Plastic Evolution Characterization for 304 Stainless Steel by CQN_Chen Model under the Proportional Loading
Abstract
:1. Introduction
2. CQN_Chen Anisotropic Hardening Model
2.1. CQN_Chen Anisotropic Hardening Model
2.2. Convexity Analysis
3. Plastic Evolution Characterization for SS304
3.1. Uniaxial Tensile Experiment
3.2. Anisotropic Evolution Characterization of SS304
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.; Myung, D.; Park, J.K.; Min, J.Y.; Lee, H.R.; El–Aty, A.A.; Lee, M.G. A Review of Characterization and Modelling Approaches for Sheet Metal Forming of Lightweight Metallic Materials. Materials 2023, 16, 836. [Google Scholar] [CrossRef] [PubMed]
- Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. A–Math Phys. Eng. Sci. 1948, 193, 281–297. [Google Scholar]
- Logan, R.W.; Hosford, W.F. Upper–bound anisotropic yield locus calculations assuming <111>–pencil glide. Int. J. Mech. Sci. 1980, 22, 419–430. [Google Scholar]
- Hosford, W.F. Comments on anisotropic yield criteria. Int. J. Mech. Sci. 1985, 27, 423–427. [Google Scholar] [CrossRef]
- Barlat, F.; Lege, D.J.; Brem, J.C. A six–component yield function for anisotropic materials. Int. J. Plast. 1991, 7, 693–712. [Google Scholar] [CrossRef]
- Barlat, F.; Brem, J.C.; Yoon, J.W.; Chung, K.; Dick, R.E.; Lege, D.J.; Pourboghrat, F.; Choi, S.H.; Chu, E. Plane stress yield function for aluminum alloy sheets–part 1: Theory. Int. J. Plast. 2003, 19, 1297–1319. [Google Scholar] [CrossRef]
- Barlat, F.; Aretz, H.; Yoon, J.W.; Karabin, M.E.; Brem, J.C.; Dick, R.E. Linear transfomation–based anisotropic yield functions. Int. J. Plast. 2005, 21, 1009–1039. [Google Scholar] [CrossRef]
- Cazacu, O.; Plunkett, B.; Barlat, F. Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 2006, 22, 1171–1194. [Google Scholar] [CrossRef]
- He, Z.B.; Zhang, K.; Zhu, H.H.; Lin, Y.L.; Fu, M.W.; Yuan, S.J. An anisotropic constitutive model for forming of aluminum tubes under both biaxial tension and pure shear stress states. Int. J. Plast. 2022, 152, 103259. [Google Scholar] [CrossRef]
- Cazacu, O.; Barlat, F. Generalization of Drucker’s Yield Criterion to Orthotropy. Math. Mech. Solids 2001, 6, 613–630. [Google Scholar] [CrossRef]
- Drucker, D.C. Relation of Experiments to Mathematical Theories of Plasticity. J. Appl. Mech. 1949, 16, 349–357. [Google Scholar] [CrossRef]
- Cazacu, O.; Barlat, F. A criterion for description of anisotropy and yield differential effects in pressure–insensitive metals. Int. J. Plast. 2004, 20, 2027–2045. [Google Scholar] [CrossRef]
- Gao, X.S.; Zhang, T.T.; Zhou, J.; Graham, S.M.; Hayden, M.; Roe, C. On stress–state dependent plasticity modeling: Significance of the hydrostatic stress, the third invariant of stress deviator and the non-associated flow rule. Int. J. Plast. 2011, 27, 217–231. [Google Scholar] [CrossRef]
- Aretz, H.; Barlat, F. New convex yield functions for orthotropic metal plasticity. Int. J. Non–Linear Mech. 2013, 51, 97–111. [Google Scholar] [CrossRef]
- Yoshida, F.; Hamasaki, H.; Uemori, T. A user–friendly 3D yield function to describe anisotropy of steel sheet. Int. J. Plast. 2013, 45, 119–139. [Google Scholar] [CrossRef]
- Hu, Q.; Li, X.F.; Han, X.H.; Li, H.; Chen, J. A normalized stress invariant–based yield criterion: Modeling and validation. Int. J. Plast. 2017, 99, 248–273. [Google Scholar] [CrossRef]
