Effect of Current Waveforms during Directed Energy Deposition of 4043 Aluminum Alloy on Microstructure, Hardness, and Wear of Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Current Waveform
3.2. Wall and Weld Bead Geometry
3.3. Cooling Rate
3.4. Microstructure and X-ray Diffraction
3.5. Hardness and Wear
4. Conclusions
- The root mean square current was maximum for the rectangular waveform and minimum for the triangular, suggesting heat input to be maximum for the rectangular waveform.
- The higher height-to-width ratio for the section developed by the triangular waveform makes it more suitable for wall fabrication.
- The grain structure varies from columnar dendritic to equiaxed in the build direction, with the average grain size being maximum for rectangular and minimum for triangular.
- The specific wear rate was maximum for rectangular and minimum for triangular, which was attributed to the corresponding microhardness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Langelandsvik, G.; Akselsen, O.M.; Furu, T.; Roven, H.J. Review of aluminum alloy development for wire arc additive manufacturing. Materials 2021, 14, 5370. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Raj, B.; Mudali, U.K.; Singh, P. Non-Destructive Evaluation of Corrosion and Corrosion-Assisted Cracking. Available online: https://www.wiley.com/en-au/non+destructive+evaluation+of+corrosion+and+corrosion+assisted+cracking-p-9781118350058 (accessed on 14 December 2022).
- ISO/ASTM 52900:2015; Standard Terminology for Additive Manufacturing–General Principles–Terminology. ASTM International: West Conshohocken, PA, USA, 2015; pp. 1–9. Available online: http://compass.astm.org/EDIT/html_annot.cgi?ISOASTM52900+15 (accessed on 28 March 2023).
- Ujjwal, K.; Anand, M.; Bishwakarma, H.; Das, A.K. Effect of clamping position on the residual stress in wire arc additive manufacturing. Int. J. Mater. Res. 2023. [Google Scholar] [CrossRef]
- Anand, M.; Bishwakarma, H.; Kumar, N.; Ujjwal, K.; Das, A.K. Fabrication of multilayer thin wall by WAAM technique and investigation of its microstructure and mechanical properties. Mater. Today Proc. 2022, 56, 927–930. [Google Scholar] [CrossRef]
- Derekar, K.S. A review of wire arc additive manufacturing and advances in wire arc additive manufacturing of aluminium. Mater. Sci. Technol. 2018, 34, 895–916. [Google Scholar] [CrossRef]
- Geng, H.; Li, J.; Xiong, J.; Lin, X.; Huang, D.; Zhang, F. Formation and improvement of surface waviness for additive manufacturing 5A06 aluminium alloy component with GTAW system. Rapid Prototyp. J. 2018, 24, 342–350. [Google Scholar] [CrossRef]
- Sampaio, R.F.V.; Pragana, J.P.M.; Bragança, I.M.F.; Silva, C.M.A.; Nielsen, C.V.; Martins, P.A.F. Modelling of wire-arc additive manufacturing–A review. Adv. Ind. Manuf. Eng. 2023, 6, 100121. [Google Scholar] [CrossRef]
- Zeli, W.; Zhang, Y. A review of aluminum alloy fabricated by different processes of wire arc additive manufacturing. Mater. Sci. 2021, 27, 18–26. [Google Scholar]
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.; De, A.; Zhang, W. Additive manufacturing of metallic components–Process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Kumar, T.; Kiran, D.V.; Cheon, J.; Arora, N. Probing the influence of cold wire gas tungsten arc welding current waveforms on the aluminum-steel joining. J. Manuf. Process 2020, 59, 378–388. [Google Scholar] [CrossRef]
- Mvola, B.; Kah, P.; Layus, P. Review of current waveform control effects on weld geometry in gas metal arc welding process. Int. J. Adv. Manuf. Technol. 2018, 96, 4243–4265. [Google Scholar] [CrossRef]
- Faria, J.P.; De Miranda, H.C.; Motta, F.; De Quieroz, F.D.; Pessoa, E.F. Welding International Effect of square-wave AC GMAW on weld beam geometry. Weld. Int. 2007, 21, 173–181. [Google Scholar] [CrossRef]
