Direct Laser Irradiation and Modification of 2D Te for Development of Volatile Memristor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Tellurium Nano-Flakes
2.2. Devices Fabrication and Characterization
2.3. Simulations of Exfoliation of Te Flakes and Formation of Native Defects
3. Results and Discussion
3.1. Preparation and Characterization of Te Nano-Flakes
3.2. Laser-Induced Ablation, Oxidization, and Defects in Te Nano-Flakes
3.3. Application of Laser-Irradiated Te Nano-Flakes in Volatile Memristor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, G.; Hou, C.; Long, H.; Yang, L.; Wang, Y. Electronic and optoelectronic nanodevices based on two-dimensional semiconductor materials. Acta Phys.-Chim. Sin. 2019, 35, 1319–1340. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Hou, C.; Wang, Y.; Yang, L.; Li, B.; Cao, Z.; Zhang, Q.; Wang, Y.; Yang, Z.; Dong, L. Position sensitivity of optical nano-antenna arrays on optoelectronic devices. Nano Energy 2018, 53, 734–744. [Google Scholar] [CrossRef]
- Li, Y.; Ang, K.W. Hardware Implementation of Neuromorphic Computing Using Large-Scale Memristor Crossbar Arrays. Adv. Intell. Syst. 2021, 3, 2000137. [Google Scholar] [CrossRef]
- Mannix, A.J.; Kiraly, B.; Hersam, M.C.; Guisinger, N.P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 2017, 1, 14. [Google Scholar] [CrossRef]
- Li, S.; Pam, M.E.; Li, Y.; Chen, L.; Chien, Y.C.; Fong, X.; Chi, D.; Ang, K.W. Wafer-Scale 2D Hafnium Diselenide Based Memristor Crossbar Array for Energy-Efficient Neural Network Hardware. Adv. Mater. 2021, 64, 2103376. [Google Scholar] [CrossRef]
- Zhao, C.; Tan, C.; Lien, D.H.; Song, X.; Amani, M.; Hettick, M.; Nyein, H.Y.Y.; Yuan, Z.; Li, L.; Scott, M.C.; et al. Evaporated tellurium thin films for p-type field-effect transistors and circuits. Nat. Nanotechnol. 2020, 15, 53–58. [Google Scholar] [CrossRef]
- Pam, M.E.; Li, S.; Su, T.; Chien, Y.C.; Li, Y.; Ang, Y.S.; Ang, K.W. Interface-Modulated Resistive Switching in Mo-Irradiated ReS2 for Neuromorphic Computing. Adv. Mater. 2022, 34, 2202722. [Google Scholar] [CrossRef]
- Borkar, H.; Thakre, A.; Kushvaha, S.S.; Aloysius, R.P.; Kumar, A. Light assisted irreversible resistive switching in ultra thin hafnium oxide. RSC Adv. 2015, 5, 35046–35051. [Google Scholar] [CrossRef] [Green Version]
- Thakre, A.; Borkar, H.; Singh, B.P.; Kumar, A. Electroforming free high resistance resistive switching of graphene oxide modified polar-PVDF. RSC Adv. 2015, 5, 57406–57413. [Google Scholar] [CrossRef]
- Shi, W.; Kahn, S.; Jiang, L.; Wang, S.Y.; Tsai, H.Z.; Wong, D.; Taniguchi, T.; Watanabe, K.; Wang, F.; Crommie, M.F.; et al. Reversible writing of high-mobility and high-carrier-density doping patterns in two-dimensional van der Waals heterostructures. Nat. Electron. 2020, 3, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Loh, L.; Li, S.; Chen, L.; Li, B.; Bosman, M.; Ang, K.W. Anomalous resistive switching in memristors based on two-dimensional palladium diselenide using heterophase grain boundaries. Nat. Electron. 2021, 4, 348–356. [Google Scholar] [CrossRef]
- Nan, H.; Zhou, R.; Gu, X.; Xiao, S.; Ostrikov, K.K. Recent advances in plasma modification of 2D transition metal dichalcogenides. Nanoscale 2019, 11, 19202–19213. [Google Scholar] [CrossRef] [PubMed]
