Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Composites with Enhanced Photodynamic Therapy Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Chol-ZnPc
2.3. Preparation of GO/Chol-ZnPc Composites
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Borzecka, W.; Dominski, A.; Kowalczuk, M. Recent Progress in Phthalocyanine-Polymeric Nanoparticle Delivery Systems for Cancer Photodynamic Therapy. Nanomaterials 2021, 11, 2426. [Google Scholar] [CrossRef] [PubMed]
- Yabaş, E.; Erden, F. Water-Soluble Quaternized Serotonin Substituted Zinc-Phthalocyanine for Photodynamic Therapy Applications. Cumhur. Sci. J. 2023, 44, 99–105. [Google Scholar] [CrossRef]
- Lin, J.; Li, D.; Li, C.; Zhuang, Z.; Chu, C.; Ken Ostrikov, K.; Thompson, E.W.; Liu, G.; Wang, P. A review on reactive oxygen species (ROS)-inducing nanoparticles activated by uni- or multi-modal dynamic treatment for oncotherapy. Nanoscale 2023, 15, 11813–11833. [Google Scholar] [CrossRef] [PubMed]
- Bonacin, J.A.; Engelmann, F.M.; Severino, D.; Toma, H.E.; Baptista, M.S. Singlet Oxygen Quantum Yields (φd) in Water using Beetroot Extract and an Array of LEDs. J. Braz. Chem. Soc. 2009, 20, 31–36. [Google Scholar] [CrossRef]
- Ben-Hur, E.; Rosenthal, I. The phthalocyanines: A new class of mammalian cells photosensitizers with a potential for cancer phototherapy. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1985, 47, 145–147. [Google Scholar] [CrossRef]
- Yabaş, E.; Şahin-Bölükbaşı, S.; Şahin-İnan, Z.D. New water soluble magnesium phthalocyanine as a potential anticancer drug: Cytotoxic and apoptotic effect on different cancer cell lines. J. Porphyr. Phthalocyanines 2021, 26, 65–77. [Google Scholar] [CrossRef]
- Sekkat, N.; van den Bergh, H.; Nyokong, T.; Lange, N. Like a bolt from the blue: Phthalocyanines in biomedical optics. Molecules 2011, 17, 98–144. [Google Scholar] [CrossRef]
- Jiang, Z.; Shao, J.; Yang, T.; Wang, J.; Jia, L. Pharmaceutical development, composition and quantitative analysis of phthalocyanine as the photosensitizer for cancer photodynamic therapy. J. Pharm. Biomed. Anal. 2014, 87, 98–104. [Google Scholar] [CrossRef]
- Makhseed, S.; Machacek, M.; Alfadly, W.; Tuhl, A.; Vinodh, M.; Simunek, T.; Novakova, V.; Kubat, P.; Rudolf, E.; Zimcik, P. Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem. Commun. 2013, 49, 11149–11151. [Google Scholar] [CrossRef]
- Ogbodu, R.O.; Nitzsche, B.; Ma, A.; Atilla, D.; Gürek, A.G.; Höpfner, M. Photodynamic therapy of hepatocellular carcinoma using tetra-triethyleneoxysulfonyl zinc phthalocyanine as photosensitizer. J. Photochem. Photobiol. B Biol. 2020, 208, 111915. [Google Scholar] [CrossRef]
- Kuzyniak, W.; Ermilov, E.A.; Atilla, D.; Gurek, A.G.; Nitzsche, B.; Derkow, K.; Hoffmann, B.; Steinemann, G.; Ahsen, V.; Hopfner, M. Tetra-triethyleneoxysulfonyl substituted zinc phthalocyanine for photodynamic cancer therapy. Photodiagn. Photodyn. Ther. 2016, 13, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhou, J.; Huang, D.; Wang, X.; Zhang, B.; Shen, J. Synthesis and Type I/Type II photosensitizing properties of a novel amphiphilic zinc phthalocyanine. Dye. Pigment. 2006, 71, 61–67. [Google Scholar] [CrossRef]
- Idowu, M.; Nyokong, T. Photophysical and photochemical properties of zinc and aluminum phthalocyanines in the presence of magnetic fluid. J. Photochem. Photobiol. A Chem. 2007, 188, 200–206. [Google Scholar] [CrossRef]