- Miao, Q.; Wu, D.; Chai, D.; Zhan, Y.; Bi, G.; Niu, F.; Ma, G. Comparative study of microstructure evaluation and mechanical properties of 4043 aluminum alloy fabricated by wire-based additive manufacturing. Mater. Des. 2020, 186, 108205. [Google Scholar] [CrossRef]
- Köhler, M.; Fiebig, S.; Hensel, J.; Dilger, K. Wire and arc additive manufacturing of aluminum components. Metals 2019, 9, 608. [Google Scholar] [CrossRef]
- Nie, Y.; Zhang, P.; Wu, X.; Li, G.; Yan, H.; Yu, Z. Rapid prototyping of 4043 Al-alloy parts by cold metal transfer. Sci. Technol. Weld. Join. 2018, 23, 527–535. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, J.; Chen, M.; Su, H.; Zhang, W.; Wu, C. Process stability and forming accuracy on wire arc additive manufactured Al–Zn–Mg–Cu alloy with different electrode positive/electrode negative ratios of CMT advance process. Sci. Technol. Weld. Join. 2023, 28, 352–361. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, J.; Hu, S.; Chen, Y.; Yin, C.; Bu, X. Optimization of CMT Characteristic Parameters for Swing Arc Additive Manufacturing of AZ91 Magnesium Alloy Based on Process Stability Analysis. Materials 2023, 16, 3236. [Google Scholar] [CrossRef] [PubMed]
- Pradeep, N.; Sadasivam, S.; Gurunathan, S.; Kumar, M.; Amirthalingam, P.; Sadasivam, G.S.K. Data-Driven Modelling of Complex Current-Voltage Waveform Controlled Gas Metal Arc-Wire DED Processes. Met. Mater. Int. 2023, 29, 1113–1131. [Google Scholar] [CrossRef]
- Haselhuhn, A.S.; Buhr, M.W.; Wijnen, B.; Sanders, P.G.; Pearce, J.M. Structure-property relationships of common aluminum weld alloys utilized as feedstock for GMAW-based 3-D metal printing. Mater. Sci. Eng. A 2016, 673, 511–523. [Google Scholar] [CrossRef]
- ASTM E384; Standard Test Method for Microindentation Hardness of Materials ASTM E384. ASTM Standards: West Conshohocken, PA, USA, 2002; pp. 1–24.
- ASTM G133-05; Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear. 2016. Available online: https://www.astm.org/g0133-05r16.html (accessed on 28 March 2023).
- Kou, S. Welding Metallurgy; Wiley Interscience: Hoboken, NJ, USA, 2003; Volume 431, pp. 223–225. [Google Scholar]
- IEC 60974-1:2021; Arc Welding Equipment–Part 1: Welding Power Sources. 2021. Available online: https://webstore.iec.ch/publication/64782 (accessed on 21 March 2023).
- Hauser, T.; Reisch, R.T.; Breese, P.P.; Lutz, B.S.; Pantano, M.; Nalam, Y.; Bela, K.; Kamps, T.; Volpp, J.; Kaplan, A.F.H. Porosity in wire arc additive manufacturing of aluminium alloys. Addit. Manuf. 2021, 41, 101993. [Google Scholar] [CrossRef]
- Bai, J.Y.; Fan, C.L.; Lin, S.B.; Yang, C.L.; Dong, B.L. Effects of thermal cycles on microstructure evolution of 2219-Al during GTA-additive manufacturing. Int. J. Adv. Manuf. Technol. 2016, 87, 2615–2623. [Google Scholar] [CrossRef]
- Fathi, P.; Mohammadi, M.; Duan, X.; Nasiri, A.M. A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum. J. Mater. Process Technol. 2018, 259, 1–14. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Breese, P.P.; Nalam, Y.; Joshi, K.S.; Bela, K.; Kamps, T.; Volpp, J.; Kaplan, A.F.H. Oxidation in wire arc additive manufacturing of aluminium alloys. Addit. Manuf. 2021, 41, 101958. [Google Scholar] [CrossRef]
- Anand, M.; Das, A.K. Grain refinement in Wire-Arc Additive Manufactured Inconel 82 alloy through controlled heat input. J. Alloys Compd. 2022, 929, 166949. [Google Scholar] [CrossRef]
- Da Silva, L.J.; Souza, D.M.; de Araújo, D.B.; Reis, R.P.; Scotti, A. Concept and validation of an active cooling technique to mitigate heat accumulation in WAAM. Int. J. Adv. Manuf. Technol. 2020, 107, 2513–2523. [Google Scholar] [CrossRef]
- Revilla, R.I.; Verkens, D.; Rubben, T.; De Graeve, I. Corrosion and Corrosion Protection of Additively Manufactured Aluminium Alloys—A Critical Review. Materials 2020, 13, 4804. [Google Scholar] [CrossRef] [PubMed]