- Lou, Y.S.; Yoon, J.W. Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion. Int. J. Plast. 2018, 101, 125–155. [Google Scholar] [CrossRef]
- Xu, T.Y.; Li, F.G.; Wang, X.L. A user–friendly anisotropic yield function for modeling anisotropy of BCC and FCC sheet metals. J. Mater. Eng. Perform. 2023, 32, 2370–2391. [Google Scholar] [CrossRef]
- Choi, Y.; Walter, M.E.; Lee, J.K.; Han, C.-S. Observations of anisotropy evolution and identification of plastic spin parameters by uniaxial tensile tests. J. Mech. Mater. Struct. 2006, 1, 301–323. [Google Scholar] [CrossRef]
- Khan, A.S.; Suh, Y.S.; Kazmi, R. Quasi–static and dynamic loading responses and constitutive modeling of titanium alloys. Int. J. Plast. 2004, 20, 2233–2248. [Google Scholar] [CrossRef]
- Khan, A.S.; Kazmi, R.; Farrokh, B. Multiaxial and non–proportional loading responses, anisotropy and modeling of Ti-6Al-4V titanium alloy over wide ranges of strain rates and temperatures. Int. J. Plast. 2007, 23, 931–950. [Google Scholar] [CrossRef]
- Khan, A.S.; Pandey, A.; Gnaupel-Herold, T.; Mishra, R.K. Mechanical response and Texture evolution of AZ31 alloy at large strains for different strain rates and temperatures. Int. J. Plast. 2011, 27, 688–706. [Google Scholar] [CrossRef]
- Lou, X.Y.; Li, M.; Boger, R.K.; Agnew, S.R.; Wagoner, R.H. Hardening evolution of AZ31B Mg sheet. Int. J. Plast. 2007, 23, 44–86. [Google Scholar] [CrossRef]
- Stoughton, T.B.; Yoon, J.W. Anisotropic hardening and non–associated flow in proportional loading of sheet metals. Int. J. Plast. 2009, 25, 1777–1817. [Google Scholar] [CrossRef]
- Lee, E.H.; Stoughton, T.B.; Yoon, J.W. A yield criterion through coupling of quadratic and non–quadratic functions for anisotropic hardening with non–associated flow rule. Int. J. Plast. 2017, 99, 120–143. [Google Scholar] [CrossRef]
- Hosford, W.F. A generalized isotropic yield criterion. J. Appl. Mech. 1972, 39, 607–609. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Y.; Lou, Y. User-friendly anisotropic hardening function with non–associated flow rule under the proportional loadings for BCC and FCC metals. Mech. Mater. 2022, 165, 104190. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.Y.; Stoughton, T.B.; Lin, J.P.; Carsley, J.E.; Carlson, B.E. A non-quadratic pressure-sensitive constitutive model under non-associated flow rule with anisotropic hardening: Modeling and validation. Int. J. Plast. 2020, 135, 102808. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.Y.; Lin, J.P.; Lee, M.G. Modeling stress anisotropy, strength differential, and anisotropic hardening by coupling quadratic and stress-invariant-based yield functions under non–associated flow rule. Mech. Mater. 2022, 174, 104458. [Google Scholar] [CrossRef]
- Hu, Q.; Yoon, J.W.; Manopulo, N.; Hora, P. A coupled yield criterion for anisotropic hardening with analytical description under associated flow rule: Modeling and validation. Int. J. Plast. 2021, 36, 102882. [Google Scholar] [CrossRef]
- Zhang, C.; Lou, Y. Characterization and modelling of evolving plasticity behaviour up to fracture for FCC and BCC metals. J. Mater. Process. Technol. 2023, 317, 117997. [Google Scholar] [CrossRef]
- Zhou, Y.; Hu, Q.; Chen, J. A concise analytical framework for describing asymmetric yield behavior based on the concept of shape functions. Int. J. Plast. 2023, 164, 103593. [Google Scholar] [CrossRef]
