Biopolymer Honeycomb Microstructures: A Review
Abstract
:1. Natural Honeycomb
2. Development of Artificial Honeycomb
3. Polymeric Honeycombs
4. Preparation of HCP Structures
4.1. Breath Figure
4.2. HCP Preparation Techniques Using the BF Method
4.3. Improved Phase Separation
5. Preparation Techniques and Their Variations
5.1. Modification of BF Method
5.2. Polymer
5.3. Solvent
5.4. Substrate
6. Applications in Medicine
6.1. Tissue Engineering
6.2. Drug Delivery
6.3. Biosensors
6.4. Antibacterial Layers
7. Modification of HCP Structures
7.1. Physical Modification
7.2. Chemical Modification
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tóth, L.F. What the bees know and what they do not know. Bull. Am. Math. Soc. 1964, 70, 468–481. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Bonilla, A.; Fernandez-Garcia, M.; Rodriguez-Hernandez, J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog. Polym. Sci. 2014, 39, 510–554. [Google Scholar] [CrossRef] [Green Version]
- Dong, C.; Hao, J. Honeycomb films with ordered patterns and structures. In Comprehensive Supramolecular Chemistry II (Volume 9 Nanotechnology); Atwood, J.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 207–229. ISBN 978-0-12-803199-5. [Google Scholar]
- Cilliers, L.; Retief, F.P. Bees, honey and health in antiquity. Akroterion 2008, 53, 7–19. [Google Scholar] [CrossRef]
- Bulmer-Thomas, I. Selections Illustrating the History of Greek Mathematics; Harvard University Press: Cambridge, MA, USA, 1939; Volume 2. [Google Scholar]
- Kepler, J. The Six-Cornered Snowflake; Paul Dry Books: Philadelphia, PA, USA, 2010. [Google Scholar]
- Hales, T.C. The honeycomb conjecture. Discret. Comput. Geom. 2001, 25, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Gallo, V.; Chittka, L. Cognitive aspects of comb-building in the honeybee? Front. Psychol. 2018, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, Y.; Jiefu, L. Comparison between Five Typical Reinforced Honeycomb Structures; Atlantic Press: Dordrecht, The Netherlands, 2015; pp. 704–707. [Google Scholar] [CrossRef] [Green Version]
- Langstroth, L. Langstroth’s The Hive and the Honey–Bee; Dover Publications Inc.: Mineola, NY, USA, 2004; originaly published in 1853. [Google Scholar]
- Weaire, D.; Phelan, R. Optimal design of honeycombs. Nature 1994, 367, 123. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, X.; Li, P.; Huang, G.; Feng, S.; Shen, C.; Han, B.; Zhang, X.; Jin, F.; Xu, F. Bioinspired engineering of honeycomb structure–Using nature to inspire human innovation. Prog. Mater. Sci. 2015, 74, 332–400. [Google Scholar] [CrossRef]
- MacDonald, W.L. The Pantheon: Design, Meaning, and Progeny; Harvard University Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Hooke, R. Micrographia; BoD–Books on Demand: Mumbai, India, 2020. [Google Scholar]
- Wittenauer, J.; Norris, B. Structural honeycomb materials for advanced aerospace designs. JOM 1990, 42, 36–41. [Google Scholar] [CrossRef]
- Bitzer, T. Honeycomb Technology: Materials, Design, Manufacturing, Applications and Testing; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
- Höfler, R.; Renyi, S. Plattenförmiger Baukörper; DE355036; CompositesPRESS: Mennecy, France, 1914. [Google Scholar]
- Lee, S.M. Handbook of Composite Reinforcements; John Wiley & Sons: Hoboken, NJ, USA, 1996. [Google Scholar]
- Heng, L.; Wang, B.; Li, M.; Zhang, Y.; Jiang, L. Advances in fabrication materials of honeycomb structure films by the breath-figure method. Materials 2013, 6, 460–482. [Google Scholar] [CrossRef]
- Male, U.; Jo, E.J.; Park, J.Y. Surface functionalization of honeycomb-patterned porous poly (ε-caprolactone) films by interfacial polymerization of aniline. Polymer 2016, 99, 623–632. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, J.; Bormashenko, E. Hierarchically Ordered Microporous Surfaces. In Breath Figures; Springer: Berlin/Heidelberg, Germany, 2020; pp. 169–187. [Google Scholar]
- Slepička, P.; Neznalová, K.; Fajstavr, D.; Švorčík, V. Nanostructuring of honeycomb-like polystyrene with excimer laser. Prog. Org. Coat. 2020, 145, 105670. [Google Scholar] [CrossRef]
- Neznalová, K.; Sajdl, P.; Švorčík, V.; Slepička, P. Cellulose acetate honeycomb-like pattern created by improved phase separation. eXPRESS Polym. Lett. 2020, 14, 1078–1088. [Google Scholar] [CrossRef]
- Hurtuková, K.; Juřicová, V.; Fajstavrová, K.; Fajstavr, D.; Slepičková Kasálková, N.; Rimpelová, S.; Švorčík, V.; Slepička, P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers 2021, 13, 3663. [Google Scholar] [CrossRef] [PubMed]
- Slepička, P.; Neznalová, K.; Fajstavr, D.; Slepičková Kasálková, N.; Švorčík, V. Honeycomb-like pattern formation on perfluoroethylenepropylene enhanced by plasma treatment. Plasma Processes Polym. 2019, 16, 1900063. [Google Scholar] [CrossRef]
