Improving Mechanical Properties of Mg-Al-RE Alloys with the Formed Dimples of Al10Mn2RE Particles and Activated Pyramidal <a> Slip with Mn Additions
Abstract
:1. Introduction
2. Experimental Material and Procedures
3. Results and Discussion
3.1. Microstructure of As-Cast Mg-8Al-1Nd-1.5Gd-xMn Alloys
3.2. Mechanical Properties of Mg-8Al-1Nd-1.5Gd-xMn Alloys
3.3. Fracture Surface Characterization of Mg-8Al-1Nd-1.5Gd-xMn Alloys
3.4. Analysis of Activated Twins and Slip Modes
4. Conclusions
- (1)
- The addition of Mn transforms continuous island-shaped eutectic β-Mg17Al12 into dispersed granular divorced eutectic particles and promotes the precipitation of Al10Mn2 (Nd,Gd) and Al8 (Nd,Gd)Mn4.
- (2)
- The Al10Mn2 (Nd,Gd) particles can effectively hinder the slip of intragranular dislocations and alleviate stress concentration at grain boundaries. The dimples in the tensile fracture confirm the transition of the fracture mode from cleavage fracture to ductile fracture.
- (3)
- The combination of activated prismatic <a> slip and deformation twinning enhances the plastic deformation ability of the Mg-Al-RE alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Song, J.; She, J.; Chen, D.; Pan, F. Latest research advances on magnesium and magnesium alloys worldwide. J. Magnes. Alloys 2020, 8, 1–41. [Google Scholar] [CrossRef]
- Zeng, Z.; Stanford, N.; Davies, C.H.J.; Nie, J.F.; Birbilis, N. Magnesium extrusion alloys: A review of developments and prospects. Int. Mater. Rev. 2019, 64, 27–62. [Google Scholar] [CrossRef]
- Ma, G.; Xiao, H.; Ye, J.; He, Y. Research status and development of magnesium matrix composites. Mater. Sci. Technol. 2020, 36, 645–653. [Google Scholar] [CrossRef]
- Mo, N.; Tan, Q.; Bermingham, M.; Huang, Y.; Dieringa, H.; Hort, N.; Zhang, M.X. Current development of creep-resistant magnesium cast alloys: A review. Mater. Des. 2018, 155, 422–442. [Google Scholar] [CrossRef]
- Cai, H.; Guo, F.; Su, J.; Liu, L. Thermodynamic analysis of Al-RE phase formation in AZ91-RE (Ce, Y, Gd) magnesium alloy. Phys. Status Solidi B Basic Res. 2020, 257, 1900453. [Google Scholar] [CrossRef]
- Ashrafizadeh, S.M.; Mahmudi, R. Effects of Gd, Y, and La rare-earth elements on the microstructural stability and elevated-temperature mechanical properties of AZ81 magnesium alloy. Metall. Mater. Trans. A 2019, 50, 5957–5968. [Google Scholar] [CrossRef]
- Lv, S.; Li, Y.; Meng, F.; Duan, Q.; Yang, Q.; Liu, X.; Meng, J. Thermodynamic stability of Al11RE3 intermetallic compounds from first-principles calculations. Comput. Mater. Sci. 2017, 131, 28–34. [Google Scholar] [CrossRef]
- Zhu, S.M.; Gibson, M.A.; Nie, J.F.; Easton, M.A.; Abbott, T.B. Microstructural analysis of the creep resistance of die-cast Mg-4Al-2RE alloy. Scr. Mater. 2008, 58, 477–480. [Google Scholar] [CrossRef]