- Bian, Y.; Chen, J.; Xu, S.; Zhou, Y.; Zhu, L.; Xiang, Y.; Xia, D. The effect of a hydrogen bond on the supramolecular self-aggregation mode and the extent of metal-free benzoxazole-substituted phthalocyanines. New J. Chem. 2015, 39, 5750–5758. [Google Scholar] [CrossRef]
- de la Escosura, A.; Martínez-Díaz, M.V.; Thordarson, P.; Rowan, A.E.; Nolte, R.J.M.; Torres, T. Donor−Acceptor Phthalocyanine Nanoaggregates. J. Am. Chem. Soc. 2003, 125, 12300–12308. [Google Scholar] [CrossRef]
- Ginevra, F.; Biffanti, S.; Pagnan, A.; Biolo, R.; Reddi, E.; Jori, G. Delivery of the tumour photosensitizer zinc(II)-phthalocyanine to serum proteins by different liposomes: Studies in vitro and in vivo. Cancer Lett. 1990, 49, 59–65. [Google Scholar] [CrossRef]
- Luo, T.; Nash, G.T.; Xu, Z.; Jiang, X.; Liu, J.; Lin, W. Nanoscale Metal-Organic Framework Confines Zinc-Phthalocyanine Photosensitizers for Enhanced Photodynamic Therapy. J. Am. Chem. Soc. 2021, 143, 13519–13524. [Google Scholar] [CrossRef]
- Ceron Jayme, C.; Rezende, N.; Fernandes, D.S.; B de Paula, L.; Gimenes de Castro, B.; Takahashi, L.A.U.; Tedesco, A.C. Target selectivity of cholesterol-phosphatidylcholine liposome loaded with phthalocyanine for breast cancer diagnosis and treatment by photodynamic therapy. Photodiagn. Photodyn. Ther. 2022, 39, 102992. [Google Scholar] [CrossRef]
- Huang, Z.; Huang, L.; Huang, Y.; He, Y.; Sun, X.; Fu, X.; Xu, X.; Wei, G.; Chen, D.; Zhao, C. Phthalocyanine-based coordination polymer nanoparticles for enhanced photodynamic therapy. Nanoscale 2017, 9, 15883–15894. [Google Scholar] [CrossRef]
- Nunes, S.M.T.; Sguilla, F.S.; Tedesco, A.C. Photophysical studies of zinc phthalocyanine and chloroaluminum phthalocyanine incorporated into liposomes in the presence of additives. Braz. J. Med. Biol. Res. 2004, 37, 273–284. [Google Scholar] [CrossRef]
- Reddi, E.; Cernuschi, S.; Biolo, R.; Jori, G. Liposome- or LDL-administered Zn(ll)-phthalocyanine as a Photodynamic Agent for Tumours III, Effect of Cholesterol on Pharmacokinetic and Phototherapeutic Properties. Lasers Med. Sci. 1990, 5, 339–343. [Google Scholar] [CrossRef]
- de Oliveira, C.A.; Kohn, L.K.; Antonio, M.A.; Carvalho, J.E.; Moreira, M.R.; Machado, A.E.; Pessine, F.B. Photoinactivation of different human tumor cell lines and sheep red blood cells in vitro by liposome-bound Zn(II) Phthalocyanine: Effects of cholesterol. J. Photochem. Photobiol. B 2010, 100, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Rak, J.; Kabesova, M.; Benes, J.; Pouckova, P.; Vetvicka, D. Advances in Liposome-Encapsulated Phthalocyanines for Photodynamic Therapy. Life 2023, 13, 305. [Google Scholar] [CrossRef] [PubMed]
- Derycke, A.S.; de Witte, P.A. Liposomes for photodynamic therapy. Adv. Drug Deliv. Rev. 2004, 56, 17–30. [Google Scholar] [CrossRef]
- Versluis, A.J.; Rensen, P.C.N.; Kuipers, M.E.; Love, W.G.; Taylor, P.W. Interaction between zinc(II)-phthalocyanine-containing and human low density lipoprotein. J. Photochem. Photobiol. B Biol. 1994, 23, 141–148. [Google Scholar] [CrossRef]
- Polo, L.; Valduga, G.; Jori, G.; Reddi, E. Low-density lipoprotein receptors in the uptake of tumour photosensitizers by human and rat transformed fibroblasts. Int. J. Biochem. Cell Biol. 2002, 34, 10–23. [Google Scholar] [CrossRef]
- Renno, R.Z.; Miller, J.W. Photosensitizer delivery for photodynamic therapy of choroidal neovascularization. Adv. Drug Deliv. Rev. 2001, 52, 63–78. [Google Scholar] [CrossRef]
- Allison, B.A.; Crespo, M.T.; Jain, A.K.; Richter, A.M.; Hsiang, Y.N.; Levy, J.G. Delivery of benzoporphyrin derivative, a photosensitizer, into atherosclerotic plaque of Watanabe heritable hyperlipidemic rabbits and balloon-injured New Zealand rabbits. Photochem. Photobiol. 1997, 65, 877–883. [Google Scholar] [CrossRef]
