Effect of Artificial Saliva Modification on Pitting Corrosion and Mechanical Properties of the Remanium®-Type Orthodontic Archwire
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Samples for Testing
2.2. Phase Composition Identification of the Fe–Cr–Ni Steel
2.3. Microstructure and Chemical Composition of the Fe–Cr–Ni Steel
2.4. The Corrosion Resistance of the Fe–Cr–Ni Steel
2.5. Mechanical Properties of the Fe–Cr–Ni Steel
3. Results and Discussion
3.1. Physicochemical Characteristics of the Fe–Cr–Ni Steel
3.2. Micromechanical Properties of the Fe–Cr–Ni Steel
3.3. In Vitro Tests of Open-Circuit Potential
3.4. Mechanism and Kinetics of Pitting Corrosion
3.5. Susceptibility to Pitting Corrosion
3.6. Assessment of Corrosive Damage
3.7. Mechanical Properties of the Fe–Cr–Ni Steel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Arakelyan, M.; Spagnuolo, G.; Iaculli, F.; Dikopova, N.; Antoshin, A.; Timashev, P.; Turkina, A. Minimization of adverse effects associated with dental alloys. Materials 2022, 15, 7476. [Google Scholar] [CrossRef] [PubMed]
- Dudek, K.; Dulski, M.; Łosiewicz, B. Functionalization of the NiTi shape memory alloy surface by HAp/SiO2/Ag hybrid coatings formed on SiO2-TiO2 glass interlayer. Materials 2020, 13, 1648. [Google Scholar] [CrossRef] [PubMed]
- Petković Didović, M.; Jelovica Badovinac, I.; Fiket, Ž.; Žigon, J.; Rinčić Mlinarić, M.; Čanadi Jurešić, G. Cytotoxicity of Metal Ions Released from NiTi and Stainless Steel Orthodontic Appliances, Part 1: Surface Morphology and Ion Release Variations. Materials 2023, 16, 4156. [Google Scholar] [CrossRef] [PubMed]
- Correa-Rossi, M.; Romero-Resendiz, L.; Leal-Bayerlein, D.; Garcia-Alves, A.L.; Segovia-López, F.; Amigó-Borrás, V. Mechanical, Corrosion, and Ion Release Studies of Ti-34Nb-6Sn Alloy with Comparable to the Bone Elastic Modulus by Powder Metallurgy Method. Powders 2022, 1, 3–17. [Google Scholar] [CrossRef]
- Robles, D.; Brizuela, A.; Fernández-Domínguez, M.; Gil, J. Corrosion Resistance and Titanium Ion Release of Hybrid Dental Implants. Materials 2023, 16, 3650. [Google Scholar] [CrossRef]
- Aniołek, K.; Łosiewicz, B.; Kubisztal, J.; Osak, P.; Stróż, A.; Barylski, A.; Kaptacz, S. Mechanical properties, corrosion resistance and bioactivity of oxide layers formed by isothermal oxidation of Ti–6Al–7Nb alloy. Coatings 2021, 11, 505. [Google Scholar] [CrossRef]
- Zatkalíková, V.; Halanda, J.; Vaňa, D.; Uhríčik, M.; Markovičová, L.; Štrbák, M.; Kuchariková, L. Corrosion Resistance of AISI 316L Stainless Steel Biomaterial after Plasma Immersion Ion Implantation of Nitrogen. Materials 2021, 14, 6790. [Google Scholar] [CrossRef]
- Szklarska, M.; Dercz, G.; Simka, W.; Łosiewicz, B. A.C. impedance study on the interfacial properties of passivated Ti13Zr13Nb alloy in physiological saline solution. Surf. Interface Anal. 2014, 46, 698–701. [Google Scholar] [CrossRef]
- Carek, A.; Slokar Benić, L.; Bubalo, V. Metal Ions Release from Welded Co—Cr Dental Alloys. Materials 2023, 16, 3398. [Google Scholar] [CrossRef]
- Stróż, A.; Dercz, G.; Chmiela, B.; Stróż, D.; Łosiewicz, B. Electrochemical formation of second generation TiO2 nanotubes on Ti13Nb13Zr alloy for biomedical applications. Acta Phys. Pol. 2016, 130, 1079–1080. [Google Scholar] [CrossRef]
- Mutlu-Sagesen, L.; Ergun, G.; Karabulut, E. Ion release from metal-ceramic alloys in three different media. Dent. Mater. J. 2011, 30, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Łosiewicz, B.; Osak, P.; Maszybrocka, J.; Kubisztal, J.; Stach, S. Effect of autoclaving time on corrosion resistance of sandblasted Ti G4 in artificial saliva. Materials 2020, 13, 4154. [Google Scholar] [CrossRef] [PubMed]
- Porcayo-Calderon, J.; Casales-Diaz, M.; Salinas-Bravo, V.M.; Martinez-Gomez, L. Corrosion Performance of Fe-Cr-Ni Alloys in Artificial Saliva and Mouthwash Solution. Bioinorg. Chem. Appl. 2015, 2015, 930802. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.-T.; Kim, K.-N. Ion release and cytotoxicity of stainless steel wires. Eur. J. Orthod. 2005, 27, 533–540. [Google Scholar] [CrossRef]
- Durgo, K.; Orešić, S.; Rinčić Mlinarić, M.; Fiket, Ž.; Jurešić, G.Č. Toxicity of metal ions released from a fixed orthodontic appliance to gastrointestinal tract cell lines. Int. J. Mol. Sci. 2023, 24, 9940. [Google Scholar] [CrossRef]
- Wepner, L.; Färber, H.A.; Jaensch, A.; Weber, A.; Heuser, F.; Keilig, L.; Singer, L.; Bourauel, C.P. In vitro ion release of wires in removable orthodontic appliances. Materials 2021, 14, 3402. [Google Scholar] [CrossRef]
- ISO 6871-2:2000; Dental Base Metal Casting Alloys—Part 2: Nickel-Based Alloys. ISO: Geneva, Switzerland, 2000.