- Yang, Q.; Guan, K.; Bu, F.; Zhang, Y.; Qiu, X.; Zheng, T.; Liu, X.; Meng, J. Microstructures and tensile properties of a high-strength die-cast Mg-4Al-2RE-2Ca-0.3Mn alloy. Mater. Charact. 2016, 113, 180–188. [Google Scholar] [CrossRef]
- Qin, P.F.; Yang, Q.; Guan, K.; Meng, F.Z. Microstructures and mechanical properties of a high pressure die-cast Mg-4Al-4Gd-0.3Mn alloy. Mater. Sci. Eng. A 2019, 764, 138254. [Google Scholar] [CrossRef]
- Qin, G.W.; Ren, Y.; Huang, W.; Li, S.; Pei, W. Grain refining mechanism of Al-containing Mg alloys with the addition of Mn-Al alloys. J. Alloys Compd. 2010, 507, 410–413. [Google Scholar] [CrossRef]
- Braszczyńska-Malik, K.N.; Grzybowska, A. Microstructure of Mg-5Al-0.4Mn-xRE (x = 3 and 5 Wt.%) alloys in as-cast conditions and after annealing. J. Alloys Compd. 2016, 663, 172–179. [Google Scholar] [CrossRef]
- Yang, Q.; Guan, K.; Li, B.; Lv, S.; Meng, F.; Sun, W.; Zhang, Y.; Liu, X.; Meng, J. Microstructural characterizations on Mn-containing intermetallic phases in a high-pressure die-casting Mg-4Al-4RE-0.3Mn Alloy. Mater. Charact. 2017, 132, 381–387. [Google Scholar] [CrossRef]
- Su, M.; Zhang, J.; Feng, Y.; Bai, Y.; Wang, W.; Zhang, Z.; Jiang, F. Al-Nd intermetallic phase stability and its effects on mechanical properties and corrosion resistance of HPDC Mg-4Al-4Nd-0.2Mn alloy. J. Alloys Compd. 2017, 691, 634–643. [Google Scholar] [CrossRef]
- Li, Z.T.; Qiao, X.G.; Xu, C.; Liu, X.Q.; Kamado, S.; Zheng, M.Y. Enhanced strength by precipitate modification in wrought Mg-Al-Ca alloy with trace Mn addition. J. Alloys Compd. 2020, 836, 154689. [Google Scholar] [CrossRef]
- Li, J.; Xie, D.; Yu, H.; Liu, R.; Shen, Y.; Zhang, X.; Yang, C.; Ma, L.; Pan, H.; Qin, G. Microstructure and mechanical property of multi-pass low-strain rolled Mg-Al-Zn-Mn alloy sheet. J. Alloys Compd. 2020, 835, 155228. [Google Scholar] [CrossRef]
- Zhu, S.M.; Abbott, T.B.; Gibson, M.A.; Nie, J.F.; Easton, M.A. The influence of minor Mn additions on creep resistance of die-cast Mg-Al-RE alloys. Mater. Sci. Eng. A 2017, 682, 535–541. [Google Scholar] [CrossRef]
- Yang, Q.; Yan, Z.; Lv, S.; Guan, K.; Qiu, X. Abnormal creep stress exponents in a high-pressure die casting Mg-Al-RE alloy. Mater. Sci. Eng. A 2022, 831, 142203. [Google Scholar] [CrossRef]
- Liao, Q.; Chen, X.; Lan, Q.; Ning, F.; Le, Q. The effect of double extrusion on the microstructure and mechanical properties of AZ80RE alloy. Mater. Res. Express 2018, 5, 126510. [Google Scholar] [CrossRef]
- Niknejad, S.; Esmaeili, S.; Zhou, N.Y. The Role of Double twinning on transgranular fracture in magnesium AZ61 in a localized stress field. Acta Mater. 2016, 102, 1–16. [Google Scholar] [CrossRef]
- Deng, J.-f.; Tian, J.; Chang, Y.; Zhou, Y.; Liang, W.; Ma, J. The role of tensile twinning in plastic deformation and fracture prevention of magnesium alloys. Mater. Sci. Eng. A 2022, 853, 143678. [Google Scholar] [CrossRef]