- Segallal, A.; Milanesil, C.; Joril, G.; Capraro, H.-G.; Isele, U.; Schieweck, K. CGP 55398, a liposomal Ge(IV) phthalocyanine bearing two axially ligated cholesterol moieties: A new potential agent for photodynamic therapy of tumours. Br. J. Cancer 1994, 69, 817–825. [Google Scholar] [CrossRef]
- Pucelik, B.; Gurol, I.; Ahsen, V.; Dumoulin, F.; Dabrowski, J.M. Fluorination of phthalocyanine substituents: Improved photoproperties and enhanced photodynamic efficacy after optimal micellar formulations. Eur. J. Med. Chem. 2016, 124, 284–298. [Google Scholar] [CrossRef]
- Mayengbam, S.S.; Singh, A.; Pillai, A.D.; Bhat, M.K. Influence of cholesterol on cancer progression and therapy. Transl. Oncol. 2021, 14, 101043. [Google Scholar] [CrossRef] [PubMed]
- Halimi, H.; Farjadian, S. Cholesterol: An important actor on the cancer immune scene. Front. Immunol. 2022, 13, 1057546. [Google Scholar] [CrossRef]
- Yan, A.; Jia, Z.; Qiao, C.; Wang, M.; Ding, X. Cholesterol metabolism in drug-resistant cancer (Review). Int. J. Oncol. 2020, 57, 1103–1115. [Google Scholar] [CrossRef] [PubMed]
- Axmann, M.; Sezgin, E.; Karner, A.; Novacek, J.; Brodesser, M.D.; Rohrl, C.; Preiner, J.; Stangl, H.; Plochberger, B. Receptor-Independent Transfer of Low Density Lipoprotein Cargo to Biomembranes. Nano Lett. 2019, 19, 2562–2567. [Google Scholar] [CrossRef] [PubMed]
- Bennis, F.; Favre, G.; Gaillard, F.L.; Soula, G. Importance of mevalonate-derived products in the control of HMG-CoA reductase activity and growth of human lung adenocarcinoma cell line a549. Int. J. Cancer 1993, 55, 640–645. [Google Scholar] [CrossRef]
- Chen, X.; Guo, Q.; Dong, S.; Chen, J.; Xie, S.; Ma, D.; Chen, L.; Yang, H.; Huang, Y.; Peng, Y. Distribution, Trafficking, and in Vitro Photodynamic Therapy Efficacy of Cholesterol Silicon(IV) Phthalocyanine and Its Nanoparticles in Breast Cancer Cells. ACS Appl. Bio Mater. 2019, 2, 5976–5984. [Google Scholar] [CrossRef]
- Yabaş, E.; Şenadım-Tüzemen, E.; Kaya, S.; Maslov, M.M.; Erden, F. Incorporation of graphene oxide to metal-free phthalocyanine through hydrogen bonding for optoelectronic applications: An experimental and computational study. J. Phys. Org. Chem. 2023, e4496. [Google Scholar] [CrossRef]
- Lu, G.; Zhang, P.; Gao, Y.; Yu, S.; Yang, Y. Preparation and third order nonlinear optical properties of corrole functionalized GO nanohybrids. Opt. Laser Technol. 2022, 149, 107813. [Google Scholar] [CrossRef]
- Kadkhoda, J.; Tarighatnia, A.; Barar, J.; Aghanejad, A.; Davaran, S. Recent advances and trends in nanoparticles based photothermal and photodynamic therapy. Photodiagn. Photodyn. Ther. 2022, 37, 102697. [Google Scholar] [CrossRef]
- Ramachandran, R.; Hu, Q.; Wang, F.; Xu, Z.-X. Synthesis of N-CuMe2Pc nanorods/graphene oxide nanocomposite for symmetric supercapacitor electrode with excellent cyclic stability. Electrochim. Acta 2019, 298, 770–777. [Google Scholar] [CrossRef]
- Li, Y.; Dong, H.; Li, Y.; Shi, D. Graphene-based nanovehicles for photodynamic medical therapy. Int. J. Nanomed. 2015, 10, 2451–2459. [Google Scholar]
- Rocha, F.S.; Gomes, A.J.; Lunardi, C.N. Graphene oxide–metallophthalocyanine hybrids with enhanced singlet oxygen generation. Mater. Res. Bull. 2019, 114, 45–51. [Google Scholar] [CrossRef]