- Peng, J.; Han, Y.; Yang, Y.; Li, B. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer 2004, 45, 447–452. [Google Scholar] [CrossRef]
- Fajstavrová, K.; Rimpelová, S.; Fajstavr, D.; Švorčík, V.; Slepička, P. Cell behavior of primary fibroblasts and osteoblasts on plasma-treated fluorinated polymer coated with honeycomb polystyrene. Materials 2021, 14, 889. [Google Scholar] [CrossRef]
- Stenzel, M.H.; Barner Kowollik, C.; Davis, T.P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 2363–2375. [Google Scholar] [CrossRef]
- Yin, H.; Feng, Y.; Billon, L. Directed Self-Assembly in “Breath Figure” Templating of Melamine-Based Amphiphilic Copolymers: Effect of Hydrophilic End-Chain on Honeycomb Film Formation and Wetting. Chem. Eur. J. 2018, 24, 425–433. [Google Scholar] [CrossRef]
- Yabu, H.; Shimomura, M. Surface properties of self-organized honeycomb-patterned films. Mol. Cryst. Liq. Cryst. 2006, 445, 125–129. [Google Scholar] [CrossRef]
- Nurmawati, M.H.; Ajikumar, P.K.; Renu, R.; Valiyaveettil, S. Hierarchical Self-Organization of Nanomaterials into Two-Dimensional Arrays Using Functional Polymer Scaffold. Adv. Funct. Mater. 2008, 18, 3213–3218. [Google Scholar] [CrossRef]
- Falconnet, D.; Csucs, G.; Grandin, H.M.; Textor, M. Surface engineering approaches to micropattern surfaces for cell-based assays. Biomaterials 2006, 27, 3044–3063. [Google Scholar] [CrossRef] [PubMed]
- Norman, J.J.; Desai, T.A. Methods for fabrication of nanoscale topography for tissue engineering scaffolds. Ann. Biomed. Eng. 2006, 34, 89–101. [Google Scholar] [CrossRef] [PubMed]
- Xue, L.; Han, Y. Pattern formation by dewetting of polymer thin film. Prog. Polym. Sci. 2011, 36, 269–293. [Google Scholar] [CrossRef]
- Xue, L.; Zhang, J.; Han, Y. Phase separation induced ordered patterns in thin polymer blend films. Prog. Polym. Sci. 2012, 37, 564–594. [Google Scholar] [CrossRef]
- Xie, Y.; Kocaefe, D.; Chen, C.; Kocaefe, Y. Review of research on template methods in preparation of nanomaterials. J. Nanomater. 2016, 2016, 2302595. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.M.; Lai, J.Y. Recent advances in preparation and morphology control of polymeric membranes formed by nonsolvent induced phase separation. Curr. Opin. Chem. Eng. 2013, 2, 229–237. [Google Scholar] [CrossRef]
- Guillen, G.R.; Pan, Y.; Li, M.; Hoek, E.M. Preparation and characterization of membranes formed by nonsolvent induced phase separation: A review. Ind. Eng. Chem. Res. 2011, 50, 3798–3817. [Google Scholar] [CrossRef]
- Bui, V.T.; Ko, S.H.; Choi, H.S. A surfactant-free bio-compatible film with a highly ordered honeycomb pattern fabricated via an improved phase separation method. Chem. Commun. 2014, 50, 3817–3819. [Google Scholar] [CrossRef]
- Liu, Q.; Tang, Z.; Ou, B.; Liu, L.; Zhou, Z.; Shen, S.; Duan, Y. Design, preparation, and application of ordered porous polymer materials. Mater. Chem. Phys. 2014, 144, 213–225. [Google Scholar] [CrossRef]
- Hsueh, H.Y.; Ho, R.M. Bicontinuous ceramics with high surface area from block copolymer templates. Langmuir 2012, 28, 8518–8529. [Google Scholar] [CrossRef]
- Rodríguez-Hernández, J. Nano-microporous structured surfaces prepared by the breath figures approach and their biorelated applications. In Surface Chemistry of Nanobiomaterials; Elsevier: Amsterdam, The Netherlands, 2016; pp. 107–133. [Google Scholar]
- Aitken, J. Breath figures. Proc. R. Soc. Edinb. 1895, 20, 94–97. [Google Scholar] [CrossRef]
- Dou, Y.; Jin, M.; Zhou, G.; Shui, L. Breath figure method for construction of honeycomb films. Membranes 2015, 5, 399–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Xu, S.; Kumacheva, E. Convection in polymeric fluids subjected to vertical temperature gradients. Macromolecules 2000, 33, 4972–4978. [Google Scholar] [CrossRef]
- Wan, L.S.; Zhu, L.W.; Ou, Y.; Xu, Z.K. Multiple interfaces in self-assembled breath figures. Chem. Commun. 2014, 50, 4024–4039. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Hernández-Guerrero, M.; Granville, A.M.; Davis, T.P.; Barner-Kowollik, C.; Stenzel, M.H. Water-assisted formation of honeycomb structured porous films. J. Porous Mater. 2006, 13, 213–223. [Google Scholar] [CrossRef]
- Eslamian, M.; Soltani-Kordshuli, F. Development of multiple-droplet drop-casting method for the fabrication of coatings and thin solid films. J. Coat. Technol. Res. 2018, 15, 271–280. [Google Scholar] [CrossRef]
- Yabu, H.; Tanaka, M.; Ijiro, K.; Shimomura, M. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir 2003, 19, 6297–6300. [Google Scholar] [CrossRef]
