Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law
Abstract
:1. Introduction
2. Scaled Boundary Finite Element (SBFEM)
2.1. Fundamentals
2.2. Stress Field at Crack Tip with Cohesive Tractions
- The mesh generation of the domain in Figure 1a and the cohesive zone in the surroundings of the crack polygon is defined. In this method, the generic mesh contains an arbitrarily many sided polygon in boundary regions, master cells far away from the boundaries, and the crack cells.
- The crack cell is divided into two SBFEM cells to discretize the crack faces and to insert the interface elements into the SBFEM system. The local coordinates of the SBFEM system are illustrated in Figure 1b.
- The shadow domain is generated as shown in Figure 1c. It is implemented in order to calculate the cohesive tractions (side-face forces) and the nodal displacements throughout the crack subdomain. This method inserts a node at the crack tip with three corresponding edges (two edges, and , for each crack face, and one edge, , to split the crack cell into two). Knowing the crack angle, , the orientation of is projected in a way that a straight line is extended from the crack tip with an angle . Then, the node closest to the intersection point at edge of the cracked cell is employed to split the polygon.
- The SBFEM is directly coupled with zero-thickness, four node-interface elements along the crack path (Figure 1d) which are inserted along the lines of the mesh. The cohesive edges divide the subdomains into two divisions. The pair and form contact pairs with a set of crack opening (w). Additionally, the pair and form contact pairs with a set of crack sliding (s). As the crack propagates, the interface element domain is inserted into the mesh. This can satisfy the compatibility condition in the displacement between the SBFEM polygons and the interface elements.
- Along the crack paths, the fracture process zone is characterized using softening laws of the thermodynamics; see Figure 1e. For concrete, the softening behavior for crack opening and sliding proposed model is based on [46] and defined in the next section. The model uses the cumulative measure of slip as a fundamental damage driving mechanism at the subcritical levels of loading.
2.3. Stress Intensity Factor (SIF) for Scaling Center at Crack Tip
2.4. Crack Growth Criterion
3. Cumulative Damage-Plasticity Based Constitutive Law
3.1. Brief Summary of the Model’s Formulation
3.2. Elementary Studies of the Cohesive Model
4. Numerical Validation
4.1. Test Setup
4.2. Loading Scenarios
4.3. Monotonic Loading
4.4. Cyclic Loading
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Local coordinate system of SBFEM | |
Traction cohesive force vector | |
Polar coordinate | |
Crack propagation length | |
L | Crack length |
Stiffens matrix of interface element | |
Jacobian matrix on boundary | |
t | Crack thickness |
Nodal shape function | |
k | Stiffens matrix of the domain |
u | Displacement field |
Displacements on the crack faces | |
Strain field | |
A | Crack surface area |
D | Material constitutive matrix |
Gaussian weight function | |
P | Equivalent nodal load vector |
n | Number of integration points |
Coefficient matrices of SBFEM system | |
Normal and shear cohesive traction forces | |
Z | Hamiltonian matrix |
Nodal side face load | |
q | Internal nodal force vector |