- Su, C.; Chen, X.; Konovalov, S.; Singh, R.A.; Jayalakshmi, S.; Huang, L. Effect of Deposition Strategies on the Microstructure and Tensile Properties of Wire Arc Additive Manufactured Al-5Si Alloys. J. Mater. Eng. Perform. 2021, 30, 2136–2146. [Google Scholar] [CrossRef]
- Li, X.; Cui, L.; Li, J.; Chen, Y.; Han, W.; Shonkwiler, S.; McMains, S. Automation of intercept method for grain size measurement: A topological skeleton approach. Mater. Des. 2022, 224, 111358. [Google Scholar] [CrossRef]
- Lyu, F.; Hu, K.; Wang, L.; Gao, Z.; Zhan, X. Regionalization of microstructure characteristics and mechanisms of slip transmission in oriented grains deposited by wire arc additive manufacturing. Mater. Sci. Eng. A 2022, 850, 143529. [Google Scholar] [CrossRef]
- Wang, Y.; Konovalov, S.; Chen, X.; Ivanov, Y.; Jayalakshmi, S.; Singh, R.A. Research on Cu-6.6%Al-3.2%Si Alloy by Dual Wire Arc Additive Manufacturing. J. Mater. Eng. Perform. 2021, 30, 1694–1702. [Google Scholar] [CrossRef]
- Schunke, J.N.; Sudarshan, T.S.; Srivatsan, T.S. Effects of oxygen in influencing friction characteristics of metals. Wear 1988, 125, 211–221. [Google Scholar] [CrossRef]
- Dwivedi, D.K. Adhesive wear behaviour of cast aluminium–silicon alloys: Overview. Mater. Des. 2010, 31, 2517–2531. [Google Scholar] [CrossRef]
- Mao, B.; Chu, S.; Wang, S. Effect of Grain Size on the Friction-Induced Martensitic Transformation and Tribological Properties of 304 Austenite Stainless Steel. Metals 2020, 10, 1246. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.; Yang, J.; Jin, J.; Zhang, M.; Wang, X.; Li, B.; Hu, Z.; Gong, P. Effect of Grain Size on the Tribological Behavior of CoCrFeMnNi High Entropy Alloy. Materials 2023, 16, 1714. [Google Scholar] [CrossRef] [PubMed]
- Archard, J. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
- Toraya, H. A new method for quantitative phase analysis using X-ray powder diffraction: Direct derivation of weight fractions from observed integrated intensities and chemical compositions of individual phases. J. Appl. Crystallogr. 2016, 49, 1508–1516. [Google Scholar] [CrossRef]
Material | Al | Si | Fe | Cu | Mn | Mg | Zn | Cr | Ti |
---|---|---|---|---|---|---|---|---|---|
ER 4043 | Bal | 4.5–6 | 0.8 | 0.3 | 0.05 | 0.05 | 0.1 | - | 0.2 |
AA 6063 | Bal | 0.4 | 0.15 | 0.10 | 0.10 | 0.7 | 0.10 | 0.10 | 0–0.10 |
Current (A) | Voltage (V) | AC Frequency (Hz) | Scan Speed (mm/min) | Wire Feed Rate (m/min) | Gas Flow Rate (lt/min) |
---|---|---|---|---|---|
150 | 16 | 100 | 115 | 1.4 | 12.5 |
Waveforms ⮕ Dimensions ⬇ | Rectangular | Sinusoidal | Triangular |
---|---|---|---|
Height (mm) | 7.16 ± 0.35 | 7.73 ± 0.38 | 8.15 ± 0.4 |
Width (mm) | 9.3 ± 0.46 | 9.2 ± 0.46 | 8.4 ± 0.41 |
Height-to-width | 0.76 | 0.84 | 0.97 |
Contact angle (°) | 132 ± 3 | 112 ± 4 | 126 ± 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ujjwal, K.; Anand Kumar, K.; Anand, M.; Singh Raman, R.K.; Das, A.K. Effect of Current Waveforms during Directed Energy Deposition of 4043 Aluminum Alloy on Microstructure, Hardness, and Wear of Alloy. Materials 2023, 16, 6716. https://doi.org/10.3390/ma16206716
Ujjwal K, Anand Kumar K, Anand M, Singh Raman RK, Das AK. Effect of Current Waveforms during Directed Energy Deposition of 4043 Aluminum Alloy on Microstructure, Hardness, and Wear of Alloy. Materials. 2023; 16(20):6716. https://doi.org/10.3390/ma16206716
Chicago/Turabian StyleUjjwal, Kumar, Katipalli Anand Kumar, Mukul Anand, R. K. Singh Raman, and Alok Kumar Das. 2023. "Effect of Current Waveforms during Directed Energy Deposition of 4043 Aluminum Alloy on Microstructure, Hardness, and Wear of Alloy" Materials 16, no. 20: 6716. https://doi.org/10.3390/ma16206716
APA StyleUjjwal, K., Anand Kumar, K., Anand, M., Singh Raman, R. K., & Das, A. K. (2023). Effect of Current Waveforms during Directed Energy Deposition of 4043 Aluminum Alloy on Microstructure, Hardness, and Wear of Alloy. Materials, 16(20), 6716. https://doi.org/10.3390/ma16206716