Local Corrosion Behaviors in the Coarse-Grained Heat-Affected Zone in a Newly Developed Zr–Ti–Al–RE Deoxidized High-Strength Low-Alloy Steel
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation and CGHAZ Simulation
2.2. Characterization of Microstructure and Complex Inclusions
2.3. Electrochemical Tests
2.4. Immersion Test
2.5. First-Principles Calculation
3. Results and Discussion
3.1. Formation and Evolution of the Composite Inclusions in CGHAZ
3.1.1. Microstructure and Inclusion Analysis
3.1.2. Thermodynamic Analysis of Inclusions and Nanoparticles’ Evolution Behavior in CGHAZ
3.2. Local Corrosion Induced by the Composite Inclusions in CGHAZ
3.2.1. Potentiodynamic Polarization Tests
3.2.2. Immersion Test
3.2.3. Elastic Mechanical Properties Calculated by First-Principles Modeling
3.2.4. Inclusion Conductivity Property Calculated by First-Principles Modeling
3.2.5. Work Function Calculated by First-Principles Modeling
3.3. Mechanism of Local Corrosion Induced by Zr–Ti–Al–RE Composite Inclusions in CGHAZ
4. Conclusions
- The inclusions and microstructures in the Zr–Ti–Al–RE deoxidized HSLA steels were modified. The formed spherical Zr–Ti–Al–RE composite inclusions have a core–shell structure with (Zr–Mg–Al–Ca–RE)–Ox at the center and CaS and TiN at the periphery.
- Acicular ferrite was formed at specific inclusions in the CGHAZ, which could improve the mechanical properties.
- The spheroidization and softening effects of rare earth elements on the inclusions can lower the stress concentration around the inclusions and increase the local corrosion resistance of the tested steel. Furthermore, the inclusions containing rare earth elements have a significantly higher work function than the matrix, which further reduces the corrosion tendency of the inclusions to undergo anodic dissolution.
- The initiation of pitting corrosion from composite inclusions is triggered by the chemical dissolution of CaS within the composite inclusions. Then, (RE–Zr–Al–Ca)–Ox started to dissolve until the composite inclusion Al2MgO4 region was exposed. Finally, the undissolved Al2MgO4 and TiN fell to the bottom of the pit. The composite spherical inclusions gradually dissolved and transformed into irregular shapes as the immersion duration increased. The addition of rare earth can effectively reduce the tendency for pitting corrosion in a CGHAZ in a marine environment.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buzzatti, D.T.; Kanan, L.F.; Dalpiaz, G.; Scheid, A.; Fortis Kwietniewski, C.E. Effect of heat input and heat treatment on the microstructure and toughness of pipeline girth friction welded API 5L X65 steel. Mater. Sci. Eng. A 2022, 833, 142588–142603. [Google Scholar] [CrossRef]
- Li, Y.; Wan, X.L.; Lu, W.Y.; Shirzadi, A.A.; Isayev, O.; Hress, O.; Wu, K.M. Effect of Zr-Ti combined deoxidation on the microstructure and mechanical properties of high-strength low-alloy steels. Mater. Sci. Eng. A 2016, 659, 179–187. [Google Scholar] [CrossRef]
- Wang, J.; Shen, Y.F.; Xue, W.Y.; Jia, N.; Misra, R.D.K. The significant impact of introducing nanosize precipitates and decreased effective grain size on retention of high toughness of simulated heat affected zone (HAZ). Mater. Sci. Eng. A 2021, 803, 140484–140500. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Wei, W.; Wan, X.; Liu, J.; Wu, K. Effects of Ti and Cu Addition on Inclusion Modification and Corrosion Behavior in Simulated Coarse-Grained Heat-Affected Zone of Low-Alloy Steels. Materials 2021, 14, 791–806. [Google Scholar] [CrossRef]
