Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization
3. Results and Discussion
3.1. FTIR
3.2. Surface Wettability
3.3. Microstructure
3.4. Rheological Behavior
3.5. Thermal Properties
3.6. Thermal Stability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Błędzki, A.K.; Reihmane, S.; Gassan, J. Thermoplastics Reinforced with Wood Fillers: A Literature Review. Polym. Plast. Technol. Eng. 1998, 37, 451–468. [Google Scholar] [CrossRef]
- Olakanmi, E.O.; Strydom, M.J. Critical Materials and Processing Challenges Affecting the Interface and Functional Performance of Wood Polymer Composites (WPCs). Mater. Chem. Phys. 2016, 171, 290–302. [Google Scholar] [CrossRef]
- Hung, K.-C.; Yeh, H.; Yang, T.-C.; Wu, T.-L.; Xu, J.-W.; Wu, J.-H. Characterization of Wood-Plastic Composites Made with Different Lignocellulosic Materials That Vary in Their Morphology, Chemical Composition and Thermal Stability. Polymers 2017, 9, 726. [Google Scholar] [CrossRef] [PubMed]
- Nurhania, N.; Syarifuddin, S.; Armynah, B.; Tahir, D. Fiber-Reinforced Polymer Composite: Higher Performance with Renewable and Eco-Friendly Plant-Based Fibers. Polym. Renew. Resour. 2023, 14, 215–233. [Google Scholar] [CrossRef]
- Mbiada, A.A.Y.; Musa, S.; Richter, O.; Kneer, A.; Barbe, S. Controlling Surface Hydrophobicity of Cellulose-Lignin Composite Coatings. Polym. Renew. Resour. 2018, 9, 51–58. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Ranakoti, L.; Rakesh, P.K.; Mishra, N.K. Experimental Investigations on Mechanical Properties of Walnut Shell and Pine Needle Ash Polylactic Acid Biocomposites. Compos. Theory Pract. 2021, 21, 114–120. [Google Scholar]
- Mohit, H.; Arul Mozhi Selvan, V. A Comprehensive Review on Surface Modification, Structure Interface and Bonding Mechanism of Plant Cellulose Fiber Reinforced Polymer Based Composites. Compos. Interfaces 2018, 25, 629–667. [Google Scholar] [CrossRef]
- Gholampour, A.; Ozbakkaloglu, T. A Review of Natural Fiber Composites: Properties, Modification and Processing Techniques, Characterization, Applications. J. Mater. Sci. 2020, 55, 829–892. [Google Scholar] [CrossRef]
- Li, M.; Pu, Y.; Thomas, V.M.; Yoo, C.G.; Ozcan, S.; Deng, Y.; Nelson, K.; Ragauskas, A.J. Recent Advancements of Plant-Based Natural Fiber–Reinforced Composites and Their Applications. Compos. B Eng. 2020, 200, 108254. [Google Scholar] [CrossRef]
- Kalia, S.; Kaith, B.S.; Kaur, I. Pretreatments of Natural Fibers and Their Application as Reinforcing Material in Polymer Composites-A Review. Polym. Eng. Sci. 2009, 49, 1253–1272. [Google Scholar] [CrossRef]
- Kabir, M.M.; Wang, H.; Lau, K.T.; Cardona, F. Chemical Treatments on Plant-Based Natural Fibre Reinforced Polymer Composites: An Overview. Compos. B Eng. 2012, 43, 2883–2892. [Google Scholar] [CrossRef]
- George, J.; Sreekala, M.S.; Thomas, S. A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites. Polym. Eng. Sci. 2001, 41, 1471–1485. [Google Scholar] [CrossRef]
- Vaidya, A.A.; Gaugler, M.; Smith, D.A. Green Route to Modification of Wood Waste, Cellulose and Hemicellulose Using Reactive Extrusion. Carbohydr. Polym. 2016, 136, 1238–1250. [Google Scholar] [CrossRef] [PubMed]