- Madej, W.; Budkowski, A.; Raczkowska, J.; Rysz, J. Breath figures in polymer and polymer blend films spin-coated in dry and humid ambience. Langmuir 2008, 24, 3517–3524. [Google Scholar] [CrossRef]
- Pilati, F.; Montecchi, M.; Fabbri, P.; Synytska, A.; Messori, M.; Toselli, M.; Grundke, K.; Pospiech, D. Design of surface properties of PET films: Effect of fluorinated block copolymers. J. Colloid Interface Sci. 2007, 315, 210–222. [Google Scholar] [CrossRef]
- Bui, V.T.; Tran, Q.C.; Nguyen, V.T.; Dao, V.D.; Choi, J.S.; Choi, H.S. Ordered honeycomb biocompatible polymer films via a one-step solution-immersion phase separation used as a scaffold for cell cultures. Chem. Eng. J. 2017, 320, 561–569. [Google Scholar] [CrossRef]
- Iqbal, M.; Dinh, D.K.; Abbas, Q.; Imran, M.; Sattar, H.; Ul Ahmad, A. Controlled surface wettability by plasma polymer surface modification. Surfaces 2019, 2, 349–371. [Google Scholar] [CrossRef] [Green Version]
- Morent, R.; De Geyter, N.; Desmet, T.; Dubruel, P.; Leys, C. Plasma surface modification of biodegradable polymers: A review. Plasma Processes Polym. 2011, 8, 171–190. [Google Scholar] [CrossRef]
- Cheng, Z.; Teoh, S.H. Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen. Biomaterials 2004, 25, 1991–2001. [Google Scholar] [CrossRef] [PubMed]
- Zelzer, M.; Scurr, D.; Abdullah, B.; Urquhart, A.J.; Gadegaard, N.; Bradley, J.W.; Alexander, M.R. Influence of the plasma sheath on plasma polymer deposition in advance of a mask and down pores. J. Phys. Chem. B 2009, 113, 8487–8494. [Google Scholar] [CrossRef]
- Shen, H.; Hu, X.; Yang, F.; Bei, J.; Wang, S. Combining oxygen plasma treatment with anchorage of cationized gelatin for enhancing cell affinity of poly (lactide-co-glycolide). Biomaterials 2007, 28, 4219–4230. [Google Scholar] [CrossRef]
- Nishikawa, T.; Ookura, R.; Nishida, J.; Arai, K.; Hayashi, J.; Kurono, N.; Sawadaishi, T.; Hara, M.; Shimomura, M. Fabrication of honeycomb film of an amphiphilic copolymer at the air− water interface. Langmuir 2002, 18, 5734–5740. [Google Scholar] [CrossRef]
- Wan, L.S.; Li, J.W.; Ke, B.B.; Xu, Z.K. Ordered microporous membranes templated by breath figures for size-selective separation. J. Am. Chem. Soc. 2012, 134, 95–98. [Google Scholar] [CrossRef]
- Farbod, F.; Pourabbas, B.; Sharif, M. Direct breath figure formation on PMMA and superhydrophobic surface using in situ perfluoro-modified silica nanoparticles. J. Polym. Sci. Part B: Polym. Phys. 2013, 51, 441–451. [Google Scholar] [CrossRef]
- Huang, C.; Kamra, T.; Chaudhary, S.; Shen, X. Breath figure patterns made easy. ACS Appl. Mater. Interfaces 2014, 6, 5971–5976. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Z.; Huang, Y.; Han, B.; Yang, G. Micropatterned polymer surfaces induced by nonsolvent. Langmuir 2006, 22, 1928–1931. [Google Scholar] [CrossRef]
- Hernández-Guerrero, M.; Stenzel, M.H. Honeycomb structured polymer films via breath figures. Polym. Chem. 2012, 3, 563–577. [Google Scholar] [CrossRef]
- Bui, V.T.; Choi, H.S. Surface morphology and wettability control of polymer Substrates: A comparison of water-miscible and water-immiscible mixture solvents. Eur. Polym. J. 2017, 93, 158–166. [Google Scholar] [CrossRef]
- Brien, F. Biomaterials & scaffolds Every day thousands of surgical procedures are performed to replace. Mater. Today 2011, 14, 88–95. [Google Scholar]
- Chen, S.; Gao, S.; Jing, J.; Lu, Q. Designing 3D Biological Surfaces via the Breath-Figure Method. Adv. Healthc. Mater. 2018, 7, 1701043. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, T.; Nonomura, M.; Arai, K.; Hayashi, J.; Sawadaishi, T.; Nishiura, Y.; Hara, M.; Shimomura, M. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir 2003, 19, 6193–6201. [Google Scholar] [CrossRef]
- Zhang, A.; Bai, H.; Li, L. Breath figure: A nature-inspired preparation method for ordered porous films. Chem. Rev. 2015, 115, 9801–9868. [Google Scholar] [CrossRef] [Green Version]
- Du, M.; Zhu, P.; Yan, X.; Su, Y.; Song, W.; Li, J. Honeycomb self-assembled peptide scaffolds by the breath figure method. Chem. Eur. J. 2011, 17, 4238–4245. [Google Scholar] [CrossRef]
- Li, J.; Peng, J.; Huang, W.; Wu, Y.; Fu, J.; Cong, Y.; Xue, L.; Han, Y. Ordered honeycomb-structured gold nanoparticle films with changeable pore morphology: From circle to ellipse. Langmuir 2005, 21, 2017–2021. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S. Regulating MC3T3-E1 cells on deformable poly (ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS Appl. Mater. Interfaces 2012, 4, 4966–4975. [Google Scholar] [CrossRef]
- Kasuya, J.; Sudo, R.; Tamogami, R.; Masuda, G.; Mitaka, T.; Ikeda, M.; Tanishita, K. Reconstruction of 3D stacked hepatocyte tissues using degradable, microporous poly (d, l-lactide-co-glycolide) membranes. Biomaterials 2012, 33, 2693–2700. [Google Scholar] [CrossRef]