Crack mode I & mode II stress intensity factors | |
Eigenvalue matrices | |
Nodal displacement mode | |
Coefficent | |
Eigenvector matrices | |
c | Integration constants of the SBFEM |
Strain-displacement matrices of SBFEM system | |
M | Number of displacement modes |
Stress field | |
Vector | |
Matrix | |
Transpose of Matrix | |
Inverse of matrix | |
Norm of function, vector of matrix | |
Crack angle | |
Boundary nodal displacement |
Thermodynamic Parameters
Material density | |
Elastic stiffness matrix, Possion’s ratio | |
Y | Energy release rate |
Isotropic and kinematic hardening moduli | |
Thermodynamic hardening forces | |
Damage variable | |
Hardening material variables | |
Exponential damage parameters | |
S | Damage strength parameter |
Reversibility limit parameter |
References
- Bazant, Z.P.; Xu, K. Size effect in fatigue fracture of concrete. ACI Mater. J. 1991, 88, 390–399. [Google Scholar]
- Bazant, Z.P.; Schell, W.F. Fatigue fracture of high-strength concrete and size effect. ACI Mater. J. 1993, 90, 472. [Google Scholar]
- Gan, Y.; Zhang, H.; Zhang, Y.; Xu, Y.; Schlangen, E.; van Breugel, K.; Šavija, B. Experimental study of flexural fatigue behaviour of cement paste at the microscale. Int. J. Fatigue 2021, 151, 106378. [Google Scholar] [CrossRef]
- Li, D.; Huang, P.; Chen, Z.; Yao, G.; Guo, X.; Zheng, X.; Yang, Y. Experimental study on fracture and fatigue crack propagation processes in concrete based on DIC technology. Eng. Fract. Mech. 2020, 235, 107166. [Google Scholar] [CrossRef]
- Paris, P.C. A rational analytic theory of fatigue. Trend Eng. 1961, 13, 9. [Google Scholar]
- Bhowmik, S.; Ray, S. An improved crack propagation model for plain concrete under fatigue loading. Eng. Fract. Mech. 2018, 191, 365–382. [Google Scholar] [CrossRef]
- Nguyen, O.; Repetto, E.; Ortiz, M.; Radovitzky, R. A cohesive model of fatigue crack growth. Int. J. Fract. 2001, 110, 351–369. [Google Scholar] [CrossRef]
- Baktheer, A.; Becks, H. Fracture mechanics based interpretation of the load sequence effect in the flexural fatigue behavior of concrete using digital image correlation. Constr. Build. Mater. 2021, 307, 124817. [Google Scholar] [CrossRef]
- Sancho, J.M.; Planas, J.; Cendón, D.A.; Reyes, E.; Gálvez, J. An embedded crack model for finite element analysis of concrete fracture. Eng. Fract. Mech. 2007, 74, 75–86. [Google Scholar] [CrossRef]
- Unger, J.F.; Eckardt, S.; Könke, C. Modelling of cohesive crack growth in concrete structures with the extended finite element method. Comput. Methods Appl. Mech. Eng. 2007, 196, 4087–4100. [Google Scholar]
- Yang, B.; Mall, S.; Ravi-Chandar, K. A cohesive zone model for fatigue crack growth in quasibrittle materials. Int. J. Solids Struct. 2001, 38, 3927–3944. [Google Scholar] [CrossRef]
- Dekker, R.; van der Meer, F.; Maljaars, J.; Sluys, L. A cohesive XFEM model for simulating fatigue crack growth under mixed-mode loading and overloading. Int. J. Numer. Methods Eng. 2019, 118, 561–577. [Google Scholar] [CrossRef] [Green Version]
- Turon, A.; Costa, J.; Camanho, P.P.; Dávila, C.G. Simulation of Delamination Propagation in Composites under High-Cycle Fatigue by Means of Cohesive-Zone Models; Technical report; NASA Langley Research Center: Hampton, VA, USA, 2006. Available online: https://ntrs.nasa.gov/search.jsp?R=20070004889 (accessed on 24 August 2013).