- Szefer, E.; Leszczyńska, A.; Pielichowski, K. Modification of Microcrystalline Cellulose Filler with Succinic Anhydride—Effect of Microwave and Conventional Heating. Compos. Theory Pract. 2018, 18, 25–31. [Google Scholar]
- Zhang, Y.; Li, H.; Li, X.; Gibril, M.E.; Yu, M. Chemical Modification of Cellulose by in Situ Reactive Extrusion in Ionic Liquid. Carbohydr. Polym. 2014, 99, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Fernández, S.; Ugarte, L.; Calvo-Correas, T.; Peña-Rodríguez, C.; Corcuera, M.A.; Eceiza, A. Properties of Flexible Polyurethane Foams Containing Isocyanate Functionalized Kraft Lignin. Ind. Crop. Prod. 2017, 100, 51–64. [Google Scholar] [CrossRef]
- Musk, A.W.; Peters, J.M.; Wegman, D.H. Isocyanates and Respiratory Disease: Current Status. Am. J. Ind. Med. 1988, 13, 331–349. [Google Scholar] [CrossRef]
- Geng, Y.; Li, K.; Simonsen, J. A Combination of Poly(Diphenylmethane Diisocyanate) and Stearic Anhydride as a Novel Compatibilizer for Wood–Polyethylene Composites. J. Adhes. Sci. Technol. 2005, 19, 987–1001. [Google Scholar] [CrossRef]
- Ashori, A.; Nourbakhsh, A. Polypropylene Cellulose-Based Composites: The Effect of Bagasse Reinforcement and Polybutadiene Isocyanate Treatment on the Mechanical Properties. J. Appl. Polym. Sci. 2009, 111, 1684–1689. [Google Scholar] [CrossRef]
- Maldas, D.; Kokta, B.V.; Raj, R.G.; Daneault, C. Improvement of the Mechanical Properties of Sawdust Wood Fibre—Polystyrene Composites by Chemical Treatment. Polymer 1988, 29, 1255–1265. [Google Scholar] [CrossRef]
- Raj, R.G.; Kokta, B.V.; Maldas, D.; Daneault, C. Use of Wood Fibers in Thermoplastics. VII. The Effect of Coupling Agents in Polyethylene–Wood Fiber Composites. J. Appl. Polym. Sci. 1989, 37, 1089–1103. [Google Scholar] [CrossRef]
- Liew, F.K.; Hamdan, S.; Rahman, M.R.; Mahmood, M.R.; Lai, J.C.H. The Effects of Nanoclay and Tin(IV) Oxide Nanopowder on Morphological, Thermo-Mechanical Properties of Hexamethylene Diisocyanate Treated Jute/Bamboo/Polyethylene Hybrid Composites. J. Vinyl Addit. Technol. 2018, 24, 358–366. [Google Scholar] [CrossRef]
- Hosseinpourpia, R.; Echart, A.; Adamopoulos, S.; Gabilondo, N.; Eceiza, A. Modification of Pea Starch and Dextrin Polymers with Isocyanate Functional Groups. Polymers 2018, 10, 939. [Google Scholar] [CrossRef]
- Kweon, D.-K.; Cha, D.-S.; Park, H.-J.; Lim, S.-T. Starch-g-Polycaprolactone Copolymerization Using Diisocyanate Intermediates and Thermal Characteristics of the Copolymers. J. Appl. Polym. Sci. 2000, 78, 986–993. [Google Scholar] [CrossRef]
- Mani, R.; Tang, J.; Bhattacharya, M. Synthesis and Characterization of Starch-Graft-Polycaprolactone as Compatibilizer for Starch/Polycaprolactone Blends. Macromol. Rapid Commun. 1998, 19, 283–286. [Google Scholar] [CrossRef]
- Ohkita, T.; Lee, S.-H. Effect of Aliphatic Isocyanates (HDI and LDI) as Coupling Agents on the Properties of Eco-Composites from Biodegradable Polymers and Corn Starch. J. Adhes. Sci. Technol. 2004, 18, 905–924. [Google Scholar] [CrossRef]