- Wang, C.; Misra, R.D.K.; Shi, M.H.; Zhang, P.Y.; Wang, Z.D.; Zhu, F.X.; Wang, G.D. Transformation behavior of a Ti–Zr deoxidized steel: Microstructure and toughness of simulated coarse grain heat affected zone. Mater. Sci. Eng. A 2014, 594, 218–228. [Google Scholar] [CrossRef]
- Kumar, S.; Nath, S.K.; Kumar, V. Continuous cooling transformation behavior in the weld coarse grained heat affected zone and mechanical properties of Nb-microalloyed and HY85 steels. Mater. Des. 2016, 90, 177–184. [Google Scholar] [CrossRef]
- Fattahi, M.; Nabhani, N.; Rafiee, E.; Nasibi, M.; Ahmadi, E.; Fattahi, Y. Effect of Ti-based inclusions and acicular ferrite on the corrosion performance of multipass weld metals. Mater. Chem. Phys. 2014, 146, 105–112. [Google Scholar] [CrossRef]
- Hou, Y.; Wang, J.; Liu, L.; Li, G.; Zhai, D. Mechanism of pitting corrosion induced by inclusions in Al-Ti-Mg deoxidized high strength pipeline steel. Micron 2020, 138, 102898–102905. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, G.; Wu, W.; Li, Y. Role of inclusions in the pitting initiation of pipeline steel and the effect of electron irradiation in SEM. Corros. Sci. 2018, 130, 252–260. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, Q.; Li, X.; Hu, J.; Cao, F. Insight into the triggering effect of (Al, Mg, Ca, Mn)-oxy-sulfide inclusions on localized corrosion of weathering steel. J. Mater. Sci. Technol. 2021, 64, 99–113. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, W.; Chen, Y.; Wang, J.; Zhao, Y. Mechanism of Surface Hole Evolution and Impact on Corrosion Resistance of High-Strength Low-Alloy Weathering Steel. J. Mater. Eng. Perform. 2021, 31, 1737–1756. [Google Scholar] [CrossRef]
- Xue, W.; Li, Z.; Xiao, K.; Yu, W.; Song, J.; Chen, J.; Dong, C.; Li, X. Initial microzonal corrosion mechanism of inclusions associated with the precipitated (Ti, Nb)N phase of Sb-containing weathering steel. Corros. Sci. 2020, 163, 108232–108240. [Google Scholar] [CrossRef]
- Wei, W.-Z.; Wu, K.-M.; Liu, J.; Cheng, L.; Zhang, X. Initiation and propagation of localized corrosion induced by (Zr, Ti, Al)-Ox inclusions in low-alloy steels in marine environment. J. Iron Steel Res. Int. 2020, 28, 453–463. [Google Scholar] [CrossRef]
- Wang, L.; Xin, J.; Cheng, L.; Zhao, K.; Sun, B.; Li, J.; Wang, X.; Cui, Z. Influence of inclusions on initiation of pitting corrosion and stress corrosion cracking of X70 steel in near-neutral pH environment. Corros. Sci. 2019, 147, 108–127. [Google Scholar] [CrossRef]
- Wei, J.; Dong, J.H.; Ke, W.; He, X.Y. Influence of Inclusions on Early Corrosion Development of Ultra-Low Carbon Bainitic Steel in NaCl Solution. Corrosion 2015, 71, 1467–1480. [Google Scholar] [CrossRef]
- Soltis, J. Passivity breakdown, pit initiation and propagation of pits in metallic materials—Review. Corros. Sci. 2015, 90, 5–22. [Google Scholar] [CrossRef]
- Akpanyung, K.V.; Loto, R.T. Pitting corrosion evaluation: A review. J. Phys. Conf. Ser. 2019, 1378, 022088–022102. [Google Scholar] [CrossRef]