- Harper, P.W.; Hallett, S.R. A fatigue degradation law for cohesive interface elements—Development and application to composite materials. Int. J. Fatigue 2010, 32, 1774–1787. [Google Scholar] [CrossRef] [Green Version]
- Kirane, K.; Bažant, Z.P. Microplane damage model for fatigue of quasibrittle materials: Sub-critical crack growth, lifetime and residual strength. Int. J. Fatigue 2015, 70, 93–105. [Google Scholar] [CrossRef]
- Titscher, T.; Unger, J.F. Efficient higher-order cycle jump integration of a continuum fatigue damage model. Int. J. Fatigue 2020, 141, 105863. [Google Scholar] [CrossRef]
- Carrara, P.; Ambati, M.; Alessi, R.; De Lorenzis, L. A framework to model the fatigue behavior of brittle materials based on a variational phase-field approach. Comput. Methods Appl. Mech. Eng. 2020, 361, 112731. [Google Scholar] [CrossRef]
- Seleš, K.; Aldakheel, F.; Tonković, Z.; Sorić, J.; Wriggers, P. A general phase-field model for fatigue failure in brittle and ductile solids. Comput. Mech. 2021, 67, 1431–1452. [Google Scholar] [CrossRef]
- Golahmar, A.; Kristensen, P.K.; Niordson, C.F.; Martínez-Pañeda, E. A phase field model for hydrogen-assisted fatigue. Int. J. Fatigue 2022, 154, 106521. [Google Scholar] [CrossRef]
- Khalil, Z.; Elghazouli, A.Y.; Martínez-Pañeda, E. A generalised phase field model for fatigue crack growth in elastic–plastic solids with an efficient monolithic solver. Comput. Methods Appl. Mech. Eng. 2022, 388, 114286. [Google Scholar] [CrossRef]
- Karimi, M.; Abrinia, K.; Hamdia, K.M.; Hashemianzadeh, S.M.; Baniassadi, M. Effects of functional group type and coverage on the interfacial strength and load transfer of graphene-polyethylene nanocomposites: A molecular dynamics simulation. Appl. Phys. 2022, 128, 341. [Google Scholar] [CrossRef]
- Nguyen, N.H.; Bui, H.H.; Kodikara, J.; Arooran, S.; Darve, F. A discrete element modelling approach for fatigue damage growth in cemented materials. Int. J. Plast. 2019, 112, 68–88. [Google Scholar] [CrossRef]
- Baktheer, A.; Chudoba, R. Classification and evaluation of phenomenological numerical models for concrete fatigue behavior under compression. Constr. Build. Mater. 2019, 221, 661–677. [Google Scholar] [CrossRef]
- Alliche, A. Damage model for fatigue loading of concrete. Int. J. Fatigue 2004, 26, 915–921. [Google Scholar] [CrossRef]
- Kindrachuk, V.M.; Thiele, M.; Unger, J.F. Constitutive modeling of creep-fatigue interaction for normal strength concrete under compression. Int. J. Fatigue 2015, 78, 81–94. [Google Scholar] [CrossRef]
- Desmorat, R.; Ragueneau, F.; Pham, H. Continuum damage mechanics for hysteresis and fatigue of quasi-brittle materials and structures. Int. J. Numer. Anal. Methods Geomech. 2007, 31, 307–329. [Google Scholar] [CrossRef]
- Baktheer, A.; Aguilar, M.; Chudoba, R. Microplane fatigue model MS1 for plain concrete under compression with damage evolution driven by cumulative inelastic shear strain. Int. J. Plast. 2021, 143, 102950. [Google Scholar] [CrossRef]
- Baktheer, A.; Aguilar, M.; Hegger, J.; Chudoba, R. Microplane damage plastic model for plain concrete subjected to compressive fatigue loading. In Proceedings of the 10th International Conference on Fracture Mechanics of Concrete and Concrete Structures, FraMCoS-X, Bayonne, France, 24–26 June 2019. [Google Scholar] [CrossRef]
- Ueda, M.N.; Konishi, H.O. Quasi-Visco-Elasto-Plastic Constitutive Model of Concrete for Fatigue Simulation. In Proceedings of the International Conference on Fracture Mechanics of Concrete and Concrete Structures (FraMCoS-X), Bayonne, France, 24–26 June 2019. [Google Scholar] [CrossRef]