- Gwon, J.-G.; Cho, H.-J.; Lee, D.; Choi, D.-H.; Lee, S.; Wu, Q.; Lee, S.-Y. Physicochemical and Mechanical Properties of Polypropylene-Cellulose Nanocrystal Nanocomposites: Effects of Manufacturing Process and Chemical Grafting. Bioresources 2018, 13, 1619–1636. [Google Scholar] [CrossRef]
- Arjmand, F.; Barmar, M.; Barikani, M. Isocyanate Modification of Wood Fiber in Enhancing the Performance of Its Composites with High Density Polyethylene. Polym. Renew. Resour. 2012, 3, 43–60. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P. Insights into Compatibilization of Poly(ε-Caprolactone)-Based Biocomposites with Diisocyanates as Modifiers of Cellulose Fillers. Mindanao J. Sci. Technol. 2020, 18, 221–241. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Mysiukiewicz, O.; Barczewski, M. Insights into Seawater Biodegradation of Sustainable Mater-Bi/Poly(ε-Caprolactone)-Based Biocomposites Filled with Diisocyanate-Modified Cellulose Particles. Environments 2023, 10, 90. [Google Scholar] [CrossRef]
- Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Sulima, P.; Przyborowski, J.A.; Kowalkowska-Zedler, D. Mater-Bi/Brewers’ Spent Grain Biocomposites—Novel Approach to Plant-Based Waste Filler Treatment by Highly Efficient Thermomechanical and Chemical Methods. Materials 2022, 15, 7099. [Google Scholar] [CrossRef] [PubMed]
- Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Aniśko, J.; Sulima, P.; Andrzej Przyborowski, J.; Reza Saeb, M. The Impact of Thermomechanical and Chemical Treatment of Waste Brewers’ Spent Grain and Soil Biodegradation of Sustainable Mater-Bi-Based Biocomposites. Waste Manag. 2022, 154, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Haque, M.-U.; Alvarez, V.; Paci, M.; Pracella, M. Processing, Compatibilization and Properties of Ternary Composites of Mater-Bi with Polyolefins and Hemp Fibres. Compos. Part. A Appl. Sci. Manuf. 2011, 42, 2060–2069. [Google Scholar] [CrossRef]
- Borchani, K.E.; Carrot, C.; Jaziri, M. Rheological Behavior of Short Alfa Fibers Reinforced Mater-Bi® Biocomposites. Polym. Test. 2019, 77, 105895. [Google Scholar] [CrossRef]
- Elfehri Borchani, K.; Carrot, C.; Jaziri, M. Biocomposites of Alfa Fibers Dispersed in the Mater-Bi® Type Bioplastic: Morphology, Mechanical and Thermal Properties. Compos. Part A Appl. Sci. Manuf. 2015, 78, 371–379. [Google Scholar] [CrossRef]
- Bastioli, C.; Bellotti, V.; Giudice, L.; Gilli, G. Mater-Bi: Properties and Biodegradability. J. Env. Polym. Degrad. 1993, 1, 181–191. [Google Scholar] [CrossRef]
- Puglia, D.; Tomassucci, A.; Kenny, J.M. Processing, Properties and Stability of Biodegradable Composites Based on Mater-Bi® and Cellulose Fibres. Polym. Adv. Technol. 2003, 14, 749–756. [Google Scholar] [CrossRef]
- Hejna, A.; Marć, M.; Korol, J. Modification of Cellulosic Filler with Diisocyanates—Volatile Organic Compounds Emission Assessment and Stability of Chemical Structure over Time. Nord. Pulp Pap. Res. J. 2021, 36, 353–372. [Google Scholar] [CrossRef]
- Hejna, A.; Marć, M.; Skórczewska, K.; Szulc, J.; Korol, J.; Formela, K. Insights into Modification of Lignocellulosic Fillers with Isophorone Diisocyanate: Structure, Thermal Stability and Volatile Organic Compounds Emission Assessment. Eur. J. Wood Wood Prod. 2021, 79, 75–90. [Google Scholar] [CrossRef]