- Zheng, W.; Yan, X.; Xiong, S.; Wang, G.; Li, G. Pitting corrosion behavior of cerium treated HSLA steel induced by sulfide inclusions in 3.5 wt% NaCl solution. J. Rare Earths 2021, 39, 348–356. [Google Scholar] [CrossRef]
- Chen, S.; Lei, H.; Hou, H.; Ding, C.; Zhang, H.; Zhao, Y. Collision-coalescence among inclusions with bubble attachment and transport in molten steel of RH. J. Mater. Res. Technol. 2021, 15, 5141–5150. [Google Scholar] [CrossRef]
- Costa e Silva, A.L.V.D. The effects of non-metallic inclusions on properties relevant to the performance of steel in structural and mechanical applications. J. Mater. Res. Technol. 2019, 8, 2408–2422. [Google Scholar] [CrossRef]
- Guo, H.; Yang, S.; Wang, T.; Yuan, H.; Zhang, Y.; Li, J. Microstructure evolution and acicular ferrite nucleation in inclusion-engineered steel with modified MgO@C nanoparticle addition. J. Mater. Sci. Technol. 2022, 99, 277–287. [Google Scholar] [CrossRef]
- Wang, P.; Wang, B.; Liu, Y.; Zhang, P.; Luan, Y.K.; Li, D.Z.; Zhang, Z.F. Effects of inclusion types on the high-cycle fatigue properties of high-strength steel. Scr. Mater. 2022, 206, 114232–114237. [Google Scholar] [CrossRef]
- Yang, W.; Peng, K.; Zhang, L.; Ren, Q. Deformation and fracture of non-metallic inclusions in steel at different temperatures. J. Mater. Res. Technol. 2020, 9, 15016–15022. [Google Scholar] [CrossRef]
- Liu, C.; Li, X.; Revilla, R.I.; Sun, T.; Zhao, J.; Zhang, D.; Yang, S.; Liu, Z.; Cheng, X.; Terryn, H.; et al. Towards a better understanding of localised corrosion induced by typical non-metallic inclusions in low-alloy steels. Corros. Sci. 2021, 179, 109150–109158. [Google Scholar] [CrossRef]
- Adabavazeh, Z.; Hwang, W.S.; Su, Y.H. Effect of Adding Cerium on Microstructure and Morphology of Ce-Based Inclusions Formed in Low-Carbon Steel. Sci. Rep. 2017, 7, 46503–46512. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Fu, P.; Liu, H.; Cao, Y.; Sun, C.; Du, N.; Li, D. Effects of Rare Earth elements on microstructure evolution and mechanical properties of 718H pre-hardened mold steel. J. Mater. Sci. Technol. 2020, 50, 245–256. [Google Scholar] [CrossRef]
- Torkamani, H.; Raygan, S.; Mateo, C.; Rassizadehghani, J.; Vivas, J.; Palizdar, Y.; San-Martin, D. The Influence of La and Ce Addition on Inclusion Modification in Cast Niobium Microalloyed Steels. Metals 2017, 7, 377. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.-M.; Lin, Q.; Yue, L.-J.; Liu, L.; Guo, F.; Wang, F.-M. Study of application of rare earth elements in advanced low alloy steels. J. Alloys Compd. 2008, 451, 534–537. [Google Scholar] [CrossRef]
- Liu, C.; Revilla, R.I.; Zhang, D.; Liu, Z.; Lutz, A.; Zhang, F.; Zhao, T.; Ma, H.; Li, X.; Terryn, H. Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment. Corros. Sci. 2018, 138, 96–104. [Google Scholar] [CrossRef]
- Liu, C.; Jiang, Z.; Zhao, J.; Cheng, X.; Liu, Z.; Zhang, D.; Li, X. Influence of rare earth metals on mechanisms of localised corrosion induced by inclusions in Zr-Ti deoxidised low alloy steel. Corros. Sci. 2020, 166, 108463–108472. [Google Scholar] [CrossRef]
