The Impact of Al2O3 Particles from Grit-Blasted Ti6Al7Nb (Alloy) Implant Surfaces on Biocompatibility, Aseptic Loosening, and Infection
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Surface and Subsurface Contamination of Ti6Al7Nb Alloy via Al2O3 Grit Blasting
3.2. Light Microscopy Biocompatibility–Cytotoxicity Studies
3.2.1. Characterization of Cytotoxicity
3.2.2. Effect of Al2O3 Corundum on Morphology of Human Bone Marrow-Derived Mesenchymal Stromal Cells (BMSCs)
3.3. Histopathology Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Manufacturer | Date | Survivorship (Years) | Survivorship (Months) | ||
---|---|---|---|---|---|
ASEPTIC LOOSENING (A) | |||||
A1 | 343 | Sminth&Nephew | 4 November 2005–8 June 2015 | 9Y 7M | 115 |
A2 | 193 | ENDOPLUS | 19 April 2006–4 November 2013 | 7 Y 7M | 91 |
A3 | 221 | ENDOPLUS | 19 November 2001–28 February 2014 | 12 Y 3 M | 147 |
A4 | 379 | Sminth&Nephew | 12 May 2015–12 June 2016 | 1 Y | 12 |
A5 | 41 | Sminth&Nephew | 15 October 2008–18 August 2011 | 2 Y 11 M | 35 |
46 | 120 | Sminth&Nephew | 7 September 2005–8 January 2013 | 7 Y 4 M | 88 |
A7 | 283 | ENDOPLUS | 20 June 1995–1 June 2015 | 19 Y 11 M | 239 |
A8 | 234 | Sminth&Nephew | 9 April 2014–23 April 2014 | 14 DAYS | 0.5 |
INFECTION (I) | |||||
I1 | 184 | Sminth&Nephew | 25 September 2013–2 December 2013 | 3 M | 3 |
I2 | 163 | Sminth&Nephew | 8 November 2012–12 July 2013 | 8 M | 8 |
I3 | 191 | Sminth&Nephew | 16 October 2013–23 July 2014 | 9 M | 9 |
I4 | 171 | Sminth&Nephew | 19 January 2013–7 August 2013 | 7 M | 7 |
I5 | 94 | Sminth&Nephew | 27 October 2005–16 May 2012 | 6 Y 5M | 77 |
I6 | 162 | Sminth&Nephew | 17 November 2004–16 January 2013 | 8 Y 2 M | 98 |
I7 | 40 | Sminth&Nephew | 8 October 2008–14 September 2011 | 3 Y | 36 |
I8 | 129 | Sminth&Nephew | 26 November 2012–9 February 2013 | 3 M | 3 |
I9 | 020 | Sminth&Nephew | 3 March 2010–29 April 2011 | 1 Y 1M | 13 |
I10 | 108 | Sminth&Nephew | 18 October 2010–2 October 2012 | 2 Y | 24 |
I11 | 311 | Sminth&Nephew | 25 July 2008–11 March 2015 | 6 Y 6 M | 78 |
I12 | 205 | Sminth&Nephew | 6 January 2014–14 January 2014 | 0.5 M | 0.5 |
LATENT INFECTION (L) | |||||
L1 | 367 | ENDOPLUS | 25 September 2002–22 December 2015 | 13 Y 7 M | 163 |
L2 | 172 | ENDOPLUS | 8 October 1998–7 August 2013 | 14 Y 10 M | 178 |
L3 | 017 | ENDOPLUS | 23 March 2005–2 March 2011 | 6 Y | 72 |
L4 | 206 | Sminth&Nephew | 7 November 2008–27 November 2013 | 5 Y | 60 |
L5 | 212 | Sminth&Nephew | 26 May 2011–20 January 2014 | 2 Y 8 M | 32 |
L6 | 242 | Sminth&Nephew | 14 February 2014–15 May 2014 | 3 M | 3 |
L7 | 138 | Sminth&Nephew | 6 November 2007–2 October 2012 | 5 Y | 60 |
References
- Kurtz, S.; Ong, K.; Lau, E.; Mowat, F.; Halpern, M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J. Bone Joint Surg. Am. 2007, 89, 780–785. [Google Scholar] [CrossRef]
- Jenko, M.; Gorenšek, M.; Godec, M.; Hodnik, M.; Šetina, B.; Donik, Č.; Grant, J.T.; Dolinar, D. Surface chemistry and microstructure of metallic biomaterials for hip and knee endoprostheses. Appl. Surf. Sci. 2018, 427, 584–593. [Google Scholar] [CrossRef]
- Bobyn, J.D.; Coiller, J.P.; Mayor, M.B.; McTighe, T.; Tanzer, M.; Vaughn, B.K. Particulate debris in total hip arthroplasty: Problems and Solutions. In Proceedings of the Scientific Exhibits at the 1993 AAOS Meeting, San Francisco, CA, USA, 5–7 January 1993. [Google Scholar]