- Tahershamsi, L.; Gerasymchuk, Y.; Wedzynska, A.; Ptak, M.; Tretyakova, I.; Lukowiak, A. Synthesis, Spectroscopic Characterization and Photoactivity of Zr(IV) Phthalocyanines Functionalized with Aminobenzoic Acids and Their GO-Based Composites. C 2020, 6, 1. [Google Scholar] [CrossRef]
- Günsel, A.; Mutlu, N.; Yaşa Atmaca, G.; Günsel, H.; Bilgiçli, A.T.; Erdoğmuş, A.; Nilüfer Yarasir, M. Novel Graphene Oxide/Zinc Phthalocyanine Composites Bearing 3-Chloro-4-Fluorophenoxy: Potential Usage for Sono/Photochemical Applications. ChemistrySelect 2023, 8, e202204546. [Google Scholar] [CrossRef]
- Günsel, A.; Küçük, M.C.; Günsel, H.; Yaşa Atmaca, G.; Bilgiçli, A.T.; Erdoğmuş, A.; Yarasir, M.N. 3-Chloro-4-fluorophenoxy substituted zinc phthalocyanine/graphene oxide composites: Exploring of their sono-photochemical properties. Chem. Pap. 2023, 77, 5721–5731. [Google Scholar] [CrossRef]
- Pan, J.; Yang, Y.; Fang, W.; Liu, W.; Le, K.; Xu, D.; Li, X. Fluorescent Phthalocyanine–Graphene Conjugate with Enhanced NIR Absorbance for Imaging and Multi-Modality Therapy. ACS Appl. Nano Mater. 2018, 1, 2785–2795. [Google Scholar] [CrossRef]
- Lo, P.-C.; Rodríguez-Morgade, M.S.; Pandey, R.K.; Ng, D.K.P.; Torres, T.; Dumoulin, F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020, 49, 1041–1056. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Liu, D.; Song, S.; Wang, X.; Zhang, H. Graphene oxide covalently grafted upconversion nanoparticles for combined NIR mediated imaging and photothermal/photodynamic cancer therapy. Biomaterials 2013, 34, 7715–7724. [Google Scholar] [CrossRef]
- Popanda, B.; Grolik, J.; Gieszczyk, W.; Środa, M. Effect of the sol-gel condition on photostability and optical properties of alkoxy-substituted zinc phthalocyanine in the hybrid glass matrix. Dye. Pigment. 2023, 213, 111142. [Google Scholar] [CrossRef]
- Yüzeroğlu, M.; Keser Karaoğlan, G.; Gümrükçü Köse, G.; Erdoğmuş, A. Synthesis of new zinc phthalocyanines including schiff base and halogen; photophysical, photochemical, and fluorescence quenching studies. J. Mol. Struct. 2021, 1238, 130423. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant Determinations by the Use of a Stable Free Radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Ahmetali, E.; Galstyan, A.; Süer, N.C.; Eren, T.; Şener, M.K. Poly(oxanorbornene)s bearing triphenylphosphonium and PEGylated zinc(ii) phthalocyanine with boosted photobiological activity and singlet oxygen generation. Polym. Chem. 2023, 14, 259–267. [Google Scholar] [CrossRef]
- Duncan, D.C.; Whitten, D.G. 1H NMR Investigation of the Composition, Structure, and Dynamics of Cholesterol−Stilbene Tethered Dyad Organogels. Langmuir 2000, 16, 6445–6452. [Google Scholar] [CrossRef]
- Yabaş, E.; Sülü, M.; Saydam, S.; Dumludağ, F.; Salih, B.; Bekaroğlu, Ö. Synthesis, characterization and investigation of electrical and electrochemical properties of imidazole substituted phthalocyanines. Inorganica Chim. Acta 2011, 365, 340–348. [Google Scholar] [CrossRef]
- Sharma, A.K.; Mahajan, A.; Bedi, R.K.; Kumar, S.; Debnath, A.K.; Aswal, D.K. Non-covalently anchored multi-walled carbon nanotubes with hexa-decafluorinated zinc phthalocyanine as ppb level chemiresistive chlorine sensor. Appl. Surf. Sci. 2018, 427, 202–209. [Google Scholar] [CrossRef]
- Wan, Y.; Cong, T.; Liang, Q.; Li, Z.; Xu, S.; Peng, Y.; Lu, D. Facile in-situ solvothermal method to synthesize ZnPc–MWCNTs composites with enhanced visible light photocatalytic activity. Ceram. Int. 2016, 42, 2425–2430. [Google Scholar] [CrossRef]