- Mahović Poljaček, S.; Priselac, D.; Tomašegović, T.; Elesini, U.S.; Leskovšek, M.; Leskovac, M. Effect of the Addition of Nano-Silica and Poly(ε-Caprolactone) on the Mechanical and Thermal Properties of Poly(Lactic Acid) Blends and Possible Application in Embossing Process. Polymers 2022, 14, 4861. [Google Scholar] [CrossRef]
- Gumede, T.P.; Shingange, K.; Mbule, P.; Motloung, B. Miscibility Effect of Biodegradable Aliphatic Poly(Butylene Succinate)/Aromatic Polycarbonate Blends. Polym. Renew. Resour. 2022, 13, 28–43. [Google Scholar] [CrossRef]
- Muller, L.C.; Marx, S.; Vosloo, H.C.; Chiyanzu, I. Functionalising Lignin in Crude Glycerol to Prepare Polyols and Polyurethane. Polym. Renew. Resour. 2019, 10, 3–18. [Google Scholar] [CrossRef]
- Hansen, P.E.; Spanget-Larsen, J. NMR and IR Investigations of Strong Intramolecular Hydrogen Bonds. Molecules 2017, 22, 552. [Google Scholar] [CrossRef]
- Bukowczan, A.; Hebda, E.; Michałowski, S.; Pielichowski, K. Modification of Polyurethane Viscoelastic Foams by Functionalized Polyhedral Oligomeric Silsesquioxanes (POSS). Compos. Theory Pract. 2018, 18, 77–81. [Google Scholar]
- Celebi, H.; Ilgar, M.; Seyhan, A.T. Evaluation of the Effect of Isocyanate Modification on the Thermal and Rheological Properties of Poly(ε-Caprolactone)/Cellulose Composites. Polym. Bull. 2022, 79, 4941–4955. [Google Scholar] [CrossRef]
- Siqueira, G.; Bras, J.; Dufresne, A. New Process of Chemical Grafting of Cellulose Nanoparticles with a Long Chain Isocyanate. Langmuir 2010, 26, 402–411. [Google Scholar] [CrossRef]
- Chen, Q.; Gao, Z.; Bai, L.; Xu, Z.; Gu, J. Water-Dispersible Isocyanate Modified Using Plant-Based Castor Oil: Synthesis and Application as Crosslinking Agent. Ind. Crop. Prod. 2021, 171, 113845. [Google Scholar] [CrossRef]
- Ly, B.; Thielemans, W.; Dufresne, A.; Chaussy, D.; Belgacem, M.N. Surface Functionalization of Cellulose Fibres and Their Incorporation in Renewable Polymeric Matrices. Compos. Sci. Technol. 2008, 68, 3193–3201. [Google Scholar] [CrossRef]
- Opálková Šišková, A.; Bučková, M.; Kroneková, Z.; Kleinová, A.; Nagy, Š.; Rydz, J.; Opálek, A.; Sláviková, M.; Eckstein Andicsová, A. The Drug-Loaded Electrospun Poly(ε-Caprolactone) Mats for Therapeutic Application. Nanomaterials 2021, 11, 922. [Google Scholar] [CrossRef]
- Fu, Y.; Wu, G.; Bian, X.; Zeng, J.; Weng, Y. Biodegradation Behavior of Poly(Butylene Adipate-Co-Terephthalate) (PBAT), Poly(Lactic Acid) (PLA), and Their Blend in Freshwater with Sediment. Molecules 2020, 25, 3946. [Google Scholar] [CrossRef]
- Aldas, M.; Rayón, E.; López-Martínez, J.; Arrieta, M.P. A Deeper Microscopic Study of the Interaction between Gum Rosin Derivatives and a Mater-Bi Type Bioplastic. Polymers 2020, 12, 226. [Google Scholar] [CrossRef]
- Aldas, M.; Pavon, C.; Ferri, J.M.; Arrieta, M.P.; López-Martínez, J. Films Based on Mater-Bi® Compatibilized with Pine Resin Derivatives: Optical, Barrier, and Disintegration Properties. Polymers 2021, 13, 1506. [Google Scholar] [CrossRef]