- Merola, M.; Affatato, S. Review Materials for Hip Prostheses: A Review of Wear and Loading Considerations. Materials 2019, 12, 495. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Ruiz, R.; Georgios Romanos, G. Potential Causes of Titanium Particle, and Ion Release in Implant Dentistry: A Systematic Review. Int. J. Mol. Sci. 2018, 19, 3585. [Google Scholar] [CrossRef] [PubMed]
- Roškar, S.; Antolič, V.; Mavčič, B. Surgeon-stratified cohort analysis of 1976 cementless Zweymüller total hip arthroplasties from a single hospital with 23,255 component years of follow-up. Arch. Orthop. Trauma Surg. 2020, 140, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Vance, A.; Bari, K.; Arjunan, A. Investigation of Ti64 sheathed cellular anatomical structure as a tibia implant. Biomed. Phys. Eng. Express 2019, 5, 035008. [Google Scholar] [CrossRef]
- Esmaeili, Y.; Bidram, E.; Bigham, A.; Atari, M.; Azadani, R.N.; Tavakoli, M.; Salehi, S.; Mirhaj, M.; Basiri, A.; Mirzavandi, Z.; et al. Exploring the evolution of tissue engineering strategies over the past decade: From cell-based strategies to gene-activated matrix. Alex. Eng. J. 2023, 81, 137–169. [Google Scholar] [CrossRef]
- Mavrogenis, A.F.; Dimitriou, R.; Parvizi, J.; Babis, G.C. Biology of implant osseointegration. J. Musculoskelet. Neuronal Interact. 2009, 9, 61–71. [Google Scholar]
- Balaban, N.; Stoodley, P.; Fux, C.; Wilson, S.; Costerton, J.W.; Dell’Acqua, G. Prevention of Staphylococcal Biofilm-associated Infections by the Quorum Sensing Inhibitor RIP. Clin. Orthop. Rel. Res. 2005, 437, 48–54. [Google Scholar] [CrossRef]
- Apostu, D.; Lucaciu, O.; Berce, C.; Lucaciu, D.; Cosma, D. Current methods of preventing aseptic loosening and improving osseointegration of titanium implants in cementless total hip arthroplasty: A review. Special Issue: Surgical treatment of hip pathology: From childhood to adulthood. J. Int. Med. Res. 2018, 46, 2014–2119. [Google Scholar] [CrossRef]
- Ehrenfest, D.M.D.; Coelho, P.G.; Kang, B.S.; Sul, Y.; Albrektsson, T. Classification of osseointegrated implant surfaces: Materials, chemistry and topography. Trends Biotechnol. 2010, 28, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Quin, J.; McFadden, R.; Chan, C. Titanium for Orthopedic Applications: An Overview of Surface Modification to Improve Biocompatibility and Prevent Bacterial Biofilm Formation. iScience 2020, 23, 101745. [Google Scholar] [CrossRef] [PubMed]
- Park, J.H.; Olivares-Navarrete, R.; Baier, R.E.; Meyer, A.E.; Tannenbaumd, R.; Boyana, B.D.; Schwartz, Z. Effect of cleaning and sterilization on titanium implant surface properties and cellular response. Acta Biomater. 2012, 8, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Podlipec, R.; Punzón-Quijorna, E.; Pirker, L.; Kelemen, M.; Vavpetic, P.; Kavalar, R.; Hlawacek, G.; Štrancar, J.; Pelicon, P.; Fokter, S.K. Revealing Inflammatory Indications Induced by Titanium Alloy Wear Debris in Periprosthetic Tissue by Label-Free Correlative High-Resolution Ion, Electron and Optical Microspectroscopy. Materials 2021, 14, 3048. [Google Scholar] [CrossRef]
- Avsec, K.; Conradi, M.; Jenko, M.; Kocjančič, B.; Debeljak, M.; Gorenšek, M.; Dolinar, D. Effect of sterilization on the surface properties of Ti6Al7Nb alloy femoral stems. Mater. Technol. 2021, 55, 59–64. [Google Scholar]
- Rüger, M.; Gensior, T.J.; Herren, C.; VonWalter, M.; Ocklenburg, C.; Marx, R. The removal of Al2O3 particles from grit-blasted titanium implant surfaces: Effects on biocompatibility, osseointegration and interface strength in vivo. Acta Biomater. 2010, 6, 2852–2861. [Google Scholar] [CrossRef]