- Eid, R.; Arab, N.T.T.; Greenwood, M.T. Iron mediated toxicity and programmed cell death: A review and a re-examination of existing paradigms. Biochim. Biophys. Acta Mol. Cell Res. 2017, 1864, 399–430. [Google Scholar] [CrossRef]
- Bagchi, D.; Stohs, S.J.; Downs, B.W.; Bagchi, M.; Preuss, H.G. Cytotoxicity and oxidative mechanisms of different forms of chromium. Toxicology 2002, 180, 5–22. [Google Scholar] [CrossRef]
- Rincic Mlinaric, M.; Durgo, K.; Katic, V.; Spalj, S. Cytotoxicity and oxidative stress induced by nickel and titanium ions from dental alloys on cells of gastrointestinal tract. Toxicol. Appl. Pharmacol. 2019, 383, 114784. [Google Scholar] [CrossRef]
- Eliaz, N. Corrosion of metallic biomaterials: A review. Materials 2019, 12, 407. [Google Scholar] [CrossRef]
- Orthodontic Apparatus; Designed by Freepik. Available online: www.freepik.com (accessed on 1 August 2023).
- ISO 14155:2021; Clinical Investigation of Medical Devices for Human Subjects—Good Clinical Practice. ISO: Geneva, Switzerland, 2021.
- The ICDD PDF-4; The International Centre for Diffraction Data: Newtown Township, PA, USA, 2018.
- AFNOR/NF Standard S90-701; Matériel Médico-Chirurgical—Biocompatibilité des Matériaux et Dispositifs Médicaux—Méthodes d’extraction. French Standardization Association: Paris, France, 1988.
- ISO 10271:2021; Dentistry—Corrosion Test Methods for Metallic Materials. ISO: Geneva, Switzerland, 2021.
- Boukamp, B.A. A Linear Kronig-Kramers transform test for immittance data validation. J. Electrochem. Soc. 1995, 142, 1885–1894. [Google Scholar] [CrossRef]
- ISO 6507-1:2018; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. ISO: Geneva, Switzerland, 2018.
- ISO 6507-2:2018; Metallic Materials—Vickers Hardness Test—Part 2: Verification and Calibration of Testing Machines. ISO: Geneva, Switzerland, 2018.
