On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-12
Abstract
:1. Introduction
The Significace of the Study
2. Materials and Methods
2.1. Fabrication Procedure
2.1.1. Composite Manufacturing
2.1.2. Thermoplastic Polymer Sheets (PA12)
2.1.3. Assembly of PA12 Sheets with Elium® Composite Plates
2.2. Flatwise Tensile Test
2.3. Fractographic Analysis
3. Results and Discussion
3.1. Tensile Properties
3.2. Fractography
4. Conclusions
- (1)
- Despite the lack of knowledge on the selection of appropriate compatibilizing agent, this study proved the effectiveness of GMA on the welding of PMMA/PA12.
- (2)
- The highest weld strengths between the incompatible polymers PA12 and Elium® (PMMA) composite are achieved at a temperature above the melting temperature of PA12 and especially at 200 °C.
- (3)
- The PMMA-GMA-PA12 copolymer has a key role in the enhancement of the interfacial adhesion between PMMA and PA12.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reis, J.P.; de Moura, M.; Samborski, S. Thermoplastic composites and their promising applications in joining and repair composites structures: A review. Materials 2020, 13, 5832. [Google Scholar] [CrossRef] [PubMed]
- Lionetto, F.; Morillas, M.N.; Pappadà, S.; Buccoliero, G.; Villegas, I.F.; Maffezzoli, A. Hybrid welding of carbon-fiber reinforced epoxy based composites. Compos. Part A Appl. Sci. Manuf. 2018, 104, 32–40. [Google Scholar] [CrossRef] [Green Version]
- Yousefpour, A.; Hojjati, M.; Immarigeon, J.P. Fusion bonding/welding of thermoplastic composites. J. Thermoplast. Compos. Mater. 2004, 17, 303–341. [Google Scholar] [CrossRef]
- Hajideh, M.R.; Farahani, M.; Alavi, S.A.D.; Ramezani, N.M. Investigation on the effects of tool geometry on the microstructure and the mechanical properties of dissimilar friction stir welded polyethylene and polypropylene sheets. J. Manuf. Process 2017, 26, 269–279. [Google Scholar] [CrossRef]
- Bates, P.J.; Dyck, C.; Osti, M. Vibration welding of nylon 6 to nylon 66. Polym. Eng. Sci. 2004, 44, 760–771. [Google Scholar] [CrossRef]
- Zhang, G.; Qiu, J.; Sakai, E.; Zhou, Z. Interface investigation between dissimilar materials by ultrasonic thermal welding by the third phase. Int. J. Adhes. Adhes. 2021, 104, 102722. [Google Scholar] [CrossRef]
- Zhang, G.H.; Qiu, J.H.; Shao, L.; Fu, X. Molecular Interdiffusion of Hauling Theory between Dissimilar Polymers Based on Novel USW. Adv. Mat. Res. 2011, 221, 289–294. [Google Scholar] [CrossRef]
- Dashatan, S.H.; Azdast, T.; Ahmadi, S.R.; Bagheri, A. Friction stir spot welding of dissimilar polymethyl methacrylate and acrylonitrile butadiene styrene sheets. Mater. Des. 2013, 45, 135–141. [Google Scholar] [CrossRef]
- Fu, X.; Wu, X.; Huang, G.; Li, W.; Kang, S.; Wang, L.; Luo, J.; Pan, Z.; Lu, W. Fusion Bonding Possibility for Incompatible Polymers by the Novel Ultrasonic Welding Technology: Effect of Interfacial Compatibilization. ACS Omega 2022, 7, 14797–14806. [Google Scholar] [CrossRef]
- van Rijswijk, K.; Bersee, H.E.N. Reactive processing of textile fiber-reinforced thermoplastic composites-An overview. Compos. Part A Appl. Sci. Manuf. 2007, 38, 666–681. [Google Scholar] [CrossRef]
- Bodaghi, M.; Park, C.H.; Krawczak, P. Reactive Processing of Acrylic-Based Thermoplastic Composites: A Mini-Review. Front. Mater. 2022, 9, 931338. [Google Scholar] [CrossRef]
- Obande, W.; Mamalis, D.; Ray, D.; Yang, L.; Brádaigh, C.M. Mechanical and thermomechanical characterisation of vacuum-infused thermoplastic- and thermoset-based composites. Mater. Des. 2019, 175, 107828. [Google Scholar] [CrossRef]
- Gohel, G.; Bhudolia, S.K.; Kantipudi, J.; Leong, K.F.; Barsotti, R.J. Ultrasonic welding of novel Carbon/Elium® with carbon/epoxy composites. Compos. Commun. 2020, 22, 100463. [Google Scholar] [CrossRef]
- Murray, R.E.; Roadman, J.; Beach, R. Fusion joining of thermoplastic composite wind turbine blades: Lap-shear bond characterization. Renew. Energy 2019, 140, 501–512. [Google Scholar] [CrossRef]