- Bitar, D.; Parvizi, J. Biological response to prosthetic debris. World J. Orthop. 2015, 6, 172–189. [Google Scholar] [CrossRef]
- Sharan, J.; Lale, S.V.; Koul, V.; Mishra, M.; Kharbanda, O.P. An Overview of Surface Modifications of Titanium and its Alloys for Biomedical Applications. Trends Biomater. Artif. Organs 2015, 29, 176–187. [Google Scholar]
- Avsec, K.; Jenko, M.; Conradi, M.; Kocijan, A.; Vesel, A.; Kovač, J.; Godec, M.; Belič, I.; Šetina Batič, B.; Donik, Č.; et al. Surface properties of retrieved cementless femoral hip endoprostheses produced from a Ti6Al7Nb alloy. Coatings 2019, 9, 868. [Google Scholar] [CrossRef]
- Cör, A. Histological Picture of the Wear Particles, and the Biological Response in Periprosthetic Tissue. Mater. Technol. 2019, 53, 77–80. [Google Scholar] [CrossRef]
- Wagner, C.; Moulder, J.F.; Sobol, P.E. Handbook of X-ray Photoelectron Spectroscopy; Physical Electronics: Eden Preirie, MN, USA, 1995; pp. 1–261. [Google Scholar]
- Dolinar, D.; Gorenšek, M.; Jenko, M.; Godec, M.; Šetina, B.; Donik, Č.; Kocijan, A.; Debeljak, M.; Kocjančič, B. Biomaterials in endoprosthetics. Mater. Technol. 2018, 52, 89–98. [Google Scholar]
- Ostap, S. Control of silica in the bayer process used for alumina production. Can. Metall. Q. 2013, 25, 101–106. [Google Scholar] [CrossRef]
- Gallo, J.; Vaculov, J.; Goodman, S.B.; Konttinen, Y.T.; Thyssen, J.P. Contributions of human tissue analysis to understanding the mechanisms of loosening and osteolysis in total hip replacement. Acta Biomater. 2014, 10, 2354–2366. [Google Scholar] [CrossRef] [PubMed]
- Jan, Z.; Hočevar, M.; Kononenko, V.; Michelini, S.; Repar, N.; Caf, M.; Kocjančič, B.; Dolinar, D.; Kralj, S.; Makovec, D.; et al. Inflammatory, Oxidative Stress and Small Cellular Particle Response in HUVEC Induced by Debris from Endoprosthesis Processing. Materials 2023, 16, 3287. [Google Scholar] [CrossRef] [PubMed]
- Fujishiro, T.; Moojen, D.J.F.; Kobayashi, N.; Dhert, W.J.A.; Bauer, T.W. Perivascular and Diffuse Lymphocytic, Inflammation are not Specific for Failed Metal-on-metal Hip Implants. Clin. Orthop. Relat. Res. 2011, 469, 1127–1133. [Google Scholar]
- Hobza, M.; Milde, D.; Slobodova, Z.; Jiri, G. The number of lymphocytes increases in the periprosthetic tissues with increasing time of implant service in non-metal-on-metal total joint arthroplasties: A role of metallic particles. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2021, 165, 416–427. [Google Scholar] [CrossRef]
- Alla, R.K.; Ginjupalli, K.; Upadhya, N.; Shammas, M.; Ravi, R.K.; Sekhar, R. Surface Roughness of Implants: A Review. Trends Biomater. Artif. Organs 2011, 25, 112–118. [Google Scholar]
- Gristina, A.G. Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 1987, 237, 1588–1595. [Google Scholar] [CrossRef]
- Ricci, J.L.; Kummer, F.J.; Casar, A.R.S. Technical note: Embedded particulate contaminants in textured metal implant surfaces. J. Appl. Biomater. 1992, 3, 225–230. [Google Scholar] [CrossRef]
- Bobyn, J.; Collier, J.P.; Mayor, M.B.; McTighe, T.; Tanzer, M.; Vaughn, B.K. Particulate debris in Total Hip Arthroplasty: Problems and Solutions reported on particulate polymeric debris, metallic debris and third wear from debonded porous coatings in THA and solutions. In Proceedings of the Conference: American Academy Orthopaedic Surgeons, Annual Meeting 1993, San Francisco, CA, USA, 18–23 February 1993. [Google Scholar] [CrossRef]
