Determination of the Dielectric Constant of Niobium Oxide by Using Combined EIS and Ellipsometric Methods
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Ellipsometric Measurements
3.2. Impedance Measurements
3.3. SEM Observation
3.4. XPS Measurements
4. Discussion
- The surface preparation method decides the optical constant’s value for the substrate (incorrect determination of the refractive indices of bare metal substrates is one of the essential errors in ellipsometric measurements [16]). In our case, the best results were obtained for mechanically polished samples,
- Angle deviations were smaller than three degrees for all anodizing voltages. Other models did not fulfill this criterion.
5. Conclusions
- The thickness of the oxide layer on niobium surface can be precisely measured with the ellipsometric method when optical constants correspond to model B.
- The determined thickness vs. potential dependence has the form:d =2.14 (± 0.05) · U + 12.2 (± 1.7) (nm)in the range of applied potentials 0–50 V.
- The Nb sample was usually covered with the initial oxide layer, whose thickness was about 3 nm.
- In the potential range 0–30 V, the best fit to the EIS data can be obtained with the equivalent circuit shown in Figure 5a, which corresponds to a single oxide layer.
- As a result of combined ellipsometric and EIS methods, the best value of dielectric constant 93 ± 5 for the oxide Nb2O5 was obtained.
- Pits and holes may create two-layer structures responsible for the capacity collapse for anodization voltage above 30 V.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horowitz, P.; Hill, W. The Art of Electronics; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Freeman, Y. Tantalum and Niobium-Based Capacitors Science, Technology, and Applications; Springer International Publishing: Cham, Switzerland, 2018. [Google Scholar]
- Ono, S. Films for Electrolytic Capacitors Passive. In Encyclopedia of Interfacial Chemistry; Wandelt, K., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 376–395. [Google Scholar]
- Young, L. Anodic Oxide Films Part 4.—The interpretation of impedance measurements on oxide coated electrodes on niobium. Trans. Farday Soc. 1955, 51, 1250–1260. [Google Scholar] [CrossRef]
- Fuschillo, N.; Lalevic, B.; Annamalai, K. Dielectric properties of amorphous Nb2O5 thin films. Thin Solid Film. 1975, 30, 145–154. [Google Scholar] [CrossRef]
- Gomes, M.A.B.; de S. Bulhões, L.O.; de Castro, S.C.; Damião, A.J. The Electrochromic Process at Nb2Os Electrodes Prepared by Thermal Oxidation of Niobium. J. Electrochem. Soc. 1990, 137, 3067. [Google Scholar] [CrossRef]
- Kerrec, O.; Devilliers, D.; Groult, H.; Chemla, M. Dielectric properties of anodic oxide films on tantalum. Electrochim. Acta 1995, 40, 719–724. [Google Scholar] [CrossRef]
- Cavigliasso, G.E.; Esplandiu, M.J.; Macagno, V.A. Influence of the forming electrolyte on the electrical properties of tantalum and niobium oxide films: An EIS comparative study. J. Appl. Electrochem. 1998, 28, 1213–1219. [Google Scholar] [CrossRef]
- Colard, S.; Mihailovic, M. Characterization of inhomogeneous Ælms by multiple-angle ellipsometry. Thin Solid Film. 1998, 336, 362–365. [Google Scholar] [CrossRef]