- Li, Q.; Sun, Z.; Liang, Q.; Zhou, M.; Xu, S.; Li, Z.; Sun, D. Novel tetrasubstituted zinc phthalocyanine-attapulgite composites for efficient catalytic oxidation of styrene with tert-butyl hydroperoxide as oxidant. Solid State Sci. 2019, 97, 106010. [Google Scholar] [CrossRef]
- Wang, F.; Cao, S.; Men, J.; Lei, N.; Wang, R. Phthalocyanine-modified surfactant-encapsulated polyoxometalate and its self-assembly in solution. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 125056. [Google Scholar] [CrossRef]
- Karakılıç, E.; Alım, Z.; Günel, A.; Baran, A. A versatile study of novel A3B-type unsymmetric zinc(II) phthalocyanines containing thiazolidin-4-one: Their, carbonic anhydrase I, II isoenzymes, and xanthine oxidase inhibitors evaluation. J. Mol. Struct. 2022, 1257, 132630. [Google Scholar] [CrossRef]
- Erdoğmuş, A.; Durmuş, M.; Uğur, A.L.; Avciata, O.; Avciata, U.; Nyokong, T. Synthesis, photophysics, photochemistry and fluorescence quenching studies on highly soluble substituted oxo-titanium(IV) phthalocyanine complexes. Synth. Met. 2010, 160, 1868–1876. [Google Scholar] [CrossRef]
- Hernández, A.; Hemasiri, N.H.; Kazim, S.; Ortiz, J.; Ahmad, S.; Sastre-Santos, Á. Fluorinated- and non-fluorinated-diarylamine-Zn(ii) and Cu(ii) phthalocyanines as symmetrical vs. asymmetrical hole selective materials. J. Mater. Chem. C 2023, 11, 8243–8253. [Google Scholar] [CrossRef]
- Tackley, D.R.; Dent, G.; Ewen Smith, W. IR and Raman assignments for zinc phthalocyanine from DFT calculations. Phys. Chem. Chem. Phys. 2000, 2, 3949–3955. [Google Scholar] [CrossRef]
- Ren, P.G.; Yan, D.X.; Ji, X.; Chen, T.; Li, Z.M. Temperature dependence of graphene oxide reduced by hydrazine hydrate. Nanotechnology 2011, 22, 055705. [Google Scholar] [CrossRef] [PubMed]
- Kasturi, S.; Eom, Y.; Torati, S.R.; Kim, C. Highly sensitive electrochemical biosensor based on naturally reduced rGO/Au nanocomposite for the detection of miRNA-122 biomarker. J. Ind. Eng. Chem. 2021, 93, 186–195. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, J.; Xing, W.; Wang, G.; Cui, H.; Zhuo, S.; Xue, Q.; Yan, Z.; Qiao, S.Z. High-rate capacitive performance of graphene aerogel with a superhigh C/O molar ratio. J. Mater. Chem. 2012, 22, 23186–23193. [Google Scholar] [CrossRef]
- Xie, Z.; Yu, Z.; Fan, W.; Peng, G.; Qu, M. Effects of functional groups of graphene oxide on the electrochemical performance of lithium-ion batteries. RSC Adv. 2015, 5, 90041–90048. [Google Scholar] [CrossRef]
- Oluwole, D.O.; Sari, F.A.; Prinsloo, E.; Dube, E.; Yuzer, A.; Nyokong, T.; Ince, M. Photophysicochemical properties and photodynamic therapy activity of highly water-soluble Zn(II) phthalocyanines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 203, 236–243. [Google Scholar] [CrossRef]
- Guleryuz, B.; Unal, U.; Gulsoy, M. Near infrared light activated upconversion nanoparticles (UCNP) based photodynamic therapy of prostate cancers: An in vitro study. Photodiagn. Photodyn. Ther. 2021, 36, 102616. [Google Scholar] [CrossRef]
- Yabaş, E.; Bağda, E.; Bağda, E. The water soluble ball-type phthalocyanine as new potential anticancer drugs. Dye. Pigment. 2015, 120, 220–227. [Google Scholar] [CrossRef]
- Günsel, A.; Kırbaç, E.; Tüzün, B.; Erdoğmuş, A.; Bilgiçli, A.T.; Yarasir, M.N. Selective chemosensor phthalocyanines for Pd2+ ions; synthesis, characterization, quantum chemical calculation, photochemical and photophysical properties. J. Mol. Struct. 2019, 1180, 127–138. [Google Scholar] [CrossRef]
- Zu, Y.; He, C.; Liu, D.; Chen, L. Synthesis of hybrid structures based on metal phthalocyanines/graphene oxide towards nonlinear optical applications. Dye. Pigment. 2020, 173, 107841. [Google Scholar] [CrossRef]