- Di Schino, A. Manufacturing and applications of stainless steels. Metals 2020, 10, 327. [Google Scholar] [CrossRef]
- Mikulewicz, M.; Szymkowski, J.; Stós, W. Microhardness analysis of chosen orthodontic archwires. Dent. Med. Probl. 2006, 43, 79–83. [Google Scholar]
- Lasia, A. Electrochemical Impedance Spectroscopy and Its Applications; Springer Science + Business Media: New York, NY, USA, 2014; ISBN 978-1-4614-8932-0. [Google Scholar]
- Okamoto, G. Passive film of 18-8 stainless steel structure and its function. Corros. Sci. 1973, 13, 471–489. [Google Scholar] [CrossRef]
- Hsu, H.-C.; Wu, S.-C.; Wang, C.-F.; Ho, W.-F. Electrochemical behavior of Ti–Cr alloys in artificial saliva. J. Alloys Compd. 2009, 487, 439–444. [Google Scholar] [CrossRef]
- He, Z.; He, H.; Lou, J.; Li, Y.; Li, D.; Chen, Y.; Liu, S. Fabrication, structure and mechanical and ultrasonic properties of medical Ti6Al4V alloys Part I: Microstructure and mechanical properties of Ti6Al4V alloys suitable for ultrasonic scalpel. Materials 2020, 13, 478. [Google Scholar] [CrossRef]
Component | Concentration [g dm−3] |
---|---|
Na2HPO4 | 0.260 |
KH2PO4 | 0.200 |
NaHCO3 | 1.500 |
KSCN | 0.330 |
NaCl | 6.700 |
KCl | 1.200 |
Measurement Number | Sample 1 [μHV0.3] | Sample 2 [μHV0.3] |
---|---|---|
1 | 413.0 | 467.0 |
2 | 555.4 | 593.5 |
3 | 542.8 | 579.5 |
4 | 534.7 | 574.3 |
5 | 596.7 | 604.4 |
6 | 518.8 | 506.9 |
Average value | 540.6 | |
Standard deviation | 19.4 |
Electrolyte Type | R1 (Ω cm2) | CPE1-T (F cm−2 sϕ−1) | CPE1-ϕ | R2 (Ω cm2) |
---|---|---|---|---|
Saliva pH = 7.4 | 7.87(64) | 3.03(12) × 10−5 | 0.855(7) | 2.78(68) × 106 |
Saliva pH = 5.5 | 10.14(28) | 8.23(14) × 10−5 | 0.826(4) | 1.42(77) × 106 |
Saliva pH = 7.4 + 0.1 M NaF | 7.94(63) | 1.71(39) × 10−5 | 0.813(4) | 7.47(18) × 106 |
Saliva pH = 5.5 + 0.1 M NaF | 20.79(41) | 2.78(23) × 10−5 | 0.836(2) | 6.12(69) × 106 |
Saliva pH = 7.4 + 15 mL Listerine | 15.36(23) | 4.24(39) × 10−5 | 0.855(2) | 2.97(88) × 106 |
Electrode Type | R1 (Ω cm2) | CPE1-T (F cm−2 sϕ−1) | CPE1-ϕ | R2 (Ω cm2) | CPE2-T (F cm−2 sϕ−1) | CPE2-ϕ | R3 (Ω cm2) |
---|---|---|---|---|---|---|---|
Saliva pH = 7.4 + 15 mL Meridol | 4.81(36) | 4.16(70) × 10−5 | 0.895(11) | 3.01(44) × 106 | 1.02(59) × 10−4 | 0.602(6) | 2.47(48) × 103 |
Saline pH = 7.4 | 4.79(24) | 4.50(19) × 10−5 | 0.867(15) | 1.28(90) × 106 | 9.33(15) × 10−5 | 0.787(7) | 2.78(11) × 103 |
Electrolyte Type | Ecor (mV) | jcor (A cm−2) | Ebd (mV) | jbd (A cm−2) | Eprot (mV) | jprot (A cm−2) |
---|---|---|---|---|---|---|
Saliva pH = 7.4 | –104(21) | 4.68(94) × 10−9 | 534(11) | 1.15(23) × 10−5 | –205(22) | 1.05(22) × 10−5 |
Saliva pH = 5.5 | –128(26) | 1.35(27) × 10−9 | 370(7) | 2.29(46) × 10−6 | –36(9) | 2.09(24) × 10−7 |
Saliva pH = 7.4 + 0.1 M NaF | –34(7) | 4.66(83) × 10−9 | 843(17) | 2.19(44) × 10−5 | 121(12) | 2.72(25) × 10−6 |
Saliva pH = 5.5 + 0.1 M NaF | –42(8) | 8.13(92) × 10−9 | 732(15) | 8.71(74) × 10−6 | –99(13) | 1.60(19) × 10−6 |
Saliva pH = 7.4 + 15 mL Listerine | –97(19) | 2.14(43) × 10−9 | 602(12) | 2.04(41) × 10−5 | –155(18) | 6.92(32) × 10−6 |
Saliva pH = 7.4 + 15 mL Meridol | –89(18) | 3.98(80) × 10−9 | 624(13) | 1.62(32) × 10−5 | –162(19) | 2.25(20) × 10−6 |
Saline pH = 7.4 | –137(27) | 4.17(83) × 10−9 | 178(4) | 1.38(28) × 10−6 | –210(19) | 1.74(18) × 10−6 |
Element | Saliva pH = 7.4 | Standard Deviation | ||