- Fajstavrová, K.; Rimpelová, S.; Fajstavr, D.; Švorčík, V.; Slepička, P. PLLA honeycomb-like pattern on fluorinated ethylene propylene as a substrate for fibroblast growth. Polymers 2020, 12, 2436. [Google Scholar] [CrossRef] [PubMed]
- Bunz, U.H.F. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv. Mater. 2006, 18, 973–989. [Google Scholar] [CrossRef]
- Kuroda, K.; Caputo, G.A.; DeGrado, W.F. The role of hydrophobicity in the antimicrobial and hemolytic activities of polymethacrylate derivatives. Chem. Eur. J. 2009, 15, 1123–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.L.; Tung, P.H.; Chang, F.C. Synthesis of rod-coil diblock copolymers by ATRP and their honeycomb morphologies formed by the ‘breath figures’ method. Polymer 2005, 46, 9304–9313. [Google Scholar] [CrossRef]
- Deepak, V.; Asha, S. Self-organization-induced three-dimensional honeycomb pattern in structure-controlled bulky methacrylate polymers: Synthesis, morphology, and mechanism of pore formation. J. Phys. Chem. B 2006, 110, 21450–21459. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jones, M.D.; Davidson, M.G.; Chaudhuri, J.B.; Ellis, M.J. Surfactant-free poly (lactide-co-glycolide) honeycomb films for tissue engineering: Relating solvent, monomer ratio and humidity to scaffold structure. Biotechnol. Lett. 2011, 33, 423–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukuhira, Y.; Yabu, H.; Ijiro, K.; Shimomura, M. Interfacial tension governs the formation of self-organized honeycomb-patterned polymer films. Soft Matter 2009, 5, 2037–2041. [Google Scholar] [CrossRef]
- Yabu, H. Fabrication of honeycomb films by the breath figure technique and their applications. Sci. Technol. Adv. Mater. 2018, 19, 802–822. [Google Scholar] [CrossRef] [Green Version]
- Bui, V.T.; Ko, S.H.; Choi, H.S. Large-scale fabrication of commercially available, nonpolar linear polymer film with a highly ordered honeycomb pattern. ACS Appl. Mater. Interfaces 2015, 7, 10541–10547. [Google Scholar] [CrossRef]
- Nishikawa, T.; Nishida, J.; Ookura, R.; Nishimura, S.I.; Scheumann, V.; Zizlsperger, M.; Lawall, R.; Knoll, W.; Shimomura, M. Web-structured films of an amphiphilic polymer from water in oil emulsion: Fabrication and characterization. Langmuir 2000, 16, 1337–1342. [Google Scholar] [CrossRef]
- Ferrari, E.; Fabbri, P.; Pilati, F. Solvent and substrate contributions to the formation of breath figure patterns in polystyrene films. Langmuir 2011, 27, 1874–1881. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, T.; Xu, L.; Wang, C.; Zhou, X.; Gu, N. Surfactant-induced formation of honeycomb pattern on micropipette with curvature gradient. Langmuir 2011, 27, 5410–5419. [Google Scholar] [CrossRef]
- Connal, L.A.; Vestberg, R.; Hawker, C.J.; Qiao, G.G. Fabrication of reversibly crosslinkable, 3-dimensionally conformal polymeric microstructures. Adv. Funct. Mater. 2008, 18, 3315–3322. [Google Scholar] [CrossRef]
- Ucar, I.O.; Erbil, H.Y. Dropwise condensation rate of water breath figures on polymer surfaces having similar surface free energies. Appl. Surf. Sci. 2012, 259, 515–523. [Google Scholar] [CrossRef]
- Lee, J.; Cuddihy, M.J.; Kotov, N.A. Three-dimensional cell culture matrices: State of the art. Tissue Eng. Part B Rev. 2008, 14, 61–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloria, A.; De Santis, R.; Ambrosio, L. Polymer-based composite scaffolds for tissue engineering. J. Appl. Biomater. Biomech. 2010, 8, 57–67. [Google Scholar]
- Yuan, M.-S.; Xu, W.; He, Q.-G.; Cheng, J.G.; Fu, Y.-Y. Research progress of breath figure method in device application. Chin. J. Anal. Chem. 2022, 50, 44–52. [Google Scholar] [CrossRef]
- Shiohara, A.; Prieto-Simon, B.; Voelcker, N.H. Porous polymeric membranes: Fabrication techniques and biomedical applications. J. Mater. Chem. B 2021, 9, 2129–2154. [Google Scholar] [CrossRef]
- Davis, M.E. Non-viral gene delivery systems. Curr. Opin. Biotechnol. 2002, 13, 128–131. [Google Scholar] [CrossRef]
- Wu, L.W.; Wan, L.S.; Ou, Y.; Zhu, L.W.; Xu, Z.K. Fabrication of transferable perforated isoporous membranes on versatile solid substrates via the breath figure method. Adv. Mater. Interfaces 2015, 2, 1500285. [Google Scholar] [CrossRef]
- Yu, B.; Cong, H.; Li, Z.; Yuan, H.; Peng, Q.; Chi, M.; Yang, S.; Yang, R.; Ranil Wickramasinghe, S.; Tang, J. Fabrication of highly ordered porous membranes of cellulose triacetate on ice substrates using breath figure method. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 552–558. [Google Scholar] [CrossRef]