- Baktheer, A.; Camps, B.; Hegger, J.; Chudoba, R. Numerical and experimental investigations of concrete fatigue behaviour exposed to varying loading ranges. In Proceedings of the Fib Congress, Melbourne, Australia, 7–11 October 2018; pp. 1110–1123, ISBN 978-1-877040-15-3. [Google Scholar]
- Daneshvar, M.H.; Saffarian, M.; Jahangir, H.; Sarmadi, H. Damage identification of structural systems by modal strain energy and an optimization-based iterative regularization method. Eng. Comput. 2022, 1–21. [Google Scholar] [CrossRef]
- Heek, P.; Ahrens, M.A.; Mark, P. Incremental-iterative model for time-variant analysis of SFRC subjected to flexural fatigue. Mater. Struct. 2017, 50, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Krätzig, W.B.; Pölling, R. An elasto-plastic damage model for reinforced concrete with minimum number of material parameters. Comput. Struct. 2004, 82, 1201–1215. [Google Scholar] [CrossRef]
- Song, C.; Wolf, J.P. The scaled boundary finite-element method—alias consistent infinitesimal finite-element cell method—For elastodynamics. Comput. Methods Appl. Mech. Eng. 1997, 147, 329–355. [Google Scholar] [CrossRef]
- Ooi, E.; Yang, Z. Modelling multiple cohesive crack propagation using a finite element–scaled boundary finite element coupled method. Eng. Anal. Bound. Elem. 2009, 33, 915–929. [Google Scholar] [CrossRef]
- Song, C.; Ooi, E.T.; Natarajan, S. A review of the scaled boundary finite element method for two-dimensional linear elastic fracture mechanics. Eng. Fract. Mech. 2018, 187, 45–73. [Google Scholar] [CrossRef]
- Daneshyar, A.; Sotoudeh, P.; Ghaemian, M. The scaled boundary finite element method for dispersive wave propagation in higher-order continua. Int. J. Numer. Methods Eng. 2022. [Google Scholar] [CrossRef]
- Ooi, E.T.; Song, C.; Tin-Loi, F.; Yang, Z. Polygon scaled boundary finite elements for crack propagation modelling. Int. J. Numer. Methods Eng. 2012, 91, 319–342. [Google Scholar] [CrossRef]
- Ooi, E.; Shi, M.; Song, C.; Tin-Loi, F.; Yang, Z. Dynamic crack propagation simulation with scaled boundary polygon elements and automatic remeshing technique. Eng. Fract. Mech. 2013, 106, 1–21. [Google Scholar] [CrossRef]
- Ooi, E.; Natarajan, S.; Song, C.; Ooi, E. Crack propagation modelling in concrete using the scaled boundary finite element method with hybrid polygon–quadtree meshes. Int. J. Fract. 2017, 203, 135–157. [Google Scholar] [CrossRef]
- Yang, Z. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method. Eng. Fract. Mech. 2006, 73, 1711–1731. [Google Scholar] [CrossRef]
- Qu, Y.; Zou, D.; Kong, X.; Yu, X.; Chen, K. Seismic cracking evolution for anti-seepage face slabs in concrete faced rockfill dams based on cohesive zone model in explicit SBFEM-FEM frame. Soil Dyn. Earthq. Eng. 2020, 133, 106106. [Google Scholar] [CrossRef]
- Yang, Z.; Deeks, A. Fully-automatic modelling of cohesive crack growth using a finite element–scaled boundary finite element coupled method. Eng. Fract. Mech. 2007, 74, 2547–2573. [Google Scholar] [CrossRef]
- Rabczuk, T.; Zi, G. A meshfree method based on the local partition of unity for cohesive cracks. Comput. Mech. 2007, 39, 743–760. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, H.; Li, D.; Chai, L. Dynamic Fracture Modeling of Impact Test Specimens by the Polygon Scaled Boundary Finite Element Method. Int. J. Comput. Methods 2022, 2143010. [Google Scholar] [CrossRef]
- Baktheer, A.; Chudoba, R. Pressure-sensitive bond fatigue model with damage evolution driven by cumulative slip: Thermodynamic formulation and applications to steel-and FRP-concrete bond. Int. J. Fatigue 2018, 113, 277–289. [Google Scholar] [CrossRef]