- Laaziz, S.A.; Raji, M.; Hilali, E.; Essabir, H.; Rodrigue, D.; Bouhfid, R.; Qaiss, A. el kacem Bio-Composites Based on Polylactic Acid and Argan Nut Shell: Production and Properties. Int. J. Biol. Macromol. 2017, 104, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Tsou, C.-H.; Ma, Z.-L.; Yang, T.; De Guzman, M.R.; Chen, S.; Wu, C.-S.; Hu, X.-F.; Huang, X.; Sun, Y.-L.; Gao, C.; et al. Reinforced Distiller’s Grains as Bio-Fillers in Environment-Friendly Poly(Ethylene Terephthalate) Composites. Polym. Bull. 2022, 80, 6137–6158. [Google Scholar] [CrossRef]
- Carvalho, A.J.F.; Curvelo, A.A.S.; Gandini, A. Surface Chemical Modification of Thermoplastic Starch: Reactions with Isocyanates, Epoxy Functions and Stearoyl Chloride. Ind. Crop. Prod. 2005, 21, 331–336. [Google Scholar] [CrossRef]
- Zhang, C.; Li, K.; Simonsen, J. Improvement of Interfacial Adhesion between Wood and Polypropylene in Wood–Polypropylene Composites. J. Adhes. Sci. Technol. 2004, 18, 1603–1612. [Google Scholar] [CrossRef]
- Nam, T.H.; Ogihara, S.; Nakatani, H.; Kobayashi, S.; Song, J. Il Mechanical and Thermal Properties and Water Absorption of Jute Fiber Reinforced Poly(Butylene Succinate) Biodegradable Composites. Adv. Compos. Mater. 2012, 21, 241–258. [Google Scholar] [CrossRef]
- de Campos, A.; Tonoli, G.H.D.; Marconcini, J.M.; Mattoso, L.H.C.; Klamczynski, A.; Gregorski, K.S.; Wood, D.; Williams, T.; Chiou, B.-S.; Imam, S.H. TPS/PCL Composite Reinforced with Treated Sisal Fibers: Property, Biodegradation and Water-Absorption. J. Polym. Env. 2013, 21, 1–7. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface Roughness and Contact Angle. J. Phys. Colloid. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Li, C.; Zhang, J.; Han, J.; Yao, B. A Numerical Solution to the Effects of Surface Roughness on Water–Coal Contact Angle. Sci. Rep. 2021, 11, 459. [Google Scholar] [CrossRef]
- Knitter, M.; Czarnecka-Komorowska, D.; Czaja-Jagielska, N.; Szymanowska-Powałowska, D. Manufacturing and Properties of Biodegradable Composites Based on Thermoplastic Starch/Polyethylene-Vinyl Alcohol and Silver Particles. In Advances in Manufacturing II: Volume 4-Mechanical Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 610–624. [Google Scholar]
- Ruggero, F.; Onderwater, R.C.A.; Carretti, E.; Roosa, S.; Benali, S.; Raquez, J.-M.; Gori, R.; Lubello, C.; Wattiez, R. Degradation of Film and Rigid Bioplastics During the Thermophilic Phase and the Maturation Phase of Simulated Composting. J. Polym. Env. 2021, 29, 3015–3028. [Google Scholar] [CrossRef]
- Samal, S. Effect of Shape and Size of Filler Particle on the Aggregation and Sedimentation Behavior of the Polymer Composite. Powder Technol. 2020, 366, 43–51. [Google Scholar] [CrossRef]
- Duboust, N.; Ghadbeigi, H.; Pinna, C.; Ayvar-Soberanis, S.; Collis, A.; Scaife, R.; Kerrigan, K. An Optical Method for Measuring Surface Roughness of Machined Carbon Fibre-Reinforced Plastic Composites. J. Compos. Mater. 2017, 51, 289–302. [Google Scholar] [CrossRef]
- Czajka, A.; Bulski, R.; Iuliano, A.; Plichta, A.; Mizera, K.; Ryszkowska, J. Grafted Lactic Acid Oligomers on Lignocellulosic Filler towards Biocomposites. Materials 2022, 15, 314. [Google Scholar] [CrossRef]