- Ou, Y.; Wang, L.-Y.; Zhu, L.-W.; Wan, L.-S.; Xu, Z.-K. In-situ immobilization of silver nanoparticles on self-assembled honeycomb-patterned films enables surface-enhanced Raman scattering (SERS) substrates. J. Phys. Chem. C 2014, 118, 11478–11484. [Google Scholar] [CrossRef]
- Yabu, H.; Shimomura, M. Single-step fabrication of transparent superhydrophobic porous polymer films. Chem. Mater. 2005, 17, 5231–5234. [Google Scholar] [CrossRef]
- Vohra, V.; Bolognesi, A.; Calzaferri, G.; Botta, C. Multilevel organization in hybrid thin films for optoelectronic applications. Langmuir 2009, 25, 12019–12023. [Google Scholar] [CrossRef] [PubMed]
- Biswal, T. Biopolymers for tissue engineering applications: A review. Mater. Today Proc. 2021, 41, 397–402. [Google Scholar] [CrossRef]
- Calejo, M.T.; Ilmarinen, T.; Skottman, H.; Kellomäki, M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater. 2018, 66, 44–66. [Google Scholar]
- Bovey, F. Macromolecules: An Introduction to Polymer Science; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Liang, J.; Ma, Y.; Sims, S.; Wu, L. A patterned porous polymer film for localized capture of insulin and glucose-responsive release. J. Mater. Chem. B 2015, 3, 1281–1288. [Google Scholar] [CrossRef]
- Yamazaki, H.; Kohashi, S.; Ito, K.; Ijiro, K.; Shimomura, M. Production technology and applications of honeycomb films. Polym. J. 2022, 54, 107–120. [Google Scholar] [CrossRef]
- Arai, K.; Tanaka, M.; Yamamoto, S.; Shimomura, M. Effect of pore size of honeycomb films on the morphology, adhesion and cytoskeletal organization of cardiac myocytes. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313, 530–535. [Google Scholar] [CrossRef]
- Tanaka, M.; Takayama, A.; Ito, E.; Sunami, H.; Yamamoto, S.; Shimomura, M. Effect of pore size of self-organized honeycomb-patterned polymer films on spreading, focal adhesion, proliferation, and function of endothelial cells. J. Nanosci. Nanotechnol. 2007, 7, 763–772. [Google Scholar]
- Eniwumide, J.O.; Tanaka, M.; Nagai, N.; Morita, Y.; De Bruijn, J.; Yamamoto, S.; Onodera, S.; Kondo, E.; Yasuda, K.; Shimomura, M. The morphology and functions of articular chondrocytes on a honeycomb-patterned surface. BioMed Res. Int. 2014, 2014, 710354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Birch, M.A.; Tanaka, M.; Kirmizidis, G.; Yamamoto, S.; Shimomura, M. Microporous “honeycomb” films support enhanced bone formation in vitro. Tissue Eng. Part A 2013, 19, 2087–2096. [Google Scholar] [CrossRef] [PubMed]
- Clement, A.L.; Moutinho, T.J., Jr.; Pins, G.D. Micropatterned dermal–epidermal regeneration matrices create functional niches that enhance epidermal morphogenesis. Acta Biomater. 2013, 9, 9474–9484. [Google Scholar] [CrossRef] [PubMed]
- McMillan, J.R.; Akiyama, M.; Tanaka, M.; Yamamoto, S.; Goto, M.; Abe, R.; Sawamura, D.; Shimomura, M.; Shimizu, H. Small-diameter porous Poly (ϵ-Caprolactone) films enhance adhesion and growth of human cultured epidermal keratinocyte and dermal fibroblast cells. Tissue Eng. 2007, 13, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Lu, X.; Hu, Y.; Lu, Q. Biomimetic honeycomb-patterned surface as the tunable cell adhesion scaffold. Biomater. Sci. 2015, 3, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Chen, C.; Li, J.; Zhang, A.; Liu, X.; Xu, B.; Gao, S.; Jin, G.; Ma, Z. Robust and hydrophilic polymeric films with honeycomb pattern and their cell scaffold applications. J. Mater. Chem. 2009, 19, 2789–2796. [Google Scholar] [CrossRef]
- Tsuruma, A.; Tanaka, M.; Yamamoto, S.; Shimomura, M. Control of neural stem cell differentiation on honeycomb films. Colloids Surf. A Physicochem. Eng. Asp. 2008, 313, 536–540. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Zhou, Y.; Ye, Z.; Tan, W.-S. Layer-by-layer assembled polyelectrolytes on honeycomb-like porous poly (ε-caprolactone) films modulate the spatial distribution of mesenchymal stem cells. Mater. Sci. Eng. C 2017, 78, 579–588. [Google Scholar] [CrossRef]
- Farzaneh, Z.; Pournasr, B.; Ebrahimi, M.; Aghdami, N.; Baharvand, H. Enhanced functions of human embryonic stem cell-derived hepatocyte-like cells on three-dimensional nanofibrillar surfaces. Stem Cell Rev. Rep. 2010, 6, 601–610. [Google Scholar] [CrossRef]
- Jeon, G.; Yang, S.Y.; Kim, J.K. Functional nanoporous membranes for drug delivery. J. Mater. Chem. 2012, 22, 14814–14834. [Google Scholar] [CrossRef] [Green Version]