- Graça, M.; Saraiva, M.; Freire, F.; Valente, M.; Costa, L. Electrical analysis of niobium oxide thin films. Thin Solid Film. 2015, 585, 95–99. [Google Scholar] [CrossRef]
- Arsov, L.D.; Mickova, I. Ellipsometric study of passive and anodic oxide films formed on Ti and Nb electrodes. J. Electrochem. Sci. Eng. 2015, 5, 221. [Google Scholar] [CrossRef] [Green Version]
- Arsova, I.; Arsov, L.; Hebestreit, N.; Anders, A.; Plieth, W. Electrochemical formation of anodic oxide films on Nb surfaces: Ellipsometric and Raman spectroscopical studies. J. Solid State Electrochem. 2006, 11, 209–214. [Google Scholar] [CrossRef]
- Komatsu, I.; Aoki, H.; Ebisawa, M.; Kuroda, A.; Kuroda, K.; Maeda, S. Color change mechanism of niobium oxide thin film with incidental light angle and applied voltage. Thin Solid Film. 2016, 603, 180–186. [Google Scholar] [CrossRef]
- Knorr, K.; Leslie, J.D. Ellipsometric measurements of the plasma oxidation of Nb and Ta and thier interpretation. J. Electrochem. Soc. 1974, 121, 805–808. [Google Scholar] [CrossRef]
- Lee, W.L.; Olive, G.; Pulfrey, D.L.; Young, L. Ionnic current as a function of field in the oxide during anodization of tantalum and niobium. J. Electrochem. Soc. 1970, 117, 1172–1176. [Google Scholar] [CrossRef]
- Arsova, I.L.; Prusi, A.R.; Arsov, L.D. Ellipsometric study of anodic oxide films formed on niobium surfaces. J. Solid State Electrochem. 2003, 7, 217–222. [Google Scholar] [CrossRef]
- Dyer, C.K.; Leach, J.S.L. Reversible optical changes within anodic oxide films on titanium and niobium. J. Electrochem. Soc. 1978, 125, 23–29. [Google Scholar] [CrossRef]
- Devore, J.L. Probability and Statistics for Engineering and the Sciences, 8th ed.; Brooks/Cole: Belmont, CA, USA, 2010. [Google Scholar]
- Hirschorn, B.; Orazem, M.E.; Tribollet, B.; Vivier, V.; Frateur, I.; Musiani, M. Constant-Phase-Element behavior caused by resistivity distribution in films. J. Electrochem. Soc. 2010, 157, C452–C457. [Google Scholar] [CrossRef] [Green Version]
- Jorcin, J.-B.; Orazem, M.E.; Pébère, N.; Tribollet, B. CPE analysis by local electrochemical impedance spectroscopy. Electrochim. Acta 2006, 51, 1473–1479. [Google Scholar] [CrossRef]
- Juttner, K. Electrochemical impedance spectroscopy (EIS) of corrosion processes on inhomogeneous surface. Electrochim. Acta 1990, 35, 1501–1508. [Google Scholar] [CrossRef]
- Macagno, V.; Schultze, J.W. The growth and properties of thin oxide layers on tantalum electrodes. J. Electroanal Chem. 1984, 180, 157–170. [Google Scholar] [CrossRef]
- Regonini, D.; Bowen, C.; Jaroenworaluck, A.; Stevens, R. A review of growth mechanism, structure and crystallinity of anodized TiO2 nanotubes. Mater. Sci. Eng. R: Rep. 2013, 74, 377–406. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, K.; Nagahara, K.; Takahashi, H.; Asoh, H.; Ono, S. Evaluation of dielectric properties of anodic oxide films formed on niobium. ECS Meet. Abstr. 2007, MA2007-02, 57. [Google Scholar] [CrossRef]
- Hsu, C.H.; Mansfeld, F. Concerning the Conversion of the Constant Phase Element Parameter Y0 into a Capacitance. Corrosion 2001, 57, 747. [Google Scholar] [CrossRef]
Model Version | Nb Substrate Layer | Surface Preparation | Nb2O5 Layer | Surface Preparation and Measurement Conditions |