- Tang, M.; Wu, K.; Liu, J.; Cheng, L.; Zhang, X.; Chen, Y. Mechanism Understanding of the Role of Rare Earth Inclusions in the Initial Marine Corrosion Process of Microalloyed Steels. Materials 2019, 12, 3359–3373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, Y.; Xiong, G.; Liu, L.; Li, G.; Moelans, N.; Guo, M. Effects of LaAlO3 and La2O2S inclusions on the initialization of localized corrosion of pipeline steels in NaCl solution. Scr. Mater. 2020, 177, 151–156. [Google Scholar] [CrossRef]
- Tan, J.; Wu, X.; Han, E.-H.; Ke, W.; Liu, X.; Meng, F.; Xu, X. Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water. Corros. Sci. 2014, 88, 349–359. [Google Scholar] [CrossRef]
- Villavicencio, J.; Ulloa, N.; Lozada, L.; Moreno, M.; Castro, L. The role of non-metallic Al2O3 inclusions, heat treatments and microstructure on the corrosion resistance of an API 5L X42 steel. J. Mater. Res. Technol. 2020, 9, 5894–5911. [Google Scholar] [CrossRef]
- Wei, J.; Dong, J.; Zhou, Y.; He, X.; Wang, C.; Ke, W. Influence of the secondary phase on micro galvanic corrosion of low carbon bainitic steel in NaCl solution. Mater. Charact. 2018, 139, 401–410. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, X.; Ma, Q.; Wu, T.; Liu, M.; Zhang, M.; Li, Z.; Yin, F. Selected corrosion of X80 pipeline steel welded joints induced by Desulfovibrio desulfuricans. Corros. Sci. 2022, 202, 110313–110332. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, J.; Li, J.; Wu, X.; Huang, Y.; Li, X. Effects of Niobium on the Mechanical Properties and Corrosion Behavior of Simulated Weld HAZ of HSLA Steel. Metall. Mater. Trans. A 2017, 49, 187–197. [Google Scholar] [CrossRef]
- Mohammadi, F.; Eliyan, F.F.; Alfantazi, A. Corrosion of simulated weld HAZ of API X-80 pipeline steel. Corros. Sci. 2012, 63, 323–333. [Google Scholar] [CrossRef]
- Chaves, I.A.; Melchers, R.E. Pitting corrosion in pipeline steel weld zones. Corros. Sci. 2011, 53, 4026–4032. [Google Scholar] [CrossRef]
- Lai, H.-H.; Wu, W. Practical examination of the welding residual stress in view of low-carbon steel welds. J. Mater. Res. Technol. 2020, 9, 2717–2726. [Google Scholar] [CrossRef]
- Wang, L.; Song, B.; Yang, Z.B.; Cui, X.K.; Liu, Z.; Cheng, W.S.; Mao, J.H. Effects of Mg and La on the evolution of inclusions and microstructure in Ca-Ti treated steel. Int. J. Min. Met. Mater. 2021, 28, 1940–1948. [Google Scholar] [CrossRef]
- Yang, Y.; Zhan, D.; Qiu, G.; Li, X.; Jiang, Z.; Zhang, H. Inclusion evolution in solid steel during rolling deformation: A review. J. Mater. Res. Technol. 2022, 18, 5103–5115. [Google Scholar] [CrossRef]
- Sun, L.; Li, H.; Zhu, L.; Liu, Y.; Hwang, J. Research on the evolution mechanism of pinned particles in welding HAZ of Mg treated shipbuilding steel. Mater. Des. 2020, 192, 108670–108682. [Google Scholar] [CrossRef]
- Wan, X.L.; Wang, H.H.; Cheng, L.; Wu, K.M. The formation mechanisms of interlocked microstructures in low-carbon high-strength steel weld metals. Mater. Charact. 2012, 67, 41–51. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, J.; Tang, M.; Zhang, X.; Wu, K. Role of rare earth elements on the improvement of corrosion resistance of micro-alloyed steels in 3.5 wt.% NaCl solution. J. Mater. Res. Technol. 2021, 11, 519–534. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, X.; Cheng, L.; Liu, J.; Wu, K. Role of inclusion and microstructure on corrosion initiation and propagation of weathering steels in marine environment. J. Mater. Res. Technol. 2021, 10, 306–321. [Google Scholar] [CrossRef]