- Velayudhan, S.; Kumar, P.; Nair, P.D. A novel, single step, highly sensitive in-vitro cell-based metabolic assay using honeycomb microporous polymer membranes. J. Biomed. Nanotechnol. 2015, 11, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Brazel, C.S. On the importance and mechanisms of burst release in matrix-controlled drug delivery systems. J. Control. Release 2001, 73, 121–136. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, T.; Lawson, L.B.; Freytag, L.C.; Blake, D.A.; Ayyala, R.S.; John, V.T. In vitro degradation and release characteristics of spin coated thin films of PLGA with a “breath figure” morphology. Biomatter 2012, 2, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Ponnusamy, T.; Yu, H.; John, V.T.; Ayyala, R.S.; Blake, D.A. A novel antiproliferative drug coating for glaucoma drainage devices. J. Glaucoma 2014, 23, 526–534. [Google Scholar] [CrossRef] [PubMed]
- Dai, Z.; Yu, X.; Hong, J.; Liu, X.; Sun, J.; Sun, X. Development of a novel CsA-PLGA drug delivery system based on a glaucoma drainage device for the prevention of postoperative fibrosis. Mater. Sci. Eng. C 2016, 66, 206–214. [Google Scholar] [CrossRef] [PubMed]
- Grabacka, M.; Waligorski, P.; Zapata, A.; Blake, D.; Wyczechowska, D.; Wilk, A.; Rutkowska, M.; Vashistha, H.; Ayyala, R.; Ponnusamy, T. Fenofibrate subcellular distribution as a rationale for the intracranial delivery through biodegradable carrier. J. Physiol. Pharmacol. 2015, 66, 233. [Google Scholar]
- Zhuang, C.; Shi, C.; Tao, F.; Cui, Y. Honeycomb structural composite polymer network of gelatin and functional cellulose ester for controlled release of omeprazole. Int. J. Biol. Macromol. 2017, 105, 1644–1653. [Google Scholar] [CrossRef]
- De León, A.S.; Molina, M.; Wedepohl, S.; Muñoz-Bonilla, A.; Rodríguez-Hernández, J.; Calderón, M. Immobilization of stimuli-responsive nanogels onto honeycomb porous surfaces and controlled release of proteins. Langmuir 2016, 32, 1854–1862. [Google Scholar] [CrossRef]
- Su, Y.; Dang, J.; Zhang, H.; Zhang, Y.; Tian, W. Supramolecular Host–Guest Interaction-Enhanced Adjustable Drug Release Based on β-Cyclodextrin-Functionalized Thermoresponsive Porous Polymer Films. Langmuir 2017, 33, 7393–7402. [Google Scholar] [CrossRef]
- Wang, C.; Liu, Q.; Shao, X.; Yang, G.; Xue, H.; Hu, X. One step fabrication of nanoelectrode ensembles formed via amphiphilic block copolymers self-assembly and selective voltammetric detection of uric acid in the presence of high ascorbic acid content. Talanta 2007, 71, 178–185. [Google Scholar] [CrossRef]
- Wang, Q.; Wen, X.; Kong, J. Recent progress on uric acid detection: A review. Crit. Rev. Anal. Chem. 2020, 50, 359–375. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.C.; Wan, L.S.; Ke, B.B.; Xu, Z.K. Honeycomb-patterned film segregated with phenylboronic acid for glucose sensing. Langmuir 2011, 27, 12597–12605. [Google Scholar] [CrossRef]
- Ting, S.S.; Min, E.H.; Escale, P.; Save, M.; Billon, L.; Stenzel, M.H. Lectin recognizable biomaterials synthesized via nitroxide-mediated polymerization of a methacryloyl galactose monomer. Macromolecules 2009, 42, 9422–9434. [Google Scholar] [CrossRef]
- Munoz-Bonilla, A.; Ibarboure, E.; Bordegé, V.; Fernández-García, M.; Rodríguez-Hernández, J. Fabrication of honeycomb-structured porous surfaces decorated with glycopolymers. Langmuir 2010, 26, 8552–8558. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.; Bao, Z. Fabrication of flexible pressure sensors with microstructured polydimethylsiloxane dielectrics using the breath figures method. J. Mater. Res. 2015, 30, 3584–3594. [Google Scholar] [CrossRef] [Green Version]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef]
- Yang, M.; Ding, Y.; Ge, X.; Leng, Y. Control of bacterial adhesion and growth on honeycomb-like patterned surfaces. Colloids Surf. B Biointerfaces 2015, 135, 549–555. [Google Scholar] [CrossRef]
- Zhao, Y.; Shang, Q.; Yu, J.; Zhang, Y.; Liu, S. Nanostructured 2D diporphyrin honeycomb film: Photoelectrochemistry, photodegradation, and antibacterial activity. ACS Appl. Mater. Interfaces 2015, 7, 11783–11791. [Google Scholar] [CrossRef]
- Muñoz-Bonilla, A.; Cuervo-Rodríguez, R.; López-Fabal, F.; Gómez-Garcés, J.L.; Fernández-García, M. Antimicrobial porous surfaces prepared by breath figures approach. Materials 2018, 11, 1266. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, Y.; Li, G.; Hao, J. Porphyrin-based honeycomb films and their antibacterial activity. Langmuir 2014, 30, 6419–6426. [Google Scholar] [CrossRef]
- Manabe, K.; Nishizawa, S.; Shiratori, S. Porous surface structure fabricated by breath figures that suppresses Pseudomonas aeruginosa biofilm formation. ACS Appl. Mater. Interfaces 2013, 5, 11900–11905. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Alfredo, N.; Santos-Coquillat, A.; Martínez-Campos, E.; Dorronsoro, A.; Cortajarena, A.L.; Del Campo, A.; Rodríguez-Hernández, J. Highly efficient antibacterial surfaces based on bacterial/cell size selective microporous supports. ACS Appl. Mater. Interfaces 2017, 9, 44270–44280. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Shen, X.; Liu, X.; Chen, Z.; Shu, B.; Wan, L.; Liu, H.; He, J. Hybrid breath figure method: A new insight in Petri dishes for cell culture. J. Colloid Interface Sci. 2019, 541, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Slepička, P.; Fajstavr, D.; Krejčová, M.; Rimpelová, S.; Slepičková Kasálková, N.; Kolská, Z.; Švorčík, V. Biopolymer Composites with Ti/Au Nanostructures and Their Antibacterial Properties. Pharmaceutics 2021, 13, 826. [Google Scholar] [CrossRef]