---|---|---|---|---|
A | 2.850 - i∙2.990 [17] | Mechanically polished | 2.270 - i∙0.0200 [16] | Mechanically polished / in situ |
B | 2.850 - i∙2.990 [17] | Mechanically polished | 2.345 - i∙0.0120 [12] | Electropolished / ex situ |
C | 3.620 - i∙3.590 [16] | Electropolished | 2.270 - i∙0.0200 [16] | Mechanically polished in situ |
D | 3.620 - i∙3.590 [16] | Electropolished | 2.345 - i∙0.0120 [12] | Electropolished / ex situ |
Model | Anodization Coefficient α (nm∙V−1) | Initial Oxide Layer (Calculated for Regression) (nm) | Natural Oxide Layer Measured Directly after Polishing (nm) | Coefficient of Determination (R2) |
---|---|---|---|---|
A | 2.22 ± 0.05 | 13.73 ± 1.52 | 2.74 | 0.9961 |
B | 2.14 ± 0.05 | 12.22 ± 1.69 | 2.66 | 0.9949 |
C | 2.22 ± 0.06 | 19.15 ± 2.91 | 8.51 | 0.9939 |
D | 2.13 ± 0.08 | 17.46 ± 2.35 | 8.30 | 0.9900 |
Anodization Voltage | Single-Layer Model | Double-Layer Model | Single Frequency | ||||
---|---|---|---|---|---|---|---|
C | n | C1 | n1 | C2 | n2 | C | |
0 | 66.6 | 0.9534 | 44.92 | ||||
5 | 9.29 | 0.9647 | 6.81 | ||||
10 | 5.07 | 0.9306 | 2.69 | ||||
15 | 3.47 | 0.9035 | 1.92 | ||||
20 | 2.07 | 0.9391 | 1.32 | ||||
25 | 1.53 | 0.9491 | 1.01 | ||||
30 | 1.29 | 0.9486 | 0.76 | ||||
35 | 5.01 | 0.8889 | 126.4 | 0.6942 | 1.39 | ||
40 | 8.32 | 0.8822 | 382.2 | 0.5300 | 2.95 | ||
45 | 6.52 | 0.8175 | 11.7 | 0.8380 | 2.38 | ||
50 | 2.08 | 0.8851 | 5.6 | 0.9954 | 0.68 |
Voltage U (V) | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |
---|---|---|---|---|---|---|---|---|---|---|---|
A: Single frequency measurement | 76 | 131 | 51 | 50 | 42 | 39 | 34 | 71 | 170 | 152 | 48 |
B: EIS single layer model | 114 | 131 | 103 | 93 | 68 | 117 | 69 |
Anodization Coefficient α (nm V−1) | Voltage/Potential Range (V) | Electrolyte | Comments | Work |
---|---|---|---|---|
2.22 ± 0.06 | 5–50 | 1M H2SO4 | Oxide thickness measured using ellipsometry | This work |
2.35 ± 0.06 | 0–8 | 0.5 M H2SO4 | Oxide thickness calculated from the current flow | [8] |
2.15 ± 0.05 | 1 M HNO3 | |||
1.98 ± 0.05 | 1 M H3PO4 | |||
2.40 ± 0.05 | 1 M NaOH | |||
2.35 ± 0.06 | 1M H2SO4 | |||
2.26 ± no data | 0–120 | 5.0 w/v% citric acid | Oxide thickness measured using ellipsometry | [12] |
2.35 ± 0.03 | 10–100 | 0.5 M H2SO4 | Oxide thickness measured using ellipsometry (data obtained from the plot) | [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fitzner, K.; Stępień, M. Determination of the Dielectric Constant of Niobium Oxide by Using Combined EIS and Ellipsometric Methods. Materials 2023, 16, 798. https://doi.org/10.3390/ma16020798
Fitzner K, Stępień M. Determination of the Dielectric Constant of Niobium Oxide by Using Combined EIS and Ellipsometric Methods. Materials. 2023; 16(2):798. https://doi.org/10.3390/ma16020798
Chicago/Turabian StyleFitzner, Krzysztof, and Michał Stępień. 2023. "Determination of the Dielectric Constant of Niobium Oxide by Using Combined EIS and Ellipsometric Methods" Materials 16, no. 2: 798. https://doi.org/10.3390/ma16020798
APA StyleFitzner, K., & Stępień, M. (2023). Determination of the Dielectric Constant of Niobium Oxide by Using Combined EIS and Ellipsometric Methods. Materials, 16(2), 798. https://doi.org/10.3390/ma16020798