- Tian, J.; Deng, J.-f.; Chang, Y.; Zhou, Y.; Liang, W.; Ma, J. Selection behavior of tensile twin variants and its contribution during plastic processing of magnesium alloy. J. Alloys Compd. 2022, 918, 165517. [Google Scholar] [CrossRef]
- Chun, Y.B.; Davies, C.H.J. Investigation of prism <a> slip in warm-rolled AZ31 alloy. Metall. Mater. Trans. A 2011, 42, 4113–4125. [Google Scholar] [CrossRef]
- Mulay, R.P.; Agnew, S.R. Hard slip mechanisms in B2CoTi. Acta Mater. 2012, 60, 1784–1794. [Google Scholar] [CrossRef]
- Chun, Y.B.; Battaini, M.; Davies, C.H.J.; Hwang, S.K. Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes. Metall. Mater. Trans. A 2010, 41, 3473–3487. [Google Scholar] [CrossRef]
- Yang, B.; Shi, C.; Ye, X.; Teng, J.; Lai, R.; Cui, Y. Underlying slip/twinning activities of Mg-xGd alloys investigated by modified lattice rotation analysis. J. Magnes. Alloys 2023, 11, 998–1015. [Google Scholar] [CrossRef]
- Zhang, M.; Luan, B.; Chu, L.; Gao, B.; Wang, L.; Yuan, G. Deformation kinking in β-treated zirconium impacted by split hopkinson pressure Bar. Scr. Mater. 2020, 187, 379–383. [Google Scholar] [CrossRef]
- Lv, S.; Lü, X.; Meng, F.; Yang, Q.; Qiu, X.; Qin, P.; Duan, Q.; Meng, J. Microstructures and mechanical properties in a Gd-modified high-pressure die casting Mg-4Al-3La-0.3Mn alloy. Mater. Sci. Eng. A 2020, 773, 138725. [Google Scholar] [CrossRef]
- Liu, H.; Zuo, J.; Nakata, T.; Xu, C.; Wang, G.; Shi, H.; Tang, G.; Wang, X.; Kamado, S.; Geng, L. Effects of La addition on the microstructure, thermal conductivity and mechanical properties of Mg-3Al-0.3Mn alloys. Materials 2022, 15, 1078. [Google Scholar] [CrossRef]
- Singh, L.K.; Bhadauria, A.; Srinivasan, A. Effects of gadolinium addition on the microstructure and mechanical properties of Mg-9Al alloy. Int. J. Miner. Metall. Mater. 2017, 24, 901–908. [Google Scholar] [CrossRef]
- Tekumalla, S.; Seetharaman, S.; Almajid, A.; Gupta, M. Mechanical properties of Magnesium-Rare Earth Alloy Systems: A Review. Metals 2015, 5, 1–39. [Google Scholar] [CrossRef]
- Deming, G.; Yuhui, Z.; Qin, H.; Qiqie, Z. Study on mechanical properties of Mg-Al-Zn-Mn alloys cast by two different methods. Mater. Sci. Eng. A 2009, 507, 1–5. [Google Scholar] [CrossRef]
- Jiang, N.; Meng, L.G.; Zhang, X.G.; Chen, L.; Fang, C.F.; Hao, H. Microstructure and mechanical properties of Gd-modified AZ80 magnesium alloys. Rare Met. 2022, 41, 4194–4200. [Google Scholar] [CrossRef]
- Li, Z.; Gao, T.; Xu, Q.; Yang, H.; Han, M.; Liu, X. Microstructure and mechanical properties of an AlN/Mg-Al composite synthesized by Al-AlN master alloy. Int. J. Met. 2019, 13, 384–391. [Google Scholar] [CrossRef]
- Zhu, S.; Easton, M.A.; Abbott, T.B.; Nie, J.F.; Dargusch, M.S.; Hort, N.; Gibson, M.A. Evaluation of magnesium die-casting alloys for elevated temperature applications: Microstructure, tensile properties, and creep resistance. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 2015, 46, 3543–3554. [Google Scholar] [CrossRef]