- Murray, R.E.; Penumadu, D.; Cousins, D.; Beach, R.; Snowberg, D.; Berry, D.; Suzuki, Y.; Stebner, A. Manufacturing and Flexural Characterization of Infusion-Reacted Thermoplastic Wind Turbine Blade Subcomponents. Appl. Compos. Mater. 2019, 26, 945–961. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Z.; Liao, S.; Wang, F. Ultrasonic welding of fiber reinforced thermoplastic composites: Current understanding and challenges. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106578. [Google Scholar] [CrossRef]
- Unnikrishnan, T.G.; Kavan, P. A review study in ultrasonic-welding of similar and dissimilar thermoplastic polymers and its composites. Mater. Today Proc. 2022, 56, 3294–3300. [Google Scholar] [CrossRef]
- Perrin, H.; Bodaghi, M.; Berthé, V.; Vaudenmont, R. On the effect of multifunctional methacrylate monomer content on the IR weldability of acrylic-based glass fibre composites. Polym. Compos. 2022; Under review. [Google Scholar]
- Smiley, A.J.; Halbritter, A.; Cogswell, F.N.; Meakin, P.J. Dual polymer bonding of thermoplastic composite structures. Polym. Eng. Sci. 1991, 31, 526–532. [Google Scholar] [CrossRef]
- Tsai, C.-H.; Chang, F.-C. Polymer blends of PBT and PP compatibilized by ethylene-co-glycidyl methacrylate copolymers. J. Appl. Polym. Sci. 1996, 61, 321–332. [Google Scholar] [CrossRef]
- Zhihui, Y.; Yajie, Z.; Xiaomin, Z.; Jinghua, Y. Effects of the compatibilizer PP-g-GMA on morphology and mechanical properties of PP/PC blends. Polymer 1998, 39, 547–551. [Google Scholar] [CrossRef]
- Tedesco, A.; Barbosa, R.; Nachtigall, S.M.B.; Mauler, R.S. Comparative study of PP-MA and PP-GMA as compatibilizing agents on polypropylene/nylon 6 blends. Polymer Testing. 2002, 21, 11–15. [Google Scholar] [CrossRef]
- INSTRON Composite Test Fixture ASTMC297. 2019. Available online: https://www.astm.org/standards/c297 (accessed on 1 January 2023).
- Castellani, L.; Castiglioni, A.; Ferri, D.; Baraldi, A.; Martinelli, L.; Rotunno, S. Rate effects on adhesion energy between polyethylene films and different substrates. Eng. Fract. Mech. 2015, 149, 387–401. [Google Scholar] [CrossRef]
- Stokes, V.K. A phenomenological study of the hot-tool welding of thermoplastics Part 3. Polyetherimide. Polymer 2001, 42, 775–792. [Google Scholar] [CrossRef]
- Meng, X.; Huang, Y.; Cao, J.; Shen, J.; Santos, J.F. Recent progress on control strategies for inherent issues in friction stir welding. Prog. Mater. Sci. 2021, 115, 100706. [Google Scholar] [CrossRef]
- Ageorges, C.; Ye, L. State of the Art in Fusion Bonding of Polymer Composites. In Fusion Bonding of Polymer Composites; Springer: London, UK, 2002; pp. 7–64. [Google Scholar] [CrossRef]
- Katsiropoulos, C.; Chamos, A.N.; Tserpes, K.I.; Pantelakis, S.G. Fracture toughness and shear behavior of composite bonded joints based on a novel aerospace adhesive. Compos. B Eng. 2012, 43, 240–248. [Google Scholar] [CrossRef]
- McIlroy, C.; Olmsted, P.D. Disentanglement effects on welding behaviour of polymer melts during the fused-filament-fabrication method for additive manufacturing. Polymer 2017, 123, 376–391. [Google Scholar] [CrossRef]
Sample Name | Heating Temperature (°C) |
---|---|
PA12-EMG 20 | 160 |
PA12-EMG 19 | 170 |
PA12-EMG 15 | 180 |
PA12-EMG 16 | 200 |
PA12-EMG 17 | 220 |
PA12-EMG 18 | 240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perrin, H.; Bodaghi, M.; Berthé, V.; Klein, S.; Vaudemont, R. On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-12. Materials 2023, 16, 691. https://doi.org/10.3390/ma16020691
Perrin H, Bodaghi M, Berthé V, Klein S, Vaudemont R. On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-12. Materials. 2023; 16(2):691. https://doi.org/10.3390/ma16020691
Chicago/Turabian StylePerrin, Henri, Masoud Bodaghi, Vincent Berthé, Sébastien Klein, and Régis Vaudemont. 2023. "On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-12" Materials 16, no. 2: 691. https://doi.org/10.3390/ma16020691
APA StylePerrin, H., Bodaghi, M., Berthé, V., Klein, S., & Vaudemont, R. (2023). On the Hot-Plate Welding of Reactively Compatibilized Acrylic-Based Composites/Polyamide (PA)-12. Materials, 16(2), 691. https://doi.org/10.3390/ma16020691