- Hurtuková, K.; Fajstavrová, K.; Rimpelová, S.; Vokatá, B.; Fajstavr, D.; Slepičková Kasálková, N.; Siegel, J.; Švorčík, V.; Slepička, P. Antibacterial properties of a honeycomb-like pattern with cellulose acetate and silver nanoparticles. Materials 2021, 14, 4051. [Google Scholar] [CrossRef] [PubMed]
- Tormena, R.P.I.; Rosa, E.V.; de Fátima Oliveira Mota, B.; Chaker, J.A.; Fagg, C.W.; Freire, D.O.; Martins, P.M.; da Silva, I.C.R.; Sousa, M.H. Evaluation of the antimicrobial activity of silver nanoparticles obtained by microwave-assisted green synthesis using Handroanthus impetiginosus (Mart. ex DC.) Mattos underbark extract. RSC Adv. 2020, 10, 20676–20681. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, T.; He, S.; Ling, J.; Gu, N.; Zhang, Y.; Zhou, X.; Wang, X.; Cheng, L. Bacterial adhesion on honeycomb-structured poly (L-lactic acid) surface with Ag nanoparticles. J. Biomed. Nanotechnol. 2012, 8, 791–799. [Google Scholar] [CrossRef]
- Kim, Y.W.; Modigunta, J.K.R.; Male, U. Effect of ferrocene on the fabrication of honeycomb-patterned porous polystyrene films and silver functionalization of the film. Polymer 2019, 166, 55–62. [Google Scholar] [CrossRef]
- Mirotsou, M.; Abe, M.; Lanza, R. Corneal replacement tissue. In Principles of Tissue Engineering; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1135–1143. [Google Scholar]
- Slepicka, P.; Slepickova Kasalkova, N.; Siegel, J.; Kolska, Z.; Bacakova, L.; Svorcik, V. Nano-structured and functionalized surfaces for cytocompatibility improvement and bactericidal action. Biotechnol. Adv. 2015, 33, 1120–1129. [Google Scholar] [CrossRef]
- Slepička, P.; Siegel, J.; Lyutakov, O.; Slepičková Kasálková, N.; Kolská, Z.; Bačáková, L.; Švorčík, V. Polymer nanostructures for bioapplications induced by laser treatment. Biotechnol. Adv. 2018, 36, 839–855. [Google Scholar] [CrossRef]
- Toncheva, A.; Mincheva, R.; Kancheva, M.; Manolova, N.; Rashkov, I.; Dubois, P.; Markova, N. Antibacterial PLA/PEG electrospun fibers: Comparative study between grafting and blending PEG. Eur. Polym. J. 2016, 75, 223–233. [Google Scholar] [CrossRef]
- Yim, E.K.; Pang, S.W.; Leong, K.W. Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp. Cell Res. 2007, 313, 1820–1829. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, L.; Wei, Z.; Wan, M. Conducting polymer nanostructures and their application in biosensors. J. Colloid Interface Sci. 2010, 341, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Michaljaničová, I.; Slepička, P.; Rimpelová, S.; Slepičková Kasálková, N.; Švorčík, V. Regular pattern formation on surface of aromatic polymers and its cytocompatibility. Appl. Surf. Sci. 2016, 370, 131–141. [Google Scholar] [CrossRef]
- Slepička, P.; Michaljaničová, I.; Slepičková Kasálková, N.; Kolská, Z.; Rimpelová, S.; Ruml, T.; Švorčík, V. Poly-l-lactic acid modified by etching and grafting with gold nanoparticles. J. Mater. Sci. 2013, 48, 5871–5879. [Google Scholar] [CrossRef]
- Kasálková Slepičková, N.; Slepička, P.; Kolská, Z.; Hodačová, P.; Kučková, Š.; Švorčík, V. Grafting of bovine serum albumin proteins on plasma-modified polymers for potential application in tissue engineering. Nanoscale Res. Lett. 2014, 9, 161. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.W.; Wu, J.Y.; Liu, C.T.; Liao, G.C.; Huang, H.Y.; Hsu, R.Q.; Chiang, M.H.; Wu, J.S. Fast incorporation of primary amine group into polylactide surface for improving C2C12 cell proliferation using nitrogen-based atmospheric-pressure plasma jets. J. Biomed. Mater. Res. Part A 2014, 102, 160–169. [Google Scholar] [CrossRef]
- Cheng, K.Y.; Chang, C.H.; Yang, Y.W.; Liao, G.C.; Liu, C.T.; Wu, J.S. Enhancement of cell growth on honeycomb-structured polylactide surface using atmospheric-pressure plasma jet modification. Appl. Surf. Sci. 2017, 394, 534–542. [Google Scholar] [CrossRef]
- González-Henríquez, C.; Rodríguez-Hernández, J. Wrinkled Polymer Surfaces: Strategies, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Slepička, P.; Neděla, O.; Sajdl, P.; Kolská, Z.; Švorčík, V. Polyethylene naphthalate as an excellent candidate for ripple nanopatterning. Appl. Surf. Sci. 2013, 285, 885–892. [Google Scholar] [CrossRef]