- Jones, R.O. Density functional theory: Its origins, rise to prominence, and future. Rev. Mod. Phys. 2015, 87, 897–923. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Cheng, L.; Sun, X.; Zhang, X.; Liu, J.; Wu, K. First-principle study on the effects of hydrogen in combination with alloy solutes on local mechanical properties of steels. Int. J. Hydrogen Energy 2022, 47, 22243–22260. [Google Scholar] [CrossRef]
- Zhang, D.; Hou, T.P.; Liang, X.; Zheng, P.; Zheng, Y.H.; Lin, H.F.; Wu, K.M. The structural, magnetic, electronic, and mechanical properties of orthogonal/hexagonal MC (M = Fe and Cr) carbides from first-principles calculations. Vacuum 2022, 203, 111175–111186. [Google Scholar] [CrossRef]
- Fan, H.; Shi, G.; Peng, T.; Wang, Q.; Wang, L.; Wang, Q.; Zhang, F. N-induced microstructure refinement and toughness improvement in the coarse grain heat-affected zone of a low carbon Mo–V–Ti–B steel subjected to a high heat input welding thermal cycle. Mater. Sci. Eng. A 2021, 824, 141799–141812. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Min, Y.; Liu, C.; Jiang, M. Effect of magnesium addition in low carbon steel part 2: Toughness and microstructure of the simulated coarse-grained heat-affected zone. Ironmak. Steelmak. 2017, 46, 301–311. [Google Scholar] [CrossRef]
- Ramachandran, D.C.; Moon, J.; Lee, C.-H.; Kim, S.-D.; Chung, J.-H.; Biro, E.; Park, Y.-D. Role of bainitic microstructures with M-A constituent on the toughness of an HSLA steel for seismic resistant structural applications. Mater. Sci. Eng. A 2021, 801, 140390–140400. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, C.; Yan, Z.; Li, H.; Liu, Y. Formation mechanism and control methods of acicular ferrite in HSLA steels: A review. J. Mater. Sci. Technol. 2018, 34, 737–744. [Google Scholar] [CrossRef]
- Hu, C.-y.; Dong, H.-y.; Wu, K.-m.; Misra, R.D.K.; Zhong, L.; Jin, X.; Li, Q. Effect of Zr-deoxidation on microstructure and mechanical behavior of microalloyed heavy plates with low impurity content. J. Iron Steel Res. Int. 2021, 28, 190–200. [Google Scholar] [CrossRef]
- Liu, C.; Revilla, R.I.; Liu, Z.; Zhang, D.; Li, X.; Terryn, H. Effect of inclusions modified by rare earth elements (Ce, La) on localized marine corrosion in Q460NH weathering steel. Corros. Sci. 2017, 129, 82–90. [Google Scholar] [CrossRef]
- Nishimoto, M.; Muto, I.; Sugawara, Y.; Hara, N. Cerium addition to CaS inclusions in stainless steel: Insolubilizing water-soluble inclusions and improving pitting corrosion resistance. Corros. Sci. 2021, 180, 109222–109228. [Google Scholar] [CrossRef]
- Gollapalli, V.; Rao, M.B.V.; Karamched, P.S.; Borra, C.R.; Roy, G.G.; Srirangam, P. Modification of oxide inclusions in calcium-treated Al-killed high sulphur steels. Ironmak. Steelmak. 2018, 46, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Min, Y.; Liu, C.; Jiang, M. Effect of Mg Addition on the Evolution of Inclusions in Al–Ca Deoxidized Melts. ISIJ Int. 2015, 55, 1541–1548. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Zhang, Y.; Zhang, L. A kinetic model for Ca treatment of Al-killed steels using FactSage macro processing. Ironmak. Steelmak. 2016, 44, 497–504. [Google Scholar] [CrossRef]