- He, T.; Wang, Z.; Zhong, F.; Fang, H.; Wang, P.; Hu, W. Etching techniques in 2D materials. Adv. Mater. Technol. 2019, 4, 1900064. [Google Scholar] [CrossRef]
- Wang, M.; Li, D.; Liu, K.; Guo, Q.; Wang, S.; Li, X. Nonlinear optical imaging, precise layer thinning, and phase engineering in MoTe2 with femtosecond laser. ACS Nano 2020, 14, 11169–11177. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Wang, G.; Zhao, S.; Wang, L.; Ding, Y.; Yang, L. The Realization of ZnO Nanowires Interconnection through Femtosecond Laser Irradiation of Ag Nanoparticles Solder. Appl. Sci. 2022, 12, 1004. [Google Scholar] [CrossRef]
- Su, B.W.; Zhang, X.L.; Yao, B.W.; Guo, H.W.; Li, D.K.; Chen, X.D.; Liu, Z.B.; Tian, J.G. Laser Writable Multifunctional van der Waals Heterostructures. Small 2020, 16, 2003593. [Google Scholar] [CrossRef] [PubMed]
- Shautsova, V.; Sinha, S.; Hou, L.; Zhang, Q.; Tweedie, M.; Lu, Y.; Sheng, Y.; Porter, B.F.; Bhaskaran, H.; Warner, J.H. Direct laser patterning and phase transformation of 2D PdSe2 films for on-demand device fabrication. ACS Nano 2019, 13, 14162–14171. [Google Scholar] [CrossRef]
- Lu, J.; Wu, J.; Carvalho, A.; Ziletti, A.; Liu, H.; Tan, J.; Chen, Y.; Neto, A.H.C.; Ozyilmaz, B.; Sow, C.H. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano 2015, 9, 10411–10421. [Google Scholar] [CrossRef]
- Romero, F.J.; Toral-Lopez, A.; Ohata, A.; Morales, D.P.; Ruiz, F.G.; Godoy, A.; Rodriguez, N. Laser-Fabricated reduced graphene oxide memristors. Nanomaterials 2019, 9, 897. [Google Scholar] [CrossRef]
- Enaganti, P.K.; Kothuru, A.; Goel, S. Laser-induced graphene-based miniaturized, flexible, non-volatile resistive switching memory devices. J. Mater. Res. 2022, 37, 3976–3987. [Google Scholar] [CrossRef]
- Borkar, H.; Kumar, A. Effects of light on ferroelectric polarization and leakage current. Vacuum 2018, 153, 91–95. [Google Scholar] [CrossRef]
- Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Ultrathin 2D nonlayered tellurium nanosheets: Facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, G.; Wang, R.; Huang, S.; Wang, Q.; Liu, Y.; Du, Y.; Goddard, W.A.; Kim, M.J.; Xu, X.; et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 2018, 1, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Amani, M.; Tan, C.; Zhang, G.; Zhao, C.; Bullock, J.; Song, X.; Kim, H.; Shrestha, V.; Gao, Y.; Crozier, K.; et al. Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 2018, 12, 7253–7263. [Google Scholar] [CrossRef]
- Wang, G.; Ding, Y.; Guan, Y.; Wang, Y.; Yang, L. Tunable Electronic Properties of Few-Layer Tellurene under In-Plane and Out-of-Plane Uniaxial Strain. Nanomaterials 2022, 12, 875. [Google Scholar] [CrossRef]
- Qin, F.; Gao, F.; Dai, M.; Hu, Y.; Yu, M.; Wang, L.; Feng, W.; Li, B.; Hu, P. Multilayer InSe–Te van der Waals Heterostructures with an Ultrahigh Rectification Ratio and Ultrasensitive Photoresponse. ACS Appl. Mater. Interfaces 2020, 12, 37313–37319. [Google Scholar] [CrossRef]
- Nguyen, D.A.; Park, D.Y.; Jeong, B.G.; Tran, T.U.; Im, H.; Jeong, M.S. Facile and controllable preparation of tellurium nanocrystals by laser irradiation. Appl. Surf. Sci. 2022, 581, 152398. [Google Scholar] [CrossRef]
- Jung, J.H.; Park, C.H.; Ihm, J. A rigorous method of calculating exfoliation energies from first principles. Nano Lett. 2018, 18, 2759–2765. [Google Scholar] [CrossRef]