- Fajstavr, D.; Slepička, P.; Švorčík, V. LIPSS with gold nanoclusters prepared by combination of heat treatment and KrF exposure. Appl. Surf. Sci. 2019, 465, 919–928. [Google Scholar] [CrossRef]
- Yabu, H.; Matsui, J.; Matsuo, Y. Site-Selective Wettability Control of Honeycomb Films by UV–O3-Assisted Sol–Gel Coating. Langmuir 2020, 36, 12023–12029. [Google Scholar] [CrossRef]
- Lišková, J.; Slepičková Kasálková, N.; Slepička, P.; Švorčík, V.; Bačáková, L. Heat-treated carbon coatings on poly (L-lactide) foils for tissue engineering. Mater. Sci. Eng. C 2019, 100, 117–128. [Google Scholar] [CrossRef]
- Yabu, H.; Hirai, Y.; Shimomura, M. Electroless plating of honeycomb and pincushion polymer films prepared by self-organization. Langmuir 2006, 22, 9760–9764. [Google Scholar] [CrossRef]
- Yabu, H.; Inoue, K.; Shimomura, M. Multiple-periodic structures of self-organized honeycomb-patterned films and polymer nanoparticles hybrids. Colloids Surf. A Physicochem. Eng. Asp. 2006, 284, 301–304. [Google Scholar] [CrossRef]
- Slepička, P.; Rimpelová, S.; Slepičková Kasálková, N.; Fajstavr, D.; Sajdl, P.; Kolská, Z.; Švorčík, V. Antibacterial properties of plasma-activated perfluorinated substrates with silver nanoclusters deposition. Nanomaterials 2021, 11, 182. [Google Scholar] [CrossRef]
- Kabuto, T.; Hashimoto, Y.; Karthaus, O. Thermally stable and solvent resistant mesoporous honeycomb films from a crosslinkable polymer. Adv. Funct. Mater. 2007, 17, 3569–3573. [Google Scholar] [CrossRef]
- Karikari, A.S.; Williams, S.R.; Heisey, C.L.; Rawlett, A.M.; Long, T.E. Porous thin films based on photo-cross-linked star-shaped poly (D, L-lactide) s. Langmuir 2006, 22, 9687–9693. [Google Scholar] [CrossRef]
- Bolognesi, A.; Galeotti, F.; Moreau, J.; Giovanella, U.; Porzio, W.; Scavia, G.; Bertini, F. Unsoluble ordered polymeric pattern by breath figure approach. J. Mater. Chem. 2010, 20, 1483–1488. [Google Scholar] [CrossRef]
- Slepička, P.; Siegel, J.; Šlouf, M.; Fajstavr, D.; Fajstavrová, K.; Kolská, Z.; Švorčík, V. The Functionalization of a Honeycomb Polystyrene Pattern by Excimer Treatment in Liquid. Polymers 2022, 14, 4944–4955. [Google Scholar] [CrossRef]
- Xu, W.Z.; Zhang, X.; Kadla, J.F. Design of functionalized cellulosic honeycomb films: Site-specific biomolecule modification via “click chemistry”. Biomacromolecules 2012, 13, 350–357. [Google Scholar] [CrossRef]
- Nishida, J.; Nishikawa, K.; Nishimura, S.-I.; Wada, S.; Karino, T.; Nishikawa, T.; Ijiro, K.; Shimomura, M. Preparation of self-organized micro-patterned polymer films having cell adhesive ligands. Polym. J. 2002, 34, 166–174. [Google Scholar] [CrossRef] [Green Version]
- Cha, T. Surface Chemical Modification for the Immobilization of Biomolecules; University of Minnesota: Minneapolis, MN, USA, 2005. [Google Scholar]
- Min, E.; Wong, K.H.; Stenzel, M.H. Microwells with patterned proteins by a self-assembly process using honeycomb-structured porous films. Adv. Mater. 2008, 20, 3550–3556. [Google Scholar] [CrossRef]
- Ke, B.B.; Wan, L.S.; Xu, Z.K. Controllable construction of carbohydrate microarrays by site-directed grafting on self-organized porous films. Langmuir 2010, 26, 8946–8952. [Google Scholar] [CrossRef]
- Nystrom, D.; Malmstrom, E.; Hult, A.; Blakey, I.; Boyer, C.; Davis, T.P.; Whittaker, M.R. Biomimetic surface modification of honeycomb films via a “grafting from” approach. Langmuir 2010, 26, 12748–12754. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, C. Micropatterning of Proteins on 3D Porous Polymer Film Fabricated by Using the Breath-Figure Method. Adv. Mater. 2007, 19, 913–916. [Google Scholar]
- Hernández-Guerrero, M.; Min, E.; Barner-Kowollik, C.; Müller, A.H.; Stenzel, M.H. Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process. J. Mater. Chem. 2008, 18, 4718–4730. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajstavr, D.; Fajstavrová, K.; Frýdlová, B.; Slepičková Kasálková, N.; Švorčík, V.; Slepička, P. Biopolymer Honeycomb Microstructures: A Review. Materials 2023, 16, 772. https://doi.org/10.3390/ma16020772
Fajstavr D, Fajstavrová K, Frýdlová B, Slepičková Kasálková N, Švorčík V, Slepička P. Biopolymer Honeycomb Microstructures: A Review. Materials. 2023; 16(2):772. https://doi.org/10.3390/ma16020772
Chicago/Turabian StyleFajstavr, Dominik, Klára Fajstavrová, Bára Frýdlová, Nikola Slepičková Kasálková, Václav Švorčík, and Petr Slepička. 2023. "Biopolymer Honeycomb Microstructures: A Review" Materials 16, no. 2: 772. https://doi.org/10.3390/ma16020772
APA StyleFajstavr, D., Fajstavrová, K., Frýdlová, B., Slepičková Kasálková, N., Švorčík, V., & Slepička, P. (2023). Biopolymer Honeycomb Microstructures: A Review. Materials, 16(2), 772. https://doi.org/10.3390/ma16020772