- Hu, Q.; Yoon, J.W. Analytical description of an asymmetric yield function (Yoon2014) by considering anisotropic hardening under non–associated flow rule. Int. J. Plast. 2021, 140, 102978. [Google Scholar] [CrossRef]
- Yoon, J.W.; Lou, Y.S.; Yoon, J.; Glazoff, M.V. Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int. J. Plast. 2014, 56, 184–202. [Google Scholar] [CrossRef]
- Hu, Q.; Yoon, J.W.; Chen, J. Analytically described polynomial yield criterion by considering both plane strain and pure shear states. Int. J. Plast. 2023, 162, 103514. [Google Scholar] [CrossRef]
- Lou, Y.S.; Zhang, C.; Zhang, S.J.; Yoon, J.W. A general yield function with differential and anisotropic hardening for strength modelling under various stress states with non–associated flow rule. Int. J. Plast. 2022, 158, 103414. [Google Scholar] [CrossRef]
- Hou, Y.; Du, K.; El-Aty, A.A.; Lee, M.G.; Min, J.Y. Plastic anisotropy of sheet metals under plane strain loading: A novel non-associated constitutive model based on fourth–order polynomial functions. Mater. Des. 2022, 223, 111187. [Google Scholar] [CrossRef]
- Lou, Y.S.; Yoon, J.W. Lode-dependent anisotropic-asymmetric yield function for isotropic and anisotropic hardening of pressure–insensitive materials. Part I: Quadratic function under non–associated flow rule. Int. J. Plast. 2023, 166, 103647. [Google Scholar] [CrossRef]
- Clausmeyer, T.; Svendsen, B. Comparison of two models for anisotropic hardening and yield surface evolution in bcc sheet steels. Eur. J. Mech. A/Solids 2015, 54, 120–131. [Google Scholar] [CrossRef]
- Min, J.Y.; Carsley, J.E.; Lin, J.P.; Wen, Y.Y.; Kuhlenkötter, B. A non–quadratic constitutive model under non–associated flow rule of sheet metals with anisotropic hardening: Modeling and experimental validation. Int. J. Mech. Sci. 2016, 119, 343–359. [Google Scholar] [CrossRef]
- Barlat, F.; Lian, J. Plastic behaviour and stretchability of sheet metals (Part I): A yield function for orthotropic sheet under plane stress conditions. Int. J. Plast. 1989, 5, 51–56. [Google Scholar] [CrossRef]
- Li, H.; Hu, X.; Yang, H.; Li, L. Anisotropic and asymmetrical yielding and its distorted evolution: Modeling and applications. Int. J. Plast. 2017, 82, 127–158. [Google Scholar] [CrossRef]
- Hao, S.; Dong, X.H. Interpolation–based anisotropic yield and hardening models. Eur. J. Mech. A/Solids 2020, 83, 104047. [Google Scholar] [CrossRef]
- Fu, J.W.; Xie, W.W.; Zhou, J.M.; Qi, L.H. A method for the simultaneous identification of anisotropic yield and hardening constitutive parameters for sheet metal forming. Int. J. Mech. Sci. 2020, 181, 105756. [Google Scholar] [CrossRef]
- Li, Z.G.; Yang, H.F.; Liu, J.G.; Liu, F. An improved yield criterion characterizing the anisotropic and tension–compression asymmetric behavior of magnesium alloy. J. Magnes. Alloys 2022, 10, 569–584. [Google Scholar] [CrossRef]
- Lou, Y.S.; Zhang, S.J.; Yoon, J.W. A reduced Yld2004 function for modeling of anisotropic plastic deformation of metals under triaxial loading. Int. J. Mech. Sci. 2019, 161, 105027. [Google Scholar] [CrossRef]
- Wang, S.C.; Shang, H.C.; Zhang, Z.; Lou, Y.S. Multi–scale numerical investigation of deep drawing of 6K21 aluminum alloy by crystal plasticity and a stress-invariant based anisotropic yield function under non-associated flow rule. J. Manuf. Process. 2023, 102, 736–755. [Google Scholar] [CrossRef]