- Darvell, B.W.; Samman, N.; Luk, W.K.; Clark, R.K.F.; Tideman, H. Contamination of titanium castings by aluminium oxide blasting. J. Dent. 1995, 23, 319–322. [Google Scholar] [CrossRef]
- Hucking, A.S.; Bobyn, D.J.; Tanzer, M.; Kygier, J.J. Tissue response to the components of a hydroxyapatite-coated composite femoral implant. Clin. Orth. Rel. Res. 1999, 364, 240–253. [Google Scholar] [CrossRef] [PubMed]
- Delaunay, C.; Bonnomet, F.; North, J.; Jobard, D.; Cazeau, C.; Kempf, J.F. Grit-Blasted Titanium Femoral Stem in Cementless Primary THA. J. Arthroplast. 2001, 161, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Böhler, M.; Kanz, F.; Schwarz, B.; Steffan, I.; Walter, A.; Plenk, H.; Knahr, K. Adverse tissue reactions to wear particles from Co-alloy articulations, increased by alumina-blasting particle contamination from cementless Ti-based total hip implants. A report of seven revisions with early failure. J. Bone Joint Surg. 2002, 84, 128–164. [Google Scholar] [CrossRef]
- Catelas, P. Differential apoptotic response of J774 macrophages to alumina and ultra-high-molecular-weight polyethylene particles. J. Orthop. Res. 2002, 20, 9–15. [Google Scholar] [CrossRef]
- Hatton, A.; Nevelos, J.; Matthews, J.; Fisher, J.; Ingham, E. Effects of clinically relevant alumina ceramic wear particles on TNF-alpha production by human peripheral blood mononuclear phagocytes. Biomaterials 2003, 24, 1193. [Google Scholar] [CrossRef]
- Göske, J.; Uter, W.; Holzwarth, U.; Kachler, W.; Zeiler, G.; Schuh, A. Surface Characterization of Corundum Blasted Implants in Hip Arthroplasty. FE-SEM Biomed. Microsc. Anal. 2004; 18, 9–11. [Google Scholar]
- Schuh, A. Comparative surface contamination on corundum blasted titanium implants and explants in total hip arthroplasty. Arch. Orthop. Trauma Surg. 2005, 125, 676–682. [Google Scholar] [CrossRef]
- Sundfeldt, M.; Charlsson, L.V.; Johansson, C.B.; Thomsen, P.; Gretzer, C. Aseptic loosening, not only a question of wear, a review of different theories. Acta Orthop. 2006, 77, 177–197. [Google Scholar] [CrossRef]
- Kolb, A.; Sabeti-Aschraf, M.; Windhager, R.; Reinisch, G.; Grübl, A. Contamination of surfaces for osseointegration of cementless total hip implants by small aluminum oxide particles; analysis of established implants by use of new technique. J. Orthop. Sci. 2013, 18, 245–249. [Google Scholar] [CrossRef]
- Yeniyol, S.; Bölükbaşı, N.; Çakır, A.F.; Bilir, A.; Ozdemir, T. Effects of surface modifications with oxalic acid Etching and sandblasting on surface topography and Biocompatibility of cpTi surfaces. Biotechnol. Biotechnol. 2013, 27, 3995–4001. [Google Scholar] [CrossRef]
- Goodman, S.B.; Gallo, J.; Gibon, E.; Takagi, M. Diagnosis, and management of implant debris-associated inflammation. Expert Rev. Med. Devices 2020, 17, 41–56. [Google Scholar] [CrossRef]
- Hu, C.; Yoon, T. Recent updates for biomaterials used in total hip arthroplasty. Biomater. Res. 2018, 22, 33. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Singh, K. Review on titanium and titanium-based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 2019, 102, 844–862. [Google Scholar]
- Liu, Y.; Rath, B.; Tingart, M.; Eschweiler, J. Role of implants surface modification in osseointegration: A systematic review. J. Biomed. Mater. Res. A 2020, 108A, 470–484. [Google Scholar] [CrossRef] [PubMed]