- Huang, H.-X.; Zhang, J.-J. Effects of Filler-Filler and Polymer-Filler Interactions on Rheological and Mechanical Properties of HDPE-Wood Composites. J. Appl. Polym. Sci. 2009, 111, 2806–2812. [Google Scholar] [CrossRef]
- Shin, B.Y.; Lee, S., II; Shin, Y.S.; Balakrishnan, S.; Narayan, R. Rheological, Mechanical and Biodegradation Studies on Blends of Thermoplastic Starch and Polycaprolactone. Polym. Eng. Sci. 2004, 44, 1429–1438. [Google Scholar] [CrossRef]
- Nuryawan, A.; Alamsyah, E.M. A Review of Isocyanate Wood Adhesive: A Case Study in Indonesia. In Applied Adhesive Bonding in Science and Technology; InTech: London, UK, 2018. [Google Scholar]
- Maldas, D.; Kokta, B.V. Interfacial Adhesion of Lignocellulosic Materials in Polymer Composites: An Overview. Compos. Interfaces 1993, 1, 87–108. [Google Scholar] [CrossRef]
- Barczewski, M.; Mysiukiewicz, O. Rheological and Processing Properties of Poly(Lactic Acid) Composites Filled with Ground Chestnut Shell. Polym. Korea 2018, 42, 267–274. [Google Scholar] [CrossRef]
- Li, J.; Zhou, C.; Wang, G.; Zhao, D. Study on Rheological Behavior of Polypropylene/Clay Nanocomposites. J. Appl. Polym. Sci. 2003, 89, 3609–3617. [Google Scholar] [CrossRef]
- Alfonso, G.C.; Pedemonte, E.; Ponzetti, L. Mechanism of Densification and Crystal Perfection of Poly(Ethylene Terephthalate). Polymer 1979, 20, 104–112. [Google Scholar] [CrossRef]
- Zhou, W. Thermal and Dielectric Properties of the Aluminum Particle Reinforced Linear Low-Density Polyethylene Composites. Polym. Eng. Sci. 2011, 51, 917–924. [Google Scholar] [CrossRef]
- Stachak, P.; Hebda, E.; Pielichowski, K. Foaming Extrusion of Thermoplastic Polyurethane Modified by POSS Nanofillers. Compos. Theory Pract. 2019, 19, 23–29. [Google Scholar]
- Chen, R.S.; Ahmad, S.; Gan, S.; Salleh, M.N.; Ab Ghani, M.H.; Tarawneh, M.A. Effect of Polymer Blend Matrix Compatibility and Fibre Reinforcement Content on Thermal Stability and Flammability of Ecocomposites Made from Waste Materials. Thermochim. Acta 2016, 640, 52–61. [Google Scholar] [CrossRef]
- Lu, N.; Oza, S. Thermal Stability and Thermo-Mechanical Properties of Hemp-High Density Polyethylene Composites: Effect of Two Different Chemical Modifications. Compos. B Eng. 2013, 44, 484–490. [Google Scholar] [CrossRef]
- Xi, X.; Jiang, G.; Wang, X.; Hu, R.; Wang, R. Synthesis, Characterization and Degradation Properties of Poly(α-Angelica Lactone-Co-∊-Caprolactone) Copolymers. Polym. Renew. Resour. 2013, 4, 49–60. [Google Scholar] [CrossRef]
- Aldas, M.; Ferri, J.M.; Lopez-Martinez, J.; Samper, M.D.; Arrieta, M.P. Effect of Pine Resin Derivatives on the Structural, Thermal, and Mechanical Properties of Mater-Bi Type Bioplastic. J. Appl. Polym. Sci. 2020, 137, 48236. [Google Scholar] [CrossRef]
- Zdanowicz, M. Starch Treatment with Deep Eutectic Solvents, Ionic Liquids and Glycerol. A Comparative Study. Carbohydr. Polym. 2020, 229, 115574. [Google Scholar] [CrossRef]
- Romagnolli, C.M.; Leite, G.P.; Rodrigues, T.A.; Morelli, C.L. Blend of Cassava Starch and High-Density Polyethylene with Green Tea for Food Packaging. Polym. Renew. Resour. 2020, 11, 3–14. [Google Scholar] [CrossRef]