- Yu, H.; Xin, Y.; Wang, M.; Liu, Q. Hall-Petch pelationship in Mg alloys: A review. J. Mater. Sci. Technol. 2018, 34, 248–256. [Google Scholar] [CrossRef]
- Hu, F.; Zhao, S.; Gu, G.; Ma, Z.; Wei, G.; Yang, Y.; Peng, X.; Xie, W. Strong and ductile Mg-0.4Al alloy with minor Mn addition achieved by conventional extrusion. Mater. Sci. Eng. A 2020, 795, 139926. [Google Scholar] [CrossRef]
- Li, Y.X.; Zhou, Z.; Wang, L.; Cheng, H.W.; Cheng, X.W. Research on dynamic fracture behavior of Ti6321 titanium alloy. Rare Met. Mater. Eng. 2023, 52, 953–958. [Google Scholar]
- Cui, X.; Yu, Z.; Liu, F.; Du, Z.; Bai, P. Influence of secondary phases on crack initiation and propagation during fracture process of as-cast Mg-Al-Zn-Nd alloy. Mater. Sci. Eng. A 2019, 759, 708–714. [Google Scholar] [CrossRef]
- Xie, H.; Wu, G.; Zhang, X.; Liu, W.; Ding, W. Materials characterization the role of Gd on the microstructural evolution and mechanical properties of Mg-3Nd-0.2Zn-0.5Zr alloy. Mater. Charact. 2021, 175, 111076. [Google Scholar] [CrossRef]
- Meng, F.; Lv, S.; Yang, Q.; Qin, P.; Zhang, J.; Guan, K.; Huang, Y.; Hort, N.; Li, B.; Liu, X.; et al. Developing a die casting magnesium alloy with excellent mechanical performance by controlling intermetallic phase. J. Alloys Compd. 2019, 795, 436–445. [Google Scholar] [CrossRef]
- Wang, J.; Dong, H.; Wang, L.; Wu, Y.; Wang, L. Effect of hot rolling on the microstructure and mechanical properties of Mg-5Al-0.3Mn-2Nd Alloy. J. Alloys Compd. 2010, 507, 178–183. [Google Scholar] [CrossRef]
- Ercetin, A.; Özgün, Ö.; Aslantaş, K.; Der, O.; Yalçın, B.; Şimşir, E.; Aamir, M. Microstructural and mechanical behavior investigations of Nb-reinforced Mg-Sn-Al-Zn-Mn matrix magnesium composites. Metals 2023, 13, 1097. [Google Scholar] [CrossRef]
- Guan, D.; Rainforth, W.M.; Ma, L.; Wynne, B.; Gao, J. Twin recrystallization mechanisms and Exceptional Contribution to texture evolution during annealing in a magnesium alloy. Acta Mater. 2017, 126, 132–144. [Google Scholar] [CrossRef]
- Guo, C.; Xin, R.; Zheng, X.; Xiao, Y.; Ding, C.; Liu, Q. Influence of observation plane on twin variant identification in magnesium via trace and misorientation analysis. Mater. Sci. Eng. A 2014, 618, 558–562. [Google Scholar] [CrossRef]
- Guan, D.; Wynne, B.; Gao, J.; Huang, Y.; Rainforth, W.M. Basal slip mediated tension twin variant selection in magnesium WE43 alloy. Acta Mater. 2019, 170, 1–14. [Google Scholar] [CrossRef]
- Zhang, J.; Xi, G.; Wan, X.; Fang, C. The dislocation-twin interaction and evolution of twin boundary in AZ31 Mg alloy. Acta Mater. 2017, 133, 208–216. [Google Scholar] [CrossRef]
- Jiang, S.; Jia, Y.; Wang, X.; Jiang, J. Materials characterization precise measurement of strain accommodation in a Mg-Gd-Y-Zn alloy using cross-correlation-based high resolution EBSD. Mater. Charact. 2020, 165, 110384. [Google Scholar] [CrossRef]