- Affatato, S.; Ruggerio, A.; Jaber, S.A.; Merola, M.; Bracco, P. Wear behaviors and oxidation effects on different UHMWPE acetabular cups using a hip joint simulator. Materials 2018, 11, 433. [Google Scholar] [CrossRef] [PubMed]
- Hallab, N.J.; Jacobs, J.J. Implant Debris: Clinical Data and Relevance. Compr. Biomater. II 2017, 7, 118–132. [Google Scholar]
- Ma, P.; Yu, Y.; Yie, K.H.R.; Fang, K.; Zhou, Z.; Pan, X.; Deng, Z.; Shen, X.; Liu, Y. Effects of titanium with different micro/nanostructures on the ability of osteoblasts to resist oxidative stress. Mater. Sci. Eng. C 2021, 123, 111969. [Google Scholar] [CrossRef]
- Gil, J.; Pérez, R.; Climent, M.; Rizo-Gorrita, M.; Torres-Lagares, D.; Gutierrez, J.L. Benefits of Residual Aluminum Oxide for Sand Blasting Titanium Dental Implants: Osseointegration and Bactericidal Effects. Materials 2022, 15, 178. [Google Scholar] [CrossRef]
- Yan Guo, C.; Matinlinna, J.P.; Kit-Hon Tsoi, J.; Tin Hong Tang, A. Residual Contaminations of Silicon-Based Glass, Alumina and Aluminium Grits on a Titanium Surface After Sandblasting. Silicon 2015, 11, 2313–2320. [Google Scholar]
- Chouirfa, H.; Boloussa, H.; Migonney, V.; Falentin-Daudré, C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019, 83, 37–54. [Google Scholar] [CrossRef]
- Evans, J.T.; Evans, J.P.; Walker, R.W.; Blom, A.W.; Whitehouse, M.R.; Sayers, A. How long does a hip replacement last? A systematic review and meta-analysis of case series and national registry reports with more than 15 years of follow-up. Lancet 2019, 393, 647–654. [Google Scholar] [CrossRef]
Property | Smooth/Polished | Ground Surface | Rough with Residual Al2O3 Debris |
---|---|---|---|
Number of cells | ++ | +++ | + |
Growth orientation | non-oriented | in the grinding direction | direction of the upper surfaces |
Cells morphology | it is not pronounced | elongated | porous |
Adhesion of cells | good, all surface | good, all surface | partial, locally |
Cell condition | growing nicely | growing nicely | cells are not in good condition |
Susceptibility to infection | low | low | high |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocjančič, B.; Avsec, K.; Šetina Batič, B.; Feizpour, D.; Godec, M.; Kralj-Iglič, V.; Podlipec, R.; Cör, A.; Debeljak, M.; Grant, J.T.; et al. The Impact of Al2O3 Particles from Grit-Blasted Ti6Al7Nb (Alloy) Implant Surfaces on Biocompatibility, Aseptic Loosening, and Infection. Materials 2023, 16, 6867. https://doi.org/10.3390/ma16216867
Kocjančič B, Avsec K, Šetina Batič B, Feizpour D, Godec M, Kralj-Iglič V, Podlipec R, Cör A, Debeljak M, Grant JT, et al. The Impact of Al2O3 Particles from Grit-Blasted Ti6Al7Nb (Alloy) Implant Surfaces on Biocompatibility, Aseptic Loosening, and Infection. Materials. 2023; 16(21):6867. https://doi.org/10.3390/ma16216867
Chicago/Turabian StyleKocjančič, Boštjan, Klemen Avsec, Barbara Šetina Batič, Darja Feizpour, Matjaž Godec, Veronika Kralj-Iglič, Rok Podlipec, Andrej Cör, Mojca Debeljak, John T. Grant, and et al. 2023. "The Impact of Al2O3 Particles from Grit-Blasted Ti6Al7Nb (Alloy) Implant Surfaces on Biocompatibility, Aseptic Loosening, and Infection" Materials 16, no. 21: 6867. https://doi.org/10.3390/ma16216867
APA StyleKocjančič, B., Avsec, K., Šetina Batič, B., Feizpour, D., Godec, M., Kralj-Iglič, V., Podlipec, R., Cör, A., Debeljak, M., Grant, J. T., Jenko, M., & Dolinar, D. (2023). The Impact of Al2O3 Particles from Grit-Blasted Ti6Al7Nb (Alloy) Implant Surfaces on Biocompatibility, Aseptic Loosening, and Infection. Materials, 16(21), 6867. https://doi.org/10.3390/ma16216867