- Hou, Y.; Min, J.Y.; Guo, N.; Lin, J.P.; Carsley, J.E.; Stoughton, T.B.; Traphöner, H.; Clausmeyer, T.; Tekkaya, A.E. Investigation of evolving yield surfaces of dual-phase steels. J. Mater. Process. Technol. 2021, 287, 116314. [Google Scholar] [CrossRef]
- Mu, Z.K.; Zhao, J.; Meng, Q.D.; Sun, H.L.; Yu, G.C. Anisotropic hardening and evolution of r–values for sheet metal based on evolving non–associated Hill48 model. Thin-Walled Struct. 2022, 171, 108791. [Google Scholar] [CrossRef]
- Du, K.; Huang, S.H.; Hou, Y.; Wang, H.B.; Wang, Y.X.; Zheng, W.T.; Yuan, X.G. Characterization of the asymmetric evolving yield and flow of 6016–T4 aluminum alloy and DP490 steel. J. Mater. Sci. Technol. 2023, 133, 209–229. [Google Scholar] [CrossRef]
- Mamros, E.M.; Mayer, S.M.; Banerjee, D.K.; Iadicola, M.A.; Kinsey, B.L.; Ha, J.J. Plastic anisotropy evolution of SS316L and modeling for novel cruciform specimen. Int. J. Mech. Sci. 2022, 234, 107663. [Google Scholar] [CrossRef]
- Yang, H.C.; Zhang, W.; Zhuang, X.C.; Zhao, Z. Anisotropic plastic flow of low/medium carbon steel plates in different loading conditions: Characterization of the r–value. J. Mater. Process. Technol. 2023, 321, 118159. [Google Scholar] [CrossRef]
- Lee, H.R.; Lee, M.G.; Park, N. Effect of evolutionary anisotropic hardening on the prediction of deformation and forming load in incremental sheet forming simulation. Thin-Walled Struct. 2023, 193, 111231. [Google Scholar] [CrossRef]
- Gawad, J.; Banabic, D.; Bael, A.V.; Comsa, D.S.; Gologanu, M.; Eyckens, P.; Houtte, P.V.; Roose, D. An evolving plane stress yield criterion based on crystal plasticity virtual experiments. Int. J. Plast. 2015, 75, 141–169. [Google Scholar] [CrossRef]
- Cazacu, O. New yield criteria for isotropic and textured metallic materials. Int. J. Solids Struct. 2018, 139–140, 200–210. [Google Scholar] [CrossRef]
Uniaxial Tension | Fitted Error | ||||||
---|---|---|---|---|---|---|---|
A (MPa) | B (MPa) | C | b | K (MPa) | n | ||
RD | 465.291 | 148.280 | 67.908 | 4.172 | 1499.145 | 0.878 | 8.1 × 10−4 |
DD | 459.826 | 151.990 | 61.747 | 4.068 | 1481.643 | 0.866 | 9.1 × 10−4 |
TD | 417.364 | 103.482 | 107.677 | 4.491 | 1577.881 | 0.870 | 5.1 × 10−4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, X.; Wang, S.; Xu, Z.; Zhou, J.; Wan, X.; Rayhan, H.M.A.; Lou, Y. Plastic Evolution Characterization for 304 Stainless Steel by CQN_Chen Model under the Proportional Loading. Materials 2023, 16, 6828. https://doi.org/10.3390/ma16216828
Gao X, Wang S, Xu Z, Zhou J, Wan X, Rayhan HMA, Lou Y. Plastic Evolution Characterization for 304 Stainless Steel by CQN_Chen Model under the Proportional Loading. Materials. 2023; 16(21):6828. https://doi.org/10.3390/ma16216828
Chicago/Turabian StyleGao, Xiang, Songchen Wang, Zhongming Xu, Jia Zhou, Xinming Wan, Hasib Md Abu Rayhan, and Yanshan Lou. 2023. "Plastic Evolution Characterization for 304 Stainless Steel by CQN_Chen Model under the Proportional Loading" Materials 16, no. 21: 6828. https://doi.org/10.3390/ma16216828
APA StyleGao, X., Wang, S., Xu, Z., Zhou, J., Wan, X., Rayhan, H. M. A., & Lou, Y. (2023). Plastic Evolution Characterization for 304 Stainless Steel by CQN_Chen Model under the Proportional Loading. Materials, 16(21), 6828. https://doi.org/10.3390/ma16216828