- Bai, X.-F.; Sun, Y.-H.; Chen, R.-M.; Zhang, Y.-M.; Cai, Y.-F. Formation and thermodynamics of CaS-bearing inclusions during Ca treatment in oil casting steels. Int. J. Miner. Metall. Mater. 2019, 26, 573–587. [Google Scholar] [CrossRef]
- Ahmad, H.; Zhao, B.; Lyu, S.; Huang, Z.; Xu, Y.; Zhao, S.; Ma, X. Formation of Complex Inclusions in Gear Steels for Modification of Manganese Sulphide. Metals 2021, 11, 2051. [Google Scholar] [CrossRef]
- Geng, R.; Li, J.; Shi, C.; Zhi, J.; Lu, B. Effect of Ce-La on inclusion evolution in Al-killed high strength steel. Metall. Res. Technol. 2020, 117, 663–670. [Google Scholar] [CrossRef]
- Wang, H.H.; Qin, Z.P.; Wei, R.; Wan, X.L.; Wu, K.M.; Misra, R.D.K. Precipitation of carbonitrides and high-temperature strength in heat-affected zone of high-Nb containing fire-resistant steel. Sci. Technol. Weld. Join. 2016, 22, 157–165. [Google Scholar] [CrossRef]
- Fu, R.D.; Yang, Y.Q.; Wang, C.Y.; Zhang, W.H. Effects of weld thermal cycles and post-welding tempering on second phase particles in 2·25Cr–1Mo–0·25V steels. Sci. Technol. Weld. Join. 2013, 13, 349–356. [Google Scholar] [CrossRef]
- Liu, C.; Revilla, R.I.; Li, X.; Jiang, Z.; Yang, S.; Cui, Z.; Zhang, D.; Terryn, H.; Li, X. New insights into the mechanism of localised corrosion induced by TiN-containing inclusions in high strength low alloy steel. J. Mater. Sci. Technol. 2022, 124, 141–149. [Google Scholar] [CrossRef]
- Khalaj, G.; Khalaj, M.-J. Investigating the corrosion of the Heat-Affected Zones (HAZs) of API-X70 pipeline steels in aerated carbonate solution by electrochemical methods. Int. J. Pres. Ves. Pip. 2016, 145, 1–12. [Google Scholar] [CrossRef]
- Zhang, J.; Su, C.; Chen, X.; Liu, H.; Zhang, L. First-principles study on pitting corrosion of Al deoxidation stainless steel with rare earth element (La) treatment. Mater. Today Commun. 2021, 27, 102204–102210. [Google Scholar] [CrossRef]
- Zheng, C.; Li, X.; Mi, C. Reducing stress concentrations in unidirectionally tensioned thick-walled spheres through embedding a functionally graded reinforcement. Int. J. Mech. Sci. 2019, 152, 257–267. [Google Scholar] [CrossRef]
- Silva, F.C.; Prada Ramirez, O.M.; Tunes, M.A.; Edmondson, P.D.; Sagás, J.C.; Fontana, L.C.; de Melo, H.G.; Schön, C.G. Corrosion resistance of functionally graded TiN/Ti coatings for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2020, 45, 33993–34010. [Google Scholar] [CrossRef]
- Xie, Y.; Wang, Y.; Du, H. Electrochemical capacitance performance of titanium nitride nanoarray. Mater. Sci. Eng. B 2013, 178, 1443–1451. [Google Scholar] [CrossRef]
- Pham, H.H.; Taylor, C.D.; Henson, N.J. Metal desorption from Fe(110) and its alloyed surfaces. Chem. Phys. Lett. 2013, 585, 162–166. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Ren, Y.; Li, Z.; Slater, C.; Peng, K.; Liu, F.; Zhao, Y. Effect of compression temperature on deformation of CaO–CaS–Al2O3–MgO inclusions in pipeline steel. J. Mater. Res. Technol. 2021, 11, 1220–1231. [Google Scholar] [CrossRef]
C | Si | Mn | Nb | Al + Ca + Zr + Ti + RE | Fe |
---|---|---|---|---|---|
0.05 | 0.17 | 1.55 | 0.034 | 0.04 | Bal. |
No. | Reactions | ΔGθ (J/mol) | ΔG (kJ/mol) |
---|---|---|---|