- Wang, Z.; He, C.; Song, W.; Gao, Y.; Chen, Z.; Dong, Y.; Zhao, C.; Li, Z.; Wu, Y. The effect of peripheral substituents attached to phthalocyanines on the third order nonlinear optical properties of graphene oxide–zinc(ii)phthalocyanine hybrids. RSC Adv. 2015, 5, 94144–94154. [Google Scholar] [CrossRef]
- Li, Z.; He, C.; Wang, Z.; Gao, Y.; Dong, Y.; Zhao, C.; Chen, Z.; Wu, Y.; Song, W. Ethylenediamine-modified graphene oxide covalently functionalized with a tetracarboxylic Zn(ii) phthalocyanine hybrid for enhanced nonlinear optical properties. Photochem. Photobiol. Sci. 2016, 15, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Markad, G.B.; Padma, N.; Chadha, R.; Gupta, K.C.; Rajarajan, A.K.; Deb, P.; Kapoor, S. Mutual influence on aggregation and magnetic properties of graphene oxide and copper phthalocyanine through non-covalent, charge transfer interaction. Appl. Surf. Sci. 2020, 505, 144624. [Google Scholar] [CrossRef]
- Yabaş, E. New cobalt phthalocyanine–graphene oxide hybrid nanomaterial prepared by strong π–π interactions. J. Aust. Ceram. Soc. 2021, 58, 63–70. [Google Scholar] [CrossRef]
- Fery-Forgues, S.; Lavabre, D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products. J. Chem. Educ. 1999, 76, 1260. [Google Scholar] [CrossRef]
- Ogunsipe, A.; Chen, J.-Y.; Nyokong, T. Photophysical and photochemical studies of zinc(ii) phthalocyanine derivatives—Effects of substituents and solvents. New J. Chem. 2004, 28, 822–827. [Google Scholar] [CrossRef]
- Yang, W.; Yang, G.; Hu, W.; Li, M.-Y.; Liu, Z.-Y.; Yu, D.-J.; Liao, Y.-H.; Liu, H.-Y. Photodynamic antitumor activity of halogenated gallium(III) and phosphorus(V) corroles. J. Photochem. Photobiol. A Chem. 2023, 438, 114580. [Google Scholar] [CrossRef]
- Chen, K.; Li, X.; Yu, X.; Zhang, T.; Ye, Q.; Xiao, W.; Chen, L.; Huang, B.; Peng, Y. Copper-cysteamine nanoparticles encapsulating fluorocoumarin silicon(IV) phthalocyanines: Synthesis, characterization, and photophysical properties. J. Coord. Chem. 2019, 72, 3589–3601. [Google Scholar] [CrossRef]
- Ozturk Gunduz, E.; Tasasiz, B.; Gedik, M.E.; Gunaydin, G.; Okutan, E. NI-BODIPY-GO Nanocomposites for Targeted PDT. ACS Omega 2023, 8, 8320–8331. [Google Scholar] [CrossRef]
- Lutkus, L.V.; Rickenbach, S.S.; McCormick, T.M. Singlet oxygen quantum yields determined by oxygen consumption. J. Photochem. Photobiol. A Chem. 2019, 378, 131–135. [Google Scholar] [CrossRef]
- Mai, D.K.; Kim, C.; Lee, J.; Vales, T.P.; Badon, I.W.; De, K.; Cho, S.; Yang, J.; Kim, H.J. BODIPY nanoparticles functionalized with lactose for cancer-targeted and fluorescence imaging-guided photodynamic therapy. Sci. Rep. 2022, 12, 2541. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, X.; Wang, H.Y.; Chen, Z.; Wu, F.G. Subcellular Fate of a Fluorescent Cholesterol-Poly(ethylene glycol) Conjugate: An Excellent Plasma Membrane Imaging Reagent. Langmuir 2016, 32, 10126–10135. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.B.; Ishii, K.; Makino, A.; Iwabuchi, K.; Yamaji-Hasegawa, A.; Senoh, Y.; Nagaoka, I.; Sakuraba, H.; Kobayashi, T. Distribution and transport of cholesterol-rich membrane domains monitored by a membrane-impermeant fluorescent polyethylene glycol-derivatized cholesterol. J. Biol. Chem. 2004, 279, 23790–23796. [Google Scholar] [CrossRef]
