Hydrogen Storage Properties of Ball Milled MgH2 with Additives- Ni, V and Activated Carbons Obtained from Different By-Products
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Synthesis and Characterization of Activated Carbons
3.2. Hydrogen Sorption Properties
3.3. Characterization—XRD and TEM Analyses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balasubramanian, V. Chapter 10—Hydrogen Storage. In Energy Sources: Fundamentals of Chemical Conversion Processes and Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 185–212. [Google Scholar]
- Yartys, V.A.; Lototskyy, M.V.; Akiba, E.; Albert, R.; Antonov, V.E.; Ares, J.R.; Baricco, M.; Bourgeois, N.; Buckley, C.E.; Bellost von Colbe, J.M.; et al. Magnesium based materials for hydrogen based energy storage: Past, present and future. Int. J. Hydrog. Energy 2019, 44, 7809–7859. [Google Scholar] [CrossRef]
- Wu, C.Z.; Wang, P.; Yao, X.; Liu, C.; Chen, D.M.; Lu, G.Q.; Cheng, H.M. Effect of carbon/noncarbon addition on hydrogen storage behaviors of magnesium hydride. J. Alloys Compd. 2006, 414, 259–264. [Google Scholar] [CrossRef]
- Fuster, V.; Castro, F.J.; Troiani, H.; Urretavizcaya, G. Characterization of graphite catalytic effect in reactively ball milled MgH2-C and Mg-C composites. Int. J. Hydrog. Energy 2011, 36, 9051–9061. [Google Scholar] [CrossRef]
- Gattia, D.M.; Montone, A.; Pasquini, L. Microstructure and morphology changes in MgH2/expanded natural graphite pellets upon hydrogen cycling. Int. J. Hydrog. Energy 2013, 38, 1918–1924. [Google Scholar] [CrossRef]
- Awad, A.S.; Tayeh, T.; Nakhl, M.; Zakhour, M.; Ourane, B.; Le Troëdec, M.; Bobet, J.-L. Effect of carbon type (graphite, CFs and diamond) on the hydrogen desorption of Mg-C powder mixtures under microwave irradiation. J. Alloys Compd. 2014, 607, 223–229. [Google Scholar] [CrossRef]
- Alsabawi, K.; Webb, T.A.; Gray, E.M.; Webb, C.J. The effect of C60 additive on magnesium hydride for hydrogen storage. Int. J. Hydrog. Energy 2015, 40, 10508–10515. [Google Scholar] [CrossRef]
- Grigorova, E.; Khristov, M.; Stoycheva, I.; Tsyntsarski, B. Effect of activated carbon from polyolefin wax on the hydrogen sorption properties of magnesium. Int. J. Hydrog. Energy 2017, 42, 26872–26876. [Google Scholar] [CrossRef]
- Grigorova, E.; Khristov, M.; Stoycheva, I.; Tsyntsarski, B.; Nihtianova, D.; Markov, P. Effect of activated carbons derived from apricot stones or polyolefin wax on hydrogen sorption properties of MgH2. Bulg. Chem. Commun. 2017, 49, 109–114. [Google Scholar]
- Pal, P.; Agarwal, S.; Tiwari, A.; Ichikawa, T.; Jain, A.; Dixit, A. Improved hydrogen desorption properties of exfoliated graphite and graphene nanoballs modified MgH2. Int. J. Hydrog. Energy 2022, 47, 41891–41897. [Google Scholar] [CrossRef]
- Verma, S.K.; Shaz, M.A.; Yadav, T.P. Enhanced hydrogen absorption and desorption properties of MgH2 with graphene and vanadium disulfide. Int. J. Hydrog. Energy 2023, 48, 21383–21394. [Google Scholar] [CrossRef]
- Rud, A.D.; Lakhnik, A.M. Effect of carbon allotropes on the structure and hydrogen sorption during reactive ball-milling of Mg-C powder mixtures. Int. J. Hydrog. Energy 2012, 37, 4179–4187. [Google Scholar] [CrossRef]
- Cermak, J.; David, B. Catalytic effect of Ni, Mg2Ni and Mg2NiH4 upon hydrogen desorption from MgH2. Int. J. Hydrog. Energy 2011, 36, 13614–13620. [Google Scholar] [CrossRef]
- Varin, R.A.; Czujko, T. Overview of processing of nanocrystalline hydrogen storage intermetallics by mechanical alloying/milling. Mater. Manuf. Process. 2002, 17, 129–156. [Google Scholar] [CrossRef]
- Polanski, M.; Nielsen, T.K.; Kunce, I.; Norek, M.; Płociński, T.; Jaroszewicz, L.R.; Gundlach, C.; Jensen, T.R.; Bystrzycki, J. Mg2NiH4 synthesis and decomposition reactions. Int. J. Hydrog. Energy 2013, 38, 4003–4010. [Google Scholar] [CrossRef]
- Martínez-Coronado, R.; Retuerto, M.; Torres, B.; Martínez-Lope, M.J.; Fernández-Díaz, M.T.; Alonso, J.A. High-pressure synthesis, crystal structure and cyclability of the Mg2NiH4 hydride. Int. J. Hydrog. Energy 2013, 38, 5738–5745. [Google Scholar] [CrossRef]
- Kajiwara, K.; Sugime, H.; Noda, S.; Hanada, N. Fast and stable hydrogen storage in the porous composite of MgH2 with Nb2O5 catalyst and carbon nanotube. J. Alloys Compd. 2022, 893, 162206. [Google Scholar] [CrossRef]