- Nayak, S.K. Biodegradable PBAT/Starch Nanocomposites. Polym. Plast. Technol. Eng. 2010, 49, 1406–1418. [Google Scholar] [CrossRef]
- Mofokeng, J.P.; Luyt, A.S. Morphology and Thermal Degradation Studies of Melt-Mixed Poly(Lactic Acid) (PLA)/Poly(ε-Caprolactone) (PCL) Biodegradable Polymer Blend Nanocomposites with TiO2 as Filler. Polym. Test. 2015, 45, 93–100. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A Study of Lignocellulosic Biomass Pyrolysis via the Pyrolysis of Cellulose, Hemicellulose and Lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- Chattopadhyay, D.K.; Webster, D.C. Thermal Stability and Flame Retardancy of Polyurethanes. Prog. Polym. Sci. 2009, 34, 1068–1133. [Google Scholar] [CrossRef]
Material | Poly(ε-caprolactone) | Mater-Bi |
---|---|---|
Tradename | Capa 6500 | NF803 |
Producer | Perstorp (Malmö, Sweden) | Novamont SPA (Novara, Italy) |
Melt flow index, g/10 min | 3.5 (150 °C/5 kg) | 7.0 (170 °C/2.16 kg) |
Melting temperature, °C | 110 | 58–60 |
Sample | Whole Image | 1 mm2 Square Covering the Interface | |||||||
---|---|---|---|---|---|---|---|---|---|
Image Size, µm2 | Surface Area, 103 µm2 | Rq, ° | Ra, ° | Surface Area, µm2 | Rq, ° | Ra, ° | Rsk | Rku | |
Blend | 25 | 10.1 | 5.2 | 3.5 | - | - | - | - | - |
UFC100 | 17.3 | 10.9 | 8.0 | 501 | 9.7 | 6.9 | 0.356 | 5.55 | |
1HDI | 21.1 | 15.7 | 11.9 | 732 | 14.4 | 10.8 | −0.895 | 4.45 | |
2.5HDI | 15.8 | 11.3 | 8.6 | 721 | 12.5 | 9.5 | −0.765 | 3.86 | |
10HDI | 16.9 | 12.9 | 9.6 | 779 | 14.0 | 11.2 | −0.714 | 3.50 |
Sample | PCL | PBAT | TPS | |||||
---|---|---|---|---|---|---|---|---|
Tm, °C | ΔHm, J/g | Xc, % | Tc, °C | ΔT, °C | Tm, °C | Tc, °C | Tm, °C | |
Blend | 56.6 | −23.51 | 42.13 | 27.2 | 29.4 | 129.5 | 101.7 | 147.2 |
UFC100 | 59.2 | −16.31 | 41.76 | 28.5 | 30.7 | 135.2 | 106.0 | 150.9 |
1HDI | 56.8 | −15.11 | 38.68 | 29.4 | 27.4 | - | 110.5 | 149.1 |
2.5HDI | 56.9 | −15.12 | 38.71 | 29.1 | 27.8 | - | 111.4 | 148.8 |
10HDI | 56.5 | −14.54 | 37.23 | 29.3 | 27.2 | 133.8 | 111.3 | 149.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hejna, A.; Barczewski, M.; Kosmela, P.; Mysiukiewicz, O.; Piasecki, A.; Tercjak, A. Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification. Materials 2023, 16, 6814. https://doi.org/10.3390/ma16206814
Hejna A, Barczewski M, Kosmela P, Mysiukiewicz O, Piasecki A, Tercjak A. Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification. Materials. 2023; 16(20):6814. https://doi.org/10.3390/ma16206814
Chicago/Turabian StyleHejna, Aleksander, Mateusz Barczewski, Paulina Kosmela, Olga Mysiukiewicz, Adam Piasecki, and Agnieszka Tercjak. 2023. "Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification" Materials 16, no. 20: 6814. https://doi.org/10.3390/ma16206814
APA StyleHejna, A., Barczewski, M., Kosmela, P., Mysiukiewicz, O., Piasecki, A., & Tercjak, A. (2023). Compatibility of Sustainable Mater-Bi/poly(ε-caprolactone)/cellulose Biocomposites as a Function of Filler Modification. Materials, 16(20), 6814. https://doi.org/10.3390/ma16206814