148 | 0.17 | 3.94 |
AC-2 | KOH | 1:4 | 300 | 3 | 1498 | 0.78 | 2.42 |
AC-3 | KOH | 1:6 | 300 | 3 | 1633 | 0.81 | 2.24 |
AC-4 | KOH | 1:8 | 300 | 3 | 8.3 | 0.06 | 3.82 |
AC-5 | KMnO4 | 1:6 | 300 | 3 | 832.0 | 0.11 | 9.04 |
AC-6 | ZnCl2 | 1:6 | 300 | 3 | 18.0 | 0.03 | 3.65 |
AC-7 | HNO3 | 1:6 | 300 | 3 | 21.55 | 0.02 | 5.01 |
AC-8 | KOH | 1:6 | 500 | 3 | 1441 | 0.34 | 2.24 |
AC-9 | KOH | 1:6 | 700 | 3 | 2155 | 0.64 | 2.74 |
AC-10 | KOH | 1:6 | 900 | 3 | 875.0 | 0.74 | 3.44 |
AC-11 | KOH | 1:6 | 700 | 1 | 2779 | 0.68 | 2.78 |
AC-12 | KOH | 1:6 | 700 | 5 | 3147 | 1.10 | 2.60 |
AC-13 | KOH | 1:6 | 700 | 7 | 2347 | 0.64 | 2.73 |
AC-1@CD | - | - | - | - | 1510 | 0.12 | 3.68 |
AC-4@CD | - | - | - | - | 135.2 | 0.09 | 3.87 |
AC-9@CD | - | - | - | - | 2580 | 0.80 | 2.73 |
AC-12@CD | - | - | - | - | 3284 | 1.20 | 2.58 |
Material | SBET (m2 g−1) | Adsorption Capacity (mg g−1) | Adsorption Equilibrium Time (min) | Ref. |
---|---|---|---|---|
Biomass carbon residue | - | 23.10 | 120 | [25] |
AC from rubber tire preparation | - | 12.44 | 120 | [26] |
AC from Malawian baobab shell | 1089 | 3.083 | 60 | [27] |
AC from pistachio | - | 277.8 | 180 | [28] |
AC-12 | 3147 | 49.35 | 35 | This work |
AC-12@CD | 3284 | 36.55 | 30 | This work |
Material | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
KL (min−1) | Qm (mg g−1) | RL | KF (L g−1) | n | RF | |
AC-12 | 0.036 | 61.43 | 0.9758 | 8.74 | 2.4 | 0.9352 |
AC-12@CD | 0.050 | 60.35 | 0.9791 | 6.13 | 2.1 | 0.9656 |
Material | Quasi-First-Order Kinetic Adsorption Curve Model | Quasi-Second-Order Kinetic Adsorption Curve Model | ||
---|---|---|---|---|
K1 | R1 | K2 | R2 | |
AC-12 | 0.013 | 0.9633 | 0.016 | 0.9998 |
AC-12@CD | 0.010 | 0.9593 | 0.004 | 0.9961 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J. Preparation of Ganoderma Lucidum Bran-Based Biological Activated Carbon for Dual-Functional Adsorption and Detection of Copper Ions. Materials 2023, 16, 689. https://doi.org/10.3390/ma16020689
Wang B, Lan J, Bo C, Gong B, Ou J. Preparation of Ganoderma Lucidum Bran-Based Biological Activated Carbon for Dual-Functional Adsorption and Detection of Copper Ions. Materials. 2023; 16(2):689. https://doi.org/10.3390/ma16020689
Chicago/Turabian StyleWang, Baoying, Jingming Lan, Chunmiao Bo, Bolin Gong, and Junjie Ou. 2023. "Preparation of Ganoderma Lucidum Bran-Based Biological Activated Carbon for Dual-Functional Adsorption and Detection of Copper Ions" Materials 16, no. 2: 689. https://doi.org/10.3390/ma16020689
APA StyleWang, B., Lan, J., Bo, C., Gong, B., & Ou, J. (2023). Preparation of Ganoderma Lucidum Bran-Based Biological Activated Carbon for Dual-Functional Adsorption and Detection of Copper Ions. Materials, 16(2), 689. https://doi.org/10.3390/ma16020689