- Deeks, A.J.; Wolf, J.P. A virtual work derivation of the scaled boundary finite-element method for elastostatics. Comput. Mech. 2002, 28, 489–504. [Google Scholar] [CrossRef]
- Wolf, J.P.; Song, C. The scaled boundary finite-element method–a fundamental solution-less boundary-element method. Comput. Methods Appl. Mech. Eng. 2001, 190, 5551–5568. [Google Scholar] [CrossRef]
- Man, H.; Song, C.; Natarajan, S.; Ooi, E.T.; Birk, C. Towards automatic stress analysis using scaled boundary finite element method with quadtree mesh of high-order elements. arXiv 2014, arXiv:1402.5186. [Google Scholar]
- Egger, A.W.; Triantafyllou, S.P.; Chatzi, E.N. The Scaled Boundary Finite Element Method for the Efficient Modeling of Linear Elastic Fracture. In Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-9 V, Berkeley, CA, USA, 28 May–1 June 2016. [Google Scholar]
- Song, C.; Wolf, J.P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method. Comput. Struct. 2002, 80, 183–197. [Google Scholar] [CrossRef]
- Bazant, Z.P.; Li, Y.N. Stability of Cohesive Crack Model: Part I—Energy Principles. J. Appl. Mech. 1995, 62, 959–964. [Google Scholar] [CrossRef]
- Baktheer, A.; Chudoba, R. Modeling of bond fatigue in reinforced concrete based on cumulative measure of slip. In Proceedings of the Computational Modelling of Concrete Structures, EURO-C 2018, Bad Hofgastein, Austria, 26 February–1 March 2018; CRC Press: Boca Raton, FL, USA, 2018; pp. 767–776. [Google Scholar] [CrossRef]
- Baktheer, A.; Spartali, H.; Hegger, J.; Chudoba, R. High-cycle fatigue of bond in reinforced high-strength concrete under push-in loading characterized using the modified beam-end test. Cem. Concr. Compos. 2021, 118, 103978. [Google Scholar] [CrossRef]
- Wunderlich, W.; Stein, E.; Bathe, K.J. Nonlinear Finite Element Analysis in Structural Mechanics: Proceedings of the Europe-US Workshop Ruhr-Universität Bochum, Germany, 28–31 July 1980; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Chudoba, R.; Vořechovský, M.; Aguilar, M.; Baktheer, A. Coupled sliding–decohesion–compression model for a consistent description of monotonic and fatigue behavior of material interfaces. Comput. Methods Appl. Mech. Eng. 2022, 398, 115259. [Google Scholar] [CrossRef]
Parameter | Denomination | Value | Unit |
---|---|---|---|
Compressive strength | 63.61 | [MPa] | |
Tensile strength | 4.28 | [MPa] | |
Young’s Modulus | 34.468 | [GPa] | |
Poisson ratio | 0.2 | [-] |
Parameter | Denomination | Value | Unit |
---|---|---|---|
E | Elastic cohesive modulus | 2800.0 | [MPa] |
Reversibility limit | 1.0 | [MPa] | |
K | Isotropic hardening modulus | 300.0 | [MPa] |
Kinematic hardening modulus | 200.0 | [MPa] | |
S | Damage strength | 2.5 × | [MPa] |
r | Damage accumulation parameter | 1.0 | [-] |
c | Damage accumulation parameter | 0.8 | [-] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alrayes, O.; Könke, C.; Ooi, E.T.; Hamdia, K.M. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law. Materials 2023, 16, 863. https://doi.org/10.3390/ma16020863
Alrayes O, Könke C, Ooi ET, Hamdia KM. Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law. Materials. 2023; 16(2):863. https://doi.org/10.3390/ma16020863
Chicago/Turabian StyleAlrayes, Omar, Carsten Könke, Ean Tat Ooi, and Khader M. Hamdia. 2023. "Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law" Materials 16, no. 2: 863. https://doi.org/10.3390/ma16020863
APA StyleAlrayes, O., Könke, C., Ooi, E. T., & Hamdia, K. M. (2023). Modeling Cyclic Crack Propagation in Concrete Using the Scaled Boundary Finite Element Method Coupled with the Cumulative Damage-Plasticity Constitutive Law. Materials, 16(2), 863. https://doi.org/10.3390/ma16020863