Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection
Abstract
:1. Introduction
2. Experimental Setup
2.1. Non-Thermal Plasma Reactor Design with a Curved Terminal
2.2. Materials for the Experimentation In Vitro
2.3. Construction of Transparent Root Canal Models with Inserted Dentin
2.4. Bacterium Selection and Preparation
2.5. Intracanal Biofilm Formation
2.6. Application of Non-Thermal Plasma in the Root Canal
2.7. Generation of Plasma-Treated Water (PTW)
2.8. Experimental Description
2.9. Scanning Electron Microscopy
2.10. Statistical Analysis
3. Results
3.1. Results of the Non-Thermal Plasma Reactor with a Curved Terminal
3.2. NTP Temperature Measurement
3.3. Experimentation with the Reactor with Bacteria and Biofilms In Vitro
3.4. Experimentation of the Reactor with Bacteria and Biofilm Root Canals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petridis, X.; Busanello, F.H.; So, M.V.R.; Dijkstra, R.J.B.; Sharma, P.K.; Sluis, L.W.M. Factors affecting the chemical efficacy of 2% sodium hypochlorite against oral steady-state dual-species biofilms: Exposure time and volume application. Int. Endod. J. 2019, 52, 1182–1195. [Google Scholar] [CrossRef]
- Siqueira, J.F., Jr.; Rôças, I.N. Present status and future directions: Microbiology of endodontic infections. Int. Endod. J. 2022, 55 (Suppl. S3), 512–530. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.J.; Perinpanayagam, H.; Oh, S.; Kim, A.R.; Han, S.H.; Kum, K.Y. Endodontic biofilms: Contemporary and future treatment options. Restor. Dent. Endod. 2019, 44, 7. [Google Scholar] [CrossRef]
- Prada, I.; Micó-Munoz, P.; Giner-Lluesma, T.; Mico-Martinez, P.; Collado-Castellano, N.; Manzano-Saiz, A. Influence of microbiology on endodontic failure. Literature review. Med. Oral Patol. Oral Cir. Bucal 2019, 24, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Swimberghe, R.C.D.; Coenye, T.; de Moor, R.J.G.; Meire, M.A. Biofil model systems for root canal disinfection: A literature review. Int. Endod. J. 2019, 52, 604–628. [Google Scholar] [CrossRef]
- Topbas, C.; Adiguzel, O. Endodontic irrigation solutions: A review: Endodontic irrigation solutions. Int. Dent. Res. 2017, 7, 54–61. [Google Scholar] [CrossRef]
- Susila, A. Activated irrigation vs. conventional non-activated irrigation in endodontics: A systematic review. Eur. Endod. J. 2019, 4, 96–110. [Google Scholar] [CrossRef] [PubMed]
- Do, Q.L.; Gaudin, A. The Efficiency of the Er: YAG laser and photon induced photoacoustic streaming (PIPS) as an activation method in endodontic irrigation: A literature review. J. Lasers Med. Sci. 2020, 11, 316–331. [Google Scholar] [CrossRef]
- Tsesis, I.; Lokshin, M.; Littner, D.; Goldberger, T.; Rosen, E. Depth of bacterial penetration into dentinal tubules after use of different irrigation solutions: A systematic review of in vitro studies. Appl. Sci. 2022, 13, 496. [Google Scholar] [CrossRef]
- Scholtz, V.; Vaňková, E.; Kašparová, P.; Premanath, R.; Karunasagar, I.; Julák, J. Non-thermal plasma treatment of ESKAPE pathogens: A review. Front. Microbiol. 2021, 12, 737635. [Google Scholar] [CrossRef]
- Moriguchi, Y.; Lee, D.S.; Chijimatsu, R.; Thamina, K.; Masuda, K.; Itsuki, D.; Yoshikawa, H.; Hamaguchi, S.; Myoui, A. Impact of non-thermal plasma surface modification on porous calcium hydroxyapatite ceramics for bone regeneration. PLoS ONE 2018, 13, e0194303. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.T.; Ayan, H. Application of non-thermal plasma on biofilm: A review. Appl. Sci. 2019, 9, 3548. [Google Scholar] [CrossRef]
- Tabares, F.L.; Junkar, I. Cold plasma systems and their application in surface treatments for medicine. Molecules 2021, 26, 1903. [Google Scholar] [CrossRef]
- Von Woedtke, T.; Schmidt, A.; Bekeschus, S.; Wende, K.; Weltmann, K.D. Plasma medicine: A field of applied Redox biology. In Vivo 2019, 33, 1011–1026. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.R.; Lee, Y.S.; You, Y.S.; Huh, J.Y.; Kim, K.; Hong, Y.C.; Kim, C.-H. Antimicrobial effects of microwave plasma-activated water with skin protective effect for novel disinfectants in pandemic era. Sci. Rep. 2022, 12, e5968. [Google Scholar] [CrossRef]
- Saremnezhad, S.; Soltani, M.; Faraji, A.; Hayaloglu, A.A. Chemical changes of food constituents during cold plasma processing: A review. Food Res. Int. 2021, 147, 110552. [Google Scholar] [CrossRef]
- Varilla, C.; Marcone, M.; Annor, G.A. Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods 2020, 9, 1435. [Google Scholar] [CrossRef]
- Brandenburg, R. Dielectric barrier discharges: Progress on plasma sources and on the understanding of regimes and single filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Ollegott, K.; Wirth, P.; Oberste-Beulmann, C.; Awakowicz, P.; Muhler, M. Fundamental properties and applications of dielectric barrier discharges in plasma-catalytic processes at atmospheric pressure. Chem. Ing. Technol. 2020, 92, 1542–1558. [Google Scholar] [CrossRef]
- Das, S.P.; Dalei, G.; Barik, A. A dielectric barrier discharge (DBD) plasma reactor: An efficient tool to measure the sustainability of non-thermal plasmas through the electrical breakdown of gases. IOP Conf. Ser. Mater. Sci. Eng. 2018, 410, 012004. [