Influence of NF3 Plasma-Treated HfO2 Gate Insulator Surface on Tin Oxide Thin-Film Transistors
Abstract
:1. Introduction
2. Materials and Methods
2.1. TFT Fabrication and Characterization
2.2. Thin Film Characterization
3. Results
3.1. Device Characteristics
3.2. Thin Film Characteristics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-Temperature Fabrication of Transparent Flexible Thin-Film Transistors Using Amorphous Oxide Semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef] [PubMed]
- Fortunato, E.; Barquinha, P.; Marins, R. Oxide Semiconductor Thin-Film Transistors: A review of Recent Advances. Adv. Mater. 2012, 24, 2945–2986. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Yin, Z.; Collins, F.; Pinna, N. Atomic Layer Deposition of Metal Oxides and Chalcogenides for High performance Transistors. Adv. Sci. 2022, 9, 2104599. [Google Scholar] [CrossRef]
- Avis, C.; Kim, Y.; Jang, J. Amorphous Tin Oxide Applied to Solution Processed Thin-Film Transistors. Materials 2019, 12, 3341. [Google Scholar] [CrossRef]
- Presley, R.E.; Munsee, C.L.; Park, C.-H.; Hong, D.; Wager, J.F.; Keszler, D.A. Tin Oxide Transparent Thin-Film Transistors. J. Phys. D Appl. Phys. 2004, 37, 2810–2813. Available online: http://stacks.iop.org/jd/37/2810 (accessed on 12 May 2013). [CrossRef]
- Pan, W.; Zhou, X.; Lin, Q.; Chen, J.; Lu, L.; Zhang, S. Low temperature and high-performance ZnSnO thin-film transistors engineered by in situ thermal manipulation. J. Mater Chem. C 2022, 10, 3129–3138. [Google Scholar] [CrossRef]
- Kim, G.; Kim, T.; Choi, C.; Chung, S.; Jeong, J. Effect of Single Spinel Phase Crystallization on Drain-Induced-Barrier-Lowering in Submicron Length IZTO Thin-Film Transistors. IEEE Electron Dev. Lett. 2023, 44, 1132–1135. [Google Scholar] [CrossRef]
- Ruan, D.; Liu, P.; Chiu, Y.; Kan, K.; Yu, M.; Chien, T.; Chen, Y.; Kuo, P.; Sze, S. Investigation of low operation voltage InZnSnO thin-film transistors with different high-k gate dielectric by physical vapor deposition. Thin Film Solids 2018, 660, 885–890. [Google Scholar] [CrossRef]
- Noh, S.; Kim, H.; Yang, J.; Kim, Y.; Kwon, Y.; Seong, N.; Hwang, C.; Choi, K.; Yoon, S. Improvement in Short-Channel Effects of the Thin-Film Transistors Using Atomic-Layer Deposited In-Ga-Sn-O Channels With Various Channel Compositions. IEEE Trans. Electron Devices 2022, 69, 5542–5548. [Google Scholar] [CrossRef]
- Kim, D.-H.; Cha, H.-S.; Jeong, H.-S.; Hwang, S.-H.; Kwon, H.-I. Effects of Active Layer Thickness on the Electrical Characteristics and Stability of High-Mobility Amorphous Indium–Gallium–Tin Oxide Thin-Film Transistors. Electronics 2021, 10, 1295. [Google Scholar] [CrossRef]
- Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.; Facchetti, A. High-k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chem. Rev. 2018, 118, 5690–5754. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wang, H.; Ye, L.; Xu, J. The role of solution-processed high-κ gate dielectrics in electrical performance of oxide thin-film transistors. J. Mater. Chem. C 2014, 27, 5389–5396. [Google Scholar] [CrossRef]
- Choi, W.; Jeon, W.; Park, J. Nanoscale surface engineering of a high-k ZrO2/SiO2 gate insulator for a high performance ITZO TFT via plasma-enhanced atomic layer deposition. J. Mater. Chem. C 2020, 8, 13342–13348. [Google Scholar] [CrossRef]