1 | 2[Al] + 3[O] = (Al2O3) | −1,682,927 + 323.240 T | −734.33 |
2 | [Mg]+2[Al] + 4[O] = (MgO∙Al2O3) | −1,848,696 + 574.144 T | ΔGθ = −773.32 |
3 | [Zr] + 2[O] = (ZrO2) | −845,532 + 266.100 T | −156.09 |
4 | 2[Ti] + 3[O] = (Ti2O3) | −1,072,872 + 346.000 T | −273.72 |
5 | [Ca] + [O] = (CaO) | −138,227 − 63.000 T | −96.36 |
6 | [Ca]+6[Al] + 4[O] = [CaO∙Al2O3] | −1,023,637 + 142.120 T | −9458.40 |
7 | 2[La] + 3[O] = (La2O3) | −542,531 +124.150 T | −610.85 |
8 | 3[Zr] + 2(Al2O3) = 4[Al] + 3(ZrO2) | −8,233,279+ 464.510 T | −7298.12 |
9 | 3[Zr] + 2(Ti2O3) = 4[Ti] + 3(ZrO2) | −1,073,389 + 538.830 T | −11.99 |
10 | [La] + 3[O] + [Al] = (LaAlO3) | −801,616 + 129.000 T | −646.15 |
11 | [Ce] + (Al2O3) = (CeAlO3)+[Al] | −423,900 − 247.300 T | −833.13 |
12 | [Ca] + [S] = (CaS) | −542,531 + 124.150 T | −126.03 |
13 | [Ti] + [N] = (TiN) | −307,620 + 113.400 T | 65.09 |
No. | Precipitation | Solubility Product |
---|---|---|
1 | NbC | lg{[Nb]·[C]} = 2.26−6770/T |
2 | NbN | lg{[Nb]·[N]} = 2.80−8500/T |
3 | TiC | lg{[Ti]·[C]} = 2.75−7000/T |
4 | TiN | lg{[Ti]·[N]} = 0.32−8000/T |
5 | MnS | lg{[Mn]·[S]} = 5.02−11625/T |
Samples | icorr (A·cm2) | Ecorr (V vs. SCE) |
---|---|---|
Base metal | 9.31 × 10−6 | −0.69 |
CGHAZ | 1.02 × 10−5 | −0.64 |
Samples | Rs (Ω·cm−2) | Y0 (S·secn·cm−2) | n | Rct (Ω·cm−2) |
---|---|---|---|---|
CGHAZ | 33.78 | 0.0008772 | 0.78 | 763.2 |
Base metal | 20.31 | 0.0007096 | 0.87 | 948.3 |
Inclusions | Bulk Modulus (GPa) | Shear Modulus (GPa) | Young’s Modulus (GPa) | Poisson’s Ratio |
---|---|---|---|---|
Fe (BCC) | 194.76 | 81.52 | 214.61 | 0.32 |
Al2O3 | 249.54 | 152.76 | 380.61 | 0.25 |
ZrO2 | 271.06 | 109.14 | 288.68 | 0.32 |
La2O7Zr2 | 165.83 | 60.56 | 161.95 | 0.34 |
LaAlO3 | 192.61 | 121.10 | 300.35 | 0.24 |
CaO | 114.11 | 78.81 | 192.19 | 0.22 |
MgO | 165.83 | 127.64 | 304.73 | 0.19 |
CaS | 57.05 | 39.07 | 95.42 | 0.22 |
TiN | 175.02 | 79.89 | 208.01 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, C.-C.; Cheng, L.; Wang, Z.-H.; Zhao, T.-L.; Cheng, S.; Hu, S.-E.; Liu, Z.-C.; Luo, D.; Xiao, D.-H.; Jin, X.; et al. Local Corrosion Behaviors in the Coarse-Grained Heat-Affected Zone in a Newly Developed Zr–Ti–Al–RE Deoxidized High-Strength Low-Alloy Steel. Materials 2023, 16, 876. https://doi.org/10.3390/ma16020876
Yin C-C, Cheng L, Wang Z-H, Zhao T-L, Cheng S, Hu S-E, Liu Z-C, Luo D, Xiao D-H, Jin X, et al. Local Corrosion Behaviors in the Coarse-Grained Heat-Affected Zone in a Newly Developed Zr–Ti–Al–RE Deoxidized High-Strength Low-Alloy Steel. Materials. 2023; 16(2):876. https://doi.org/10.3390/ma16020876
Chicago/Turabian StyleYin, Chao-Chao, Lin Cheng, Zhi-Hui Wang, Tian-Liang Zhao, Shi Cheng, Shu-E Hu, Zi-Cheng Liu, Deng Luo, Da-Heng Xiao, Xing Jin, and et al. 2023. "Local Corrosion Behaviors in the Coarse-Grained Heat-Affected Zone in a Newly Developed Zr–Ti–Al–RE Deoxidized High-Strength Low-Alloy Steel" Materials 16, no. 2: 876. https://doi.org/10.3390/ma16020876
APA StyleYin, C. -C., Cheng, L., Wang, Z. -H., Zhao, T. -L., Cheng, S., Hu, S. -E., Liu, Z. -C., Luo, D., Xiao, D. -H., Jin, X., Liu, H. -K., & Wu, K. -M. (2023). Local Corrosion Behaviors in the Coarse-Grained Heat-Affected Zone in a Newly Developed Zr–Ti–Al–RE Deoxidized High-Strength Low-Alloy Steel. Materials, 16(2), 876. https://doi.org/10.3390/ma16020876