- Ishiwata, H.; Sato, S.B.; Vertut-Doi, A.; Miyajima, K. Cholesterol derivative of poly(ethylene glycol) inhibits clathrin-independent, but not clathrin-dependent endocytosis. Biochim. Biophys. Acta 1997, 1359, 123–135. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, Y.; Chen, Y.; Song, M.; Huang, M.; Xue, J.; Liu, L.; Li, J. Probing the interactions of phthalocyanine-based photosensitizers with model phospholipid bilayer by molecular dynamics simulations. J. Porphyr. Phthalocyanines 2018, 22, 764–770. [Google Scholar] [CrossRef]
- Galstyan, A. Turning Photons into Drugs: Phthalocyanine-Based Photosensitizers as Efficient Photoantimicrobials. Chemistry 2021, 27, 1903–1920. [Google Scholar] [CrossRef]
- Liang, S.; Shephard, K.; Pierce, D.T.; Zhao, J.X. Effects of a nanoscale silica matrix on the fluorescence quantum yield of encapsulated dye molecules. Nanoscale 2013, 5, 9365–9373. [Google Scholar] [CrossRef]
- Khoza, P.; Antunes, E.; Chen, J.-Y.; Nyokong, T. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine. J. Lumin. 2013, 134, 784–790. [Google Scholar] [CrossRef]
- Zou, J.; Yin, Z.; Wang, P.; Chen, D.; Shao, J.; Zhang, Q.; Sun, L.; Huang, W.; Dong, X. Photosensitizer synergistic effects: D–A–D structured organic molecule with enhanced fluorescence and singlet oxygen quantum yield for photodynamic therapy. Chem. Sci. 2018, 9, 2188–2194. [Google Scholar] [CrossRef]
- Agostinis, P.; Berg, K.; Cengel, K.A.; Foster, T.H.; Girotti, A.W.; Gollnick, S.O.; Hahn, S.M.; Hamblin, M.R.; Juzeniene, A.; Kessel, D.; et al. Photodynamic therapy of cancer: An update. CA Cancer J. Clin. 2011, 61, 250–281. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.; Li, J.Z.; Shim, Y.K. Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 2013, 46, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Jue Bae, Y.; Krzyaniak, M.D.; Majewski, M.B.; Desroches, M.; Morin, J.F.; Wu, Y.L.; Wasielewski, M.R. Competition between Singlet Fission and Spin-Orbit-Induced Intersystem Crossing in Anthanthrene and Anthanthrone Derivatives. Chempluschem 2019, 84, 1432–1438. [Google Scholar] [CrossRef]
- Wang, X.; Song, Y.; Pan, G.; Han, W.; Wang, B.; Cui, L.; Ma, H.; An, Z.; Xie, Z.; Xu, B.; et al. Exploiting radical-pair intersystem crossing for maximizing singlet oxygen quantum yields in pure organic fluorescent photosensitizers. Chem. Sci. 2020, 11, 10921–10927. [Google Scholar] [CrossRef] [PubMed]
- Ossola, R.; Jonsson, O.M.; Moor, K.; McNeill, K. Singlet Oxygen Quantum Yields in Environmental Waters. Chem. Rev. 2021, 121, 4100–4146. [Google Scholar] [CrossRef]
- Matshitse, R.; Nyokong, T. Singlet Oxygen Generating Properties of Different Sizes of Charged Graphene Quantum Dot Nanoconjugates with a Positively Charged Phthalocyanine. J. Fluoresc. 2018, 28, 827–838. [Google Scholar] [CrossRef]
- Nwahara, N.; Britton, J.; Nyokong, T. Improving singlet oxygen generating abilities of phthalocyanines: Aluminum tetrasulfonated phthalocyanine in the presence of graphene quantum dots and folic acid. J. Coord. Chem. 2017, 70, 1601–1616. [Google Scholar] [CrossRef]
- Nwahara, N.; Achadu, O.J.; Nyokong, T. In-situ synthesis of gold nanoparticles on graphene quantum dots-phthalocyanine nanoplatforms: First description of the photophysical and surface enhanced Raman scattering behaviour. J. Photochem. Photobiol. A Chem. 2018, 359, 131–144. [Google Scholar] [CrossRef]
- Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano 2011, 5, 7000–7009. [Google Scholar] [CrossRef]
- Wei, Y.; Tao, L.; Li, J.; Hu, W.; Zhang, X. A comparative study of cellular uptake and cytotoxicity of multi-walled carbon nanotubes, graphene oxide, and nanodiamond. Toxicol. Res. 2012, 1, 62–68. [Google Scholar]
- Ali-Boucetta, H.; Bitounis, D.; Raveendran-Nair, R.; Servant, A.; Van den Bossche, J.; Kostarelos, K. Purified graphene oxide dispersions lack in vitro cytotoxicity and in vivo pathogenicity. Adv. Healthc. Mater. 2013, 2, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Liao, K.H.; Lin, Y.S.; Macosko, C.W.; Haynes, C.L. Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl. Mater. Interfaces 2011, 3, 2607–2615. [Google Scholar] [CrossRef] [PubMed]
- Gies, V.; Lopinski, G.; Augustine, J.; Cheung, T.; Kodra, O.; Zou, S. The impact of processing on the cytotoxicity of graphene oxide. Nanoscale Adv. 2019, 1, 817–826. [Google Scholar] [CrossRef] [PubMed]
- Makharza, S.; Cirillo, G.; Bachmatiuk, A.; Ibrahim, I.; Ioannides, N.; Trzebicka, B.; Hampel, S.; Rümmeli, M.H. Graphene oxide-based drug delivery vehicles: Functionalization, characterization, and cytotoxicity evaluation. J. Nanopart. Res. 2013, 15, 1–26. [Google Scholar] [CrossRef]
- Fiorillo, M.; Verre, A.F.; Iliut, M.; Peiris-Pagés, M.; Ozsvari, B.; Gandara, R.; Cappello, A.R.; Sotgia, F.; Vijayaraghavan, A.; Lisanti, M.P. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”. Oncotarget 2015, 6, 3553–3562. [Google Scholar] [CrossRef] [PubMed]
- Casais-Molina, M.L.; Cab, C.; Canto, G.; Medina, J.; Tapia, A. Carbon Nanomaterials for Breast Cancer Treatment. J. Nanomater. 2018, 2018, 2058613. [Google Scholar] [CrossRef]
- Patnala, K.; Vishwas, S.; Malla, R.R. Chapter 17—Nanotechnology advances in breast cancer. In A Theranostic and Precision Medicine Approach for Female-Specific Cancers; Malla, R.R., Nagaraju, G.P., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 271–287. [Google Scholar]
- Kumar, D.; Rawat, D.S. Synthesis and antioxidant activity of thymol and carvacrol based Schiff bases. Bioorg. Med. Chem. Lett. 2013, 23, 641–645. [Google Scholar]
- Formagio, A.S.; Volobuff, C.R.; Santiago, M.; Cardoso, C.A.; Vieira Mdo, C.; Valdevina Pereira, Z. Evaluation of Antioxidant Activity, Total Flavonoids, Tannins and Phenolic Compounds in Psychotria Leaf Extracts. Antioxidants 2014, 3, 745–757. [Google Scholar] [CrossRef]
- Sirivibulkovit, K.; Nouanthavong, S.; Sameenoi, Y. Paper-based DPPH Assay for Antioxidant Activity Analysis. Anal. Sci. 2018, 34, 795–800. [Google Scholar] [CrossRef]
- Hossain, S.; Rahaman, A.; Nahar, T.; Basunia, M.A.; Mowsumi, F.R.; Uddin, B.; Shahriar, M.; Mahmud, I. Syzygium cumini (L.) skeels seed extract ameliorates in vitro and in vivo oxidative potentials of the brain cerebral cortex of alcohol-treated rats. Orient. Pharm. Exp. Med. 2012, 12, 59–66. [Google Scholar] [CrossRef]
Compounds | ||
---|---|---|
Chol-ZnPc | 0.31 | 0.54 |
GO/Chol-ZnPc | 0.36 | 0.78 |
Unsubstituted ZnPc | 0.20 a | 0.67 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Erden, F. Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Composites with Enhanced Photodynamic Therapy Properties. Materials 2023, 16, 7060. https://doi.org/10.3390/ma16227060
Erden F. Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Composites with Enhanced Photodynamic Therapy Properties. Materials. 2023; 16(22):7060. https://doi.org/10.3390/ma16227060
Chicago/Turabian StyleErden, Fuat. 2023. "Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Composites with Enhanced Photodynamic Therapy Properties" Materials 16, no. 22: 7060. https://doi.org/10.3390/ma16227060
APA StyleErden, F. (2023). Graphene Oxide/Cholesterol-Substituted Zinc Phthalocyanine Composites with Enhanced Photodynamic Therapy Properties. Materials, 16(22), 7060. https://doi.org/10.3390/ma16227060