- Cho, M.; Kim, M.; Seul, H.; Yu, P.S.; Bae, J.U.; Park, K.; Jeong, J.K. Impact of cation compositions on the performance of thin-film transistors with amorphous indium gallium zinc oxide grown through atomic layer deposition. J. Inf. Disp. 2019, 20, 73–80. [Google Scholar] [CrossRef]
- Kim, D.K.; Choi, H.; Kim, Y.S.; Lee, D.H.; Oh, D.H.; Lee, J.H.K.J.; Lee, S.; Kuh, B.; Kim, T.; Kim, Y.; et al. Selectively Nitrogen doped ALD-IGZO TFTs with extremely high mobility and reliability. ACS Appl. Mater. Interfaces 2023, 15, 31652. [Google Scholar] [CrossRef]
- Kim, M.; Kanatzidis, M.; Facchetti, A.; Marks, T. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382–388. [Google Scholar] [CrossRef]
- Kim, Y.H.; Heo, J.S.; Kim, T.H.; Park, S.; Yoon, M.; Kim, J.; Oh, M.S.; Yi, G.; Noh, Y.; Park, S.K. Flexible metal-oxide devices made by room-temperature photochemical activation of sol–gel films. Nature 2012, 489, 128. [Google Scholar] [CrossRef]
- Yan, X.; Li, B.; Song, K.; Zhang, Y.; Wang, Y.; Yang, F.; Wang, C.; Chi, Y.; Yang, X. Fabrication and Properties of InGaZnO Thin-Film Transistors Based on a Sol–Gel Method with Different Electrode Patterns. Micromachines 2022, 13, 2207. [Google Scholar] [CrossRef]
- Huang, G.; Duan, L.; Dong, G.; Zhang, D.; Qiu, Y. High-Mobility Solution-Processed Tin Oxide Thin-Film Transistors with High κ Alumina Dielectric Working in Enhancement Mode. ACS Appl. Mater. Interfaces 2014, 6, 20786–20794. [Google Scholar] [CrossRef]
- Lee, D.; Han, S.; Herman, G.; Chang, H. Inkjet printed high-mobility indium zinc tin oxide thin film transistors. J. Mater. Chem. 2009, 19, 3135. [Google Scholar] [CrossRef]
- Liang, K.; Ren, H.; Li, D.; Wang, Y.; Tang, Y.; Zhao, M.; Wang, H.; Li, W.; Zhu, B. Fully-printed flexible n-type tin oxide thin-film transistors and logic circuits. J. Mater. Chem. C 2021, 9, 11662–11668. [Google Scholar] [CrossRef]
- Thomas, S.R.; Adamopoulos, G.; Lin, Y.; Faber, H.; Sygellou, L.; Stratakis, E.; Pliatsikas, N.; Patsalas, P.; Anthopoulos, T. High electron mobility thin-film transistors based on Ga2O3 grown by atmospheric ultrasonic spray pyrolysis at low temperatures. Appl. Phys. Lett. 2014, 105, 092105. [Google Scholar] [CrossRef]
- Ali, A.; Saha, J.; Siddik, A.; Md Islam, M.; Jang, J. Combined effects of NH3 and NF3 post plasma treatment on the performance of spray coated ZnO thin film transistors. Solid-State Electron. 2021, 186, 108178. [Google Scholar] [CrossRef]
- Nomura, K.; Kamiya, T.; Hosono, H. Ambipolar Oxide Thin-Film Transistor. Adv. Mater. 2011, 23, 3431–3434. [Google Scholar] [CrossRef]
- Shih, C.; Chin, A.; Lu, C.F.; Su, W.F. Remarkably high mobility ultrathin-film metal-oxide transistor with strongly overlapped orbitals. Sci. Rep. 2016, 6, 19023. [Google Scholar] [CrossRef]
- Jang, J.; Kitsomboonloha, R.; Swisher, S.L.; Park, E.S.; Kang, H.; Subramanian, V. Transparent High-Performance Thin Film Transistors from Solution-Processed SnO2/ZrO2 Gel-like Precursors. Adv. Mater. 2013, 25, 1042–1047. [Google Scholar] [CrossRef]
- Wei, H.; Ni, Y.; Yu, H.; Gong, J.; Du, Y.; Ma, M.; Han, H.; Xu, W. Flexible electro-optical neuromorphic transistors with tunable synaptic plasticity and nociceptive behavior. Nano Energy 2021, 81, 105648. [Google Scholar] [CrossRef]