Alloys | Abbreviation | Elemental Composition (wt.%) | ||||
---|---|---|---|---|---|---|
Al | Gd | Nd | Mn | Mg | ||
Mg-8Al-1Nd-1.5Gd-0.0Mn | Mn-free | 8.09 | 1.48 | 1.13 | 0.0 | Bal. |
Mg-8Al-1Nd-1.5Gd-0.3Mn | 0.3 Mn | 7.98 | 1.51 | 1.06 | 0.31 | Bal. |
Mg-8Al-1Nd-1.5Gd-0.5Mn | 0.5 Mn | 8.11 | 1.46 | 0.97 | 0.49 | Bal. |
Mg-8Al-1Nd-1.5Gd-1.0Mn | 1.0 Mn | 8.13 | 1.52 | 1.0 | 1.1 | Bal. |
Isomorphous Phase | Composition (at. %) | ||||
---|---|---|---|---|---|
Mg | Al | Nd | Gd | Mn | |
A (Al2RE) | 13.83 | 61.13 | 9.50 | 14.21 | 1.33 |
B (Al11RE3) | 57.43 | 32.93 | 4.0 | 5.15 | 0.54 |
C (β-Mg17Al12) | 67.76 | 38.04 | — | — | — |
D (Al8REMn4) | 9.54 | 55.90 | 2.56 | 5.91 | 26.08 |
E (Al12RE2Mn5) | 57.59 | 16.55 | 1.17 | 0.95 | 5.74 |
Specimens | Tensile Strength/MPa | Elongation/% | Yield Strength/MPa |
---|---|---|---|
0.0 Mn | |||
0.3 Mn | |||
0.5 Mn | |||
1.0 Mn |
Alloy (wt.%) Gravity Die Casting | Tensile Strength (MPa) | Yield Strength (MPa) | Elongation (%) | Ref. |
---|---|---|---|---|
AZ91 | 155~190 | 80~100 | 3.2~4.9 | [30,31,32] |
Mg-9Al-RE | 165~187 | 84~116 | 4.0~6.4 | |
AZ80 | 160~182 | 95 | 5.1 | [33,34,35] |
AZ80-RE | 182~191 | 90~110 | 5.6~7.9 | |
Mg-8Al-1Nd-1.5Gd-1.0Mn | 199.6~192.6 | 104.2~98.2 | 9.5~10.5 |
Activated Twins | Twinning Area Fractions | |
---|---|---|
0.3 Mn Alloy (Strain 5.1%) | 1.0 Mn Alloy (Strain 9.8%) | |
tensile twins | 20 | 10.8 |
– double twins | 1.5 | 5.5 |
compressive twins | 0.8 | 3.9 |
– secondary twins | 1.55. | 3.2 |
Activated Slip | Deformation Mode | Variants | Taylor Axis |
---|---|---|---|
Basal <a> | 3 | ||
Prismatic <a> | 3 | ||
Pyramidal <a> | 6 | ||
Pyramidal <a+c> | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, W.; Zhang, M.; Liu, J.; Qin, S. Improving Mechanical Properties of Mg-Al-RE Alloys with the Formed Dimples of Al10Mn2RE Particles and Activated Pyramidal <a> Slip with Mn Additions. Materials 2023, 16, 6747. https://doi.org/10.3390/ma16206747
Yang J, Wang W, Zhang M, Liu J, Qin S. Improving Mechanical Properties of Mg-Al-RE Alloys with the Formed Dimples of Al10Mn2RE Particles and Activated Pyramidal <a> Slip with Mn Additions. Materials. 2023; 16(20):6747. https://doi.org/10.3390/ma16206747
Chicago/Turabian StyleYang, Jiandong, Wuxiao Wang, Min Zhang, Jian Liu, and Shaoyong Qin. 2023. "Improving Mechanical Properties of Mg-Al-RE Alloys with the Formed Dimples of Al10Mn2RE Particles and Activated Pyramidal <a> Slip with Mn Additions" Materials 16, no. 20: 6747. https://doi.org/10.3390/ma16206747
APA StyleYang, J., Wang, W., Zhang, M., Liu, J., & Qin, S. (2023). Improving Mechanical Properties of Mg-Al-RE Alloys with the Formed Dimples of Al10Mn2RE Particles and Activated Pyramidal <a> Slip with Mn Additions. Materials, 16(20), 6747. https://doi.org/10.3390/ma16206747