- Tran-Khac, B.C.; White, R.M.; DelRio, F.W.; Chung, K.H. Layer-by-layer thinning of MoS2 via laser irradiation. Nanotechnology 2019, 30, 275302. [Google Scholar] [CrossRef]
- Khac, B.C.T.; Jeon, K.J.; Choi, S.T.; Kim, Y.S.; DelRio, F.W.; Chung, K.H. Laser-induced particle adsorption on atomically thin MoS2. ACS Appl. Mater. Interfaces 2016, 8, 2974–2984. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Schmid, M.; Nilsson, Z.N.; Tahir, M.; Chen, H.; Sambur, J.B. Laser annealing improves the photoelectrochemical activity of ultrathin MoSe2 photoelectrodes. ACS Appl. Mater. Interfaces 2019, 11, 19207–19217. [Google Scholar] [CrossRef]
- Kollipara, P.S.; Li, J.; Zheng, Y. Optical patterning of two-dimensional materials. Research 2020, 2020, 6581250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Z.; Tao, F.; Ren, J. Unusually low thermal conductivity of atomically thin 2D tellurium. Nanoscale 2018, 10, 12997–13003. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Gao, S.; Xu, R.G.; Wu, W.; Leng, Y. Phase transition in two-dimensional tellurene under mechanical strain modulation. Nano Energy 2019, 58, 202–210. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, F.; Liu, X.; Lin, J.; Chen, J.Y.; Wu, W.W.; Wei, J.; Liu, Y.; Liu, Q.; Liao, L. High on/off ratio black phosphorus based memristor with ultra-thin phosphorus oxide layer. Appl. Phys. Lett. 2019, 115, 193503. [Google Scholar] [CrossRef]
- Hus, S.M.; Ge, R.; Chen, P.A.; Liang, L.; Donnelly, G.E.; Ko, W.; Huang, F.; Chiang, M.H.; Li, A.P.; Akinwande, D. Observation of single-defect memristor in an MoS2 atomic sheet. Nat. Nanotechnol. 2021, 16, 58–62. [Google Scholar] [CrossRef]
- Gora, S.; Thyda, L.; Dasi, G.; Muniramaiah, R.; Thakre, A.; Gangwar, J.; Josepha, D.P.; Kovendhand, M.; Azeema, P.A.; Dinakara, D.; et al. Asymmetric resistive switching by anion out-diffusion mechanism in transparent Al/ZnO/ITO heterostructure for memristor applications. Surf. Interfaces 2022, 30, 101950. [Google Scholar] [CrossRef]
- Wang, R.; Yang, J.Q.; Mao, J.Y.; Wang, Z.P.; Wu, S.; Zhou, M.; Chen, T.; Zhou, Y.; Han, S.T. Recent advances of volatile memristors: Devices, mechanisms, and applications. Adv. Intell. Syst. 2020, 2, 2000055. [Google Scholar] [CrossRef]
- Fu, T.; Fu, S.; Sun, L.; Gao, H.; Yao, J. An Effective Sneak-Path Solution Based on a Transient-Relaxation Device. Adv. Mater. 2022, 35, 2207133. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Guan, Y.; Wang, Y.; Ding, Y.; Yang, L. Direct Laser Irradiation and Modification of 2D Te for Development of Volatile Memristor. Materials 2023, 16, 738. https://doi.org/10.3390/ma16020738
Wang G, Guan Y, Wang Y, Ding Y, Yang L. Direct Laser Irradiation and Modification of 2D Te for Development of Volatile Memristor. Materials. 2023; 16(2):738. https://doi.org/10.3390/ma16020738
Chicago/Turabian StyleWang, Genwang, Yanchao Guan, Yang Wang, Ye Ding, and Lijun Yang. 2023. "Direct Laser Irradiation and Modification of 2D Te for Development of Volatile Memristor" Materials 16, no. 2: 738. https://doi.org/10.3390/ma16020738
APA StyleWang, G., Guan, Y., Wang, Y., Ding, Y., & Yang, L. (2023). Direct Laser Irradiation and Modification of 2D Te for Development of Volatile Memristor. Materials, 16(2), 738. https://doi.org/10.3390/ma16020738