---|---|---|---|---|
Sample | Pit | Sample | Pit | |
Fe | 73.7 | 64.5 | 0.8 | 5.6 |
Cr | 19.0 | 17.3 | 1.0 | 0.9 |
Ni | 7.3 | 6.7 | 0.2 | 0.6 |
O | - | 11.6 | - | 7.1 |
Element | Saliva pH = 5.5 | Standard Deviation | ||
---|---|---|---|---|
Sample | Pit | Sample | Pit | |
Fe | 73.8 | 65.0 | 0.1 | 10.5 |
Cr | 18.7 | 17.6 | 0.1 | 7.0 |
Ni | 7.5 | 6.3 | 0.1 | 2.5 |
O | - | 11.1 | - | 6.9 |
Element | Saline pH = 7.4 | Standard Deviation | ||
---|---|---|---|---|
Sample | Pit | Sample | Pit | |
Fe | 74.2 | 64.3 | 0.2 | 4.7 |
Cr | 18.5 | 16.9 | 0.2 | 0.8 |
Ni | 7.3 | 6.1 | 0.1 | 0.2 |
O | - | 12.8 | - | 5.6 |
Element | Saliva pH = 7.4 + 0.1 M NaF | Standard Deviation | ||
---|---|---|---|---|
Sample | Pit | Sample | Pit | |
Fe | 74.4 | 68.8 | 0.5 | 5.6 |
Cr | 18.5 | 17.3 | 0.6 | 0.9 |
Ni | 7.1 | 6.7 | 0.1 | 0.6 |
O | - | 7.2 | - | 7.1 |
Element | Saliva pH = 5.5 + 0.1 M NaF | Standard Deviation | ||
---|---|---|---|---|
Sample | Pit | Sample | Pit | |
Fe | 73.8 | 65.5 | 0.3 | 6.1 |
Cr | 18.7 | 17.7 | 0.1 | 1.2 |
Ni | 7.5 | 6.7 | 0.3 | 0.5 |
O | - | 10.1 | - | 7.7 |
Element | Saliva pH = 7.4 + 15 mL Listerine® | Standard Deviation | ||
---|---|---|---|---|
Sample | Pit | Sample | Pit | |
Fe | 73.8 | 67.9 | 0.5 | 3.0 |
Cr | 18.7 | 18.0 | 0.5 | 0.4 |
Ni | 7.5 | 6.9 | 0.1 | 0.1 |
O | - | 7.2 | - | 3.6 |
Element | Saliva pH = 7.4 + 15 mL Meridol® | Standard Deviation | ||
---|---|---|---|---|
Sample | Pit | Sample | Pit | |
Fe | 73.8 | 64.9 | 0.3 | 8.0 |
Cr | 18.8 | 17.6 | 0.1 | 4.9 |
Ni | 7.5 | 6.5 | 0.2 | 4.9 |
O | - | 11 | - | 0.9 |
Sample | Rm [GPa] | SD | Deformation for Rm [%] | SD |
---|---|---|---|---|
Saliva pH = 7.4 | 2.19 | 0.70 | 4.00 | 0.08 |
Saliva pH = 5.5 | 2.00 | 0.55 | 2.80 | 0.05 |
Saliva pH = 7.4 + 0.1M NaF | 2.18 | 0.69 | 4.00 | 0.05 |
Saliva pH = 5.5 + 0.1M NaF | 2.07 | 0.70 | 3.60 | 0.06 |
Saliva pH = 7.4 + 15 mL Listerine | 2.00 | 0.68 | 4.60 | 0.08 |
Saliva pH = 7.4 + 15 mL Meridol | 2.04 | 0.70 | 3.80 | 0.07 |
Saline pH = 7.4 | 2.21 | 0.67 | 3.50 | 0.07 |
Initial state | 1.74 | 0.64 | 2.70 | 0.06 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łosiewicz, B.; Osak, P.; Górka-Kulikowska, K.; Goryczka, T.; Dworak, M.; Maszybrocka, J.; Aniołek, K. Effect of Artificial Saliva Modification on Pitting Corrosion and Mechanical Properties of the Remanium®-Type Orthodontic Archwire. Materials 2023, 16, 6791. https://doi.org/10.3390/ma16206791
Łosiewicz B, Osak P, Górka-Kulikowska K, Goryczka T, Dworak M, Maszybrocka J, Aniołek K. Effect of Artificial Saliva Modification on Pitting Corrosion and Mechanical Properties of the Remanium®-Type Orthodontic Archwire. Materials. 2023; 16(20):6791. https://doi.org/10.3390/ma16206791
Chicago/Turabian StyleŁosiewicz, Bożena, Patrycja Osak, Karolina Górka-Kulikowska, Tomasz Goryczka, Michał Dworak, Joanna Maszybrocka, and Krzysztof Aniołek. 2023. "Effect of Artificial Saliva Modification on Pitting Corrosion and Mechanical Properties of the Remanium®-Type Orthodontic Archwire" Materials 16, no. 20: 6791. https://doi.org/10.3390/ma16206791
APA StyleŁosiewicz, B., Osak, P., Górka-Kulikowska, K., Goryczka, T., Dworak, M., Maszybrocka, J., & Aniołek, K. (2023). Effect of Artificial Saliva Modification on Pitting Corrosion and Mechanical Properties of the Remanium®-Type Orthodontic Archwire. Materials, 16(20), 6791. https://doi.org/10.3390/ma16206791