- Soni, P.K.; Bhatnagar, A.; Shaz, M.A. Enhanced hydrogen properties of MgH2 by Fe nanoparticles loaded hollow carbon spheres. Int. J. Hydrog. Energy 2023, 48, 17970–17982. [Google Scholar] [CrossRef]
- Thongtan, P.; Dansirima, P.; Thiangviriya, S.; Thaweelap, N.; Suthummapiwat, A.; Plerdsranoy, P.; Utke, R. Reversible hydrogen sorption and kinetics of hydrogen storage tank based on MgH2 modified by TiF4 and activated carbon. Int. J. Hydrog. Energy 2018, 43, 12260–12270. [Google Scholar] [CrossRef]
- Thiangviriya, S.; Plerdsranoy, P.; Sitthiwet, C.; Dansirima, P.; Thongtan, P.; Eiamlamai, P.; Utke, O.; Utke, R. MgH2-TiF4-MWCNTs based hydrogen storage tank with central tube heat exchanger. Int. J. Hydrog. Energy 2019, 44, 20173–20182. [Google Scholar] [CrossRef]
- Thongtan, P.; Thiangviriya, S.; Utke, O.; Utke, R. MgH2-based hydrogen storage tank: Kinetics, reversibility, and MWCNTs content. J. Phys. Chem. Solids 2022, 163, 11057. [Google Scholar] [CrossRef]
- Aghajani, H.; Tabrizi, A.T.; Ghorbani, R.; Behrangi, S.; Stupavska, M.; Abdian, N. Evaluation of electrochemical hydrogen storage capability of three-dimensional nano-structured nitrogen-doped graphene. J. Alloys Compd. 2022, 906, 164284. [Google Scholar] [CrossRef]
- Aghjehkohal, A.R.; Tabrizi, A.T.; Yildiz, M. Electrochemical hydrogen storage of synthesized heterostructure of hexagonal boron nitride-carbon nano tube. J. Alloys Compd. 2023, 962, 171159. [Google Scholar] [CrossRef]
- Tabrizi, A.T.; Aghajani, H.; Mashtizadeh, A. Determining the effect of porosities on the hydrogen adsorption capacity of 3D printed PEEK. Int. J. Hydrog. Energy 2023, in press. [Google Scholar] [CrossRef]
- Grigorova, E.; Nihtianova, D.; Tsyntsarski, B.; Stoycheva, I. Investigation of Hydrogen Storage Characteristics of MgH2 Based Materials with Addition of Ni and Activated Carbon. Inorganics 2020, 8, 12. [Google Scholar] [CrossRef]
- Tsoncheva, T.; Mileva, A.; Tsyntsarski, B.; Paneva, D.; Spassova, I.; Kovacheva, D.; Velinov, N.; Karashanova, D.; Georgieva, B.; Petrov, N. Activated carbon from Bulgarian peach stones as a support of catalysts for methanol decomposition. Biomass Bioenergy 2018, 109, 135–146. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Wu, Z.; Tang, Q.; Zhu, Y.; Zhang, J.; Liu, Y.; Zhang, Y.; Ba, Z.; Hu, X.; et al. Enhanced hydrogen sorption kinetics of MgH2 catalyzed by a novel layered Ni/Al2O3 hybrid. J. Alloys Compd. 2022, 895, 162682. [Google Scholar]
Activated Carbons | Specific Surface Area, m2/g | Vtot, cm3/g | Vmic, cm3/g |
---|---|---|---|
Walnut shells (CAN) | 743 | 0.67 | 0.21 |
Polyolefin wax (POW) | 800 | 0.60 | 0.27 |
Peach stones (CPS) [26] | 1257 | 0.63 | 0.44 |
Type of Activated Carbon | Ash, wt.% | C, wt.% | H, wt.% | S, wt.% | N, wt.% | O, wt.% |
---|---|---|---|---|---|---|
Walnut shells (CAN) | 2 | 89.5 | 2.4 | 0.8 | 0.9 | 6.4 |
Polyolefin wax (POW) | 0.1 | 87.4 | 3.5 | 0.5 | - | 8.6 |
Peach stones (CPS) [26] | 2.6 | 88.0 | 2.5 | 0.5 | 1.1 | 7.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grigorova, E.; Markov, P.; Tsyntsarski, B.; Tzvetkov, P.; Stoycheva, I. Hydrogen Storage Properties of Ball Milled MgH2 with Additives- Ni, V and Activated Carbons Obtained from Different By-Products. Materials 2023, 16, 6823. https://doi.org/10.3390/ma16206823
Grigorova E, Markov P, Tsyntsarski B, Tzvetkov P, Stoycheva I. Hydrogen Storage Properties of Ball Milled MgH2 with Additives- Ni, V and Activated Carbons Obtained from Different By-Products. Materials. 2023; 16(20):6823. https://doi.org/10.3390/ma16206823
Chicago/Turabian StyleGrigorova, Eli, Pavel Markov, Boyko Tsyntsarski, Peter Tzvetkov, and Ivanka Stoycheva. 2023. "Hydrogen Storage Properties of Ball Milled MgH2 with Additives- Ni, V and Activated Carbons Obtained from Different By-Products" Materials 16, no. 20: 6823. https://doi.org/10.3390/ma16206823
APA StyleGrigorova, E., Markov, P., Tsyntsarski, B., Tzvetkov, P., & Stoycheva, I. (2023). Hydrogen Storage Properties of Ball Milled MgH2 with Additives- Ni, V and Activated Carbons Obtained from Different By-Products. Materials, 16(20), 6823. https://doi.org/10.3390/ma16206823