- Ni, W.; Yang, L.; Liu, L.; Wei, H.; Xu, Z.; Liu, J.; Han, H.; Xu, W. Mimicking ion-balance-dependent synaptic plasticity in body fluid for adaptive environment-responsive artificial neuromuscular reflexes. Mater. Today Nano 2022, 17, 100167. [Google Scholar] [CrossRef]
- Kang, B.; Kim, W.; Chung, J.; Lee, J.; Kim, H. Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection. ACS Appl. Mater. Interfaces 2018, 10, 7223–7230. [Google Scholar] [CrossRef]
- Abliz, A. Effects of hydrogen plasma treatment on the electrical performances and reliability of InGaZnO thin-film transistors. J. Alloys Compd. 2020, 831, 154694. [Google Scholar] [CrossRef]
- Souk, J.; Whangbo, S. Green Technologies in LCDs. Inf. Disp. 2010, 26, 4–8. [Google Scholar] [CrossRef]
- Ahn, J.H.; Heo, W.; Lee, N.-E.; Cho, H.J. Fast release process of metal structure using chemical dry etching of sacrificial Si layer. Thin Solid Films 2011, 519, 6769–6772. [Google Scholar] [CrossRef]
- Um, J.; Jang, J. Heavily doped n-type a-IGZO by F plasma treatment and its thermal stability up to 600 °C. Appl. Phys. Lett. 2018, 112, 162104. [Google Scholar] [CrossRef]
- Md Islam, M.; Saha, J.K.; Md Hasan, M.; Kim, J.; Bukke, R.N.; Ali, A.; Jang, J. Spray-pyrolyzed high-k zirconium-aluminum-oxide dielectric for high performance metal-oxide thin-film transistors for low power displays. Adv. Mater. Interfaces 2021, 8, 2100600. [Google Scholar] [CrossRef]
- Jhu, J.; Chang, T.; Chang, G.; Tai, Y.; Tsai, W.; Chiang, W.; Yan, J. Reduction of defect formation in amorphous indium-gallium-zinc-oxide thin film transistors by N2O plasma treatment. J. Appl. Phys. 2013, 114, 204501. [Google Scholar] [CrossRef]
- Mativenga, M.; Jang, J. High current stress effects in amorphous-InGaZnO4 thin-film transistors. Appl. Phys. Lett. 2013, 102, 023503. [Google Scholar] [CrossRef]
- Inoue, S.; Ohshima, H.; Shimoda, T. Analysis of degradation phenomenon caused by self-heating in low-temperature-processed polycrystalline silicon thin film transistors. Jpn. J. Phys. 2002, 41, 6313–6319. [Google Scholar] [CrossRef]
- Hsieh, T.; Chang, T.; Chen, T.; Tsai, M.; Chen, Y.; Chung, Y.; Ting, H.C.; Chen, C. Origin of self-heating effect induced asymmetrical degradation behavior in InGaZnO thin-film transistors. Appl. Phys. Lett. 2012, 100, 232101. [Google Scholar] [CrossRef]
- Choi, S.; Kim, J.-Y.; Kang, H.; Ko, D.; Rhee, J.; Choi, S.-J.; Kim, D.M.; Kim, D.H. Effect of Oxygen Content on Current Stress-Induced Instability in Bottom-Gate Amorphous InGaZnO Thin-Film Transistors. Materials 2019, 12, 3149. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, T.; Avis, C.; Lee, S.; Jang, J. Stable and high-performance indium oxide thin-film transistor by Ga doping. IEEE Trans. Electron. Dev. 2016, 63, 1078–1084. [Google Scholar] [CrossRef]
- Lee, S.; Chen, Y.; Jeon, J.; Park, C.; Jang, J. Reduction of Parasitic Capacitance in Indium-Gallium-Zinc Oxide (a-IGZO) Thin-Film Transistors (TFTs) without Scarifying Drain Currents by Using Stripe-Patterned Source/Drain Electrodes. Adv. Electron. Mater. 2018, 4, 1700550. [Google Scholar] [CrossRef]
- Kise, K.; Fujii, M.; Bermundo, J.; Ishikawa, Y.; Uraoka, Y. Self-Heating Suppressed Structure of a-IGZO Thin-Film Transistor a Novel Heat Dissipation Structure for Inhibiting Hydrogen Diffusion in Top-Gate a-InGaZnO TFTs. IEEE Electron. Dev. Lett. 2018, 40, 1322–1325. [Google Scholar] [CrossRef]
- Chen, H.; Chen, G.; Chen, P.; Huang, S.; Chen, J.; Zhou, K.; Kuo, C.; Tsao, Y.; Chu, A.; Huang, H.; et al. A Novel Heat Dissipation Structure for Inhibiting Hydrogen Diffusion in Top-Gate a-InGaZnO TFTs. IEEE Electron. Dev. Lett. 2019, 40, 1447–1450. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, X.; Dodabalapur, A. Accurate Field-Effect Mobility and Threshold Voltage Estimation for Thin-Film Transistors with Gate-Voltage-Dependent Mobility in Linear Region. Adv. Electron. Mater. 2022, 9, 2200786. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Zhang, Z.; Molina-Lopez, F.; Wang, G.; Schroeder, B.; Yan, X.; Zeng, Y.; Zhao, O.; Tran, H.; et al. Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nat. Commun. 2020, 11, 3362. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Hu, Z.; Liu, H.; Peng, J.; Wang, J.; Cao, Y. Flexible all-organic, all-solution processed thin film transistor array with ultrashort channel. Sci. Rep. 2016, 6, 29055. [Google Scholar] [CrossRef]
- Migliorato, P.; Md Chowdhury, D.; Um, J.; Seok, M.; Mativenga, M.; Jang, J. Characterization and Modeling of IGZO TFTs. J. Disp. Technol. 2015, 11, 497–505. [Google Scholar] [CrossRef]
- Kimura, M.; Nakanishi, T.; Nomura, K.; Kamiya, T.; Hosono, H. Trap densities in amorphous a-InGaZnO4 thin-film transistors. Appl. Phys. Lett. 2008, 92, 133512. [Google Scholar] [CrossRef]
- Avis, C.; Billah, M.M.; Kim, Y.G.; Siddik, A.B.; Jang, J. Analysis of the Solution-Processed a-SnOX and HfO2 Interface for Applications in Thin-Film Transistors. ACS Appl. Electron. Mater. 2021, 3, 651–657. [Google Scholar] [CrossRef]
- Shiah, Y.; Sim, K.; Shi, Y.; Abe, K.; Ueda, S.; Sasase, M.; Kim, J.; Hosono, H. Mobility-stability trade-off oxide thin-film transistors. Nat. Electron. 2021, 4, 800–807. [Google Scholar] [CrossRef]
- Fan, C.-L.; Tseng, F.-P.; Tseng, C.-Y. Electrical Performance and Reliability Improvement of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors with HfO2 Gate Dielectrics by CF4 Plasma Treatment. Materials 2018, 11, 824. [Google Scholar] [CrossRef]
- Wang, C.; Peng, C.; Wen, P.; Xu, M.; Chen, L.; Li, X.; Zhang, J. Improvement of Performance of Back Channel Etching InGaZnO Thin-Film Transistors by CF4 Plasma Treatment. IEEE Trans. Electron. Dev. Lett. 2023, 70, 1687–1691. [Google Scholar] [CrossRef]
- Yu, E.; Jun, S.; Kim, D.; Kanicki, J. Density of states of amorphous In-Ga-Zn-O from electrical and optical characterization. J. Appl. Phys. 2014, 116, 154505. [Google Scholar] [CrossRef]
- Liu, X.; Ning, H.; Chen, W.; Fang, Z.; Yao, R.; Wang, X.; Deng, Y.; Yuan, W.; Wu, W.; Peng, J. Effect of Source/Drain Electrodes on the Electrical Properties of Silicon–Tin Oxide Thin-Film Transistors. Nanomaterials 2018, 8, 293. [Google Scholar] [CrossRef]
- Li, Q.; Han, D.; Dong, J.; Xu, D.; Li, Y.; Wang, Y.; Zhang, X. Effects of Source/Drain Electrodes on the Performance of InSnO Thin-Film Transistors. Micromachines 2022, 13, 1896. [Google Scholar] [CrossRef] [PubMed]
- Tappertzhofen, S. Impact of electrode materials on the performance of amorphous IGZO thin-film transistors. MRS Adv. 2022, 7, 723–728. [Google Scholar] [CrossRef]
- Nguyen, M.; On, N.; Ji, H.; Nguyen, A.H.; Choi, S.; Cheon, J.; Yu, K.; Cho, S.; Kim, J.; Kim, S.; et al. Electrical Characterization of the Self-Heating Effect in Oxide Semiconductor Thin-Film Transistors Using Pulse-Based Measurements. IEEE Trans. Electron. Devices 2018, 65, 2492–2497. [Google Scholar] [CrossRef]
- Turkes, P.; Pluntke, C.; Helbig, R. Thermal conductivity of SnO2 single crystals. J. Phys. C Solid State Phys. 1980, 13, 4941–4951. [Google Scholar] [CrossRef]
- Li, Y.; He, B.; Heremans, J.P.; Zhao, J. High-temperature oxidation behavior of thermoelectric SnSe. J. Alloys Comp. 2016, 669, 224–231. [Google Scholar] [CrossRef]
- Fayette, S.; Smith, D.S.; Smith, A.; Matin, C. Influence of grain size on the thermal conductivity of tin oxide ceramics. J. Eur. Ceram. Soc. 2000, 20, 297–302. [Google Scholar] [CrossRef]
- Yoshikawa, T.; Yagi, T.; Oka, N.; Jia, J.; Yamashita, Y.; Hattori, K.; Seino, Y.; Taketoshi, N.; Baba, T.; Shigesato, Y. Thermal Conductivity of Amorphous Indium–Gallium–Zinc Oxide Thin Films. Appl. Phys. Express 2013, 6, 021101. [Google Scholar] [CrossRef]
- Khan, R.; Ohtaki, M.; Hata, S.; Miyazaki, K.; Hattori, R. Thermal Conductivity of Nano-Crystallized Indium-Gallium-Zinc Oxide Thin Films Determined by Differential Three-Omega Method. Nanomaterials 2021, 11, 1547. [Google Scholar] [CrossRef] [PubMed]
- Cui, B.; Zeng, B.; Keane, D.; Bedzyk, M.; Buchholz, D.; Chang, R.; Yu, C.; Smith, J.; Marks, T.; Xia, Y.; et al. Thermal conductivity comparison of indium gallium zinc oxide thin films: Dependence on temperature, crystallinity, and porosity. J. Phy. Chem. C 2016, 120, 7467–7475. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, W.; Li, H.; Furuta, M. Drain Current Stress-Induced Instability in Amorphous InGaZnO Thin-Film Transistors with Different Active Layer Thicknesses. Materials 2018, 11, 559. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Furuta, M.; Tomai, S.; Yano, K. Understanding the Role of Temperature and Drain Current Stress in InSnZnO TFTs with Various Active Layer Thicknesses. Nanomaterials 2020, 10, 617. [Google Scholar] [CrossRef]
- Hsieh, T.; Chang, T.; Chen, T.; Chen, Y.; Tsai, M.; Chu, A.; Chung, Y.; Ting, H.; Chen, C. Self-Heating-Effect-Induced Degradation Behaviors in a-InGaZnO Thin-Film Transistors. IEEE Electron. Dev. Lett. 2013, 34, 63–65. [Google Scholar] [CrossRef]
- Gao, Y.; Lu, J.; Zhang, J.; Li, X. The energy band tailored by Al incorporation in solution-processed IZO TFTs. RSC Adv. 2015, 5, 37635–37639. [Google Scholar] [CrossRef]
- Park, J.; Oh, J.; Gil, E.; Kyoung, S.; Kim, J.; Yeom, G. Plasma texturing of multicrystalline silicon for solar cell using remote-type pin-to-plate dielectric barrier discharge. J. Phys. D Appl. Phys. 2009, 42, 215201. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avis, C.; Jang, J. Influence of NF3 Plasma-Treated HfO2 Gate Insulator Surface on Tin Oxide Thin-Film Transistors. Materials 2023, 16, 7172. https://doi.org/10.3390/ma16227172
Avis C, Jang J. Influence of NF3 Plasma-Treated HfO2 Gate Insulator Surface on Tin Oxide Thin-Film Transistors. Materials. 2023; 16(22):7172. https://doi.org/10.3390/ma16227172
Chicago/Turabian StyleAvis, Christophe, and Jin Jang. 2023. "Influence of NF3 Plasma-Treated HfO2 Gate Insulator Surface on Tin Oxide Thin-Film Transistors" Materials 16, no. 22: 7172. https://doi.org/10.3390/ma16227172
APA StyleAvis, C., & Jang, J. (2023). Influence of NF3 Plasma-Treated HfO2 Gate Insulator Surface on Tin Oxide Thin-Film Transistors. Materials, 16(22), 7172. https://doi.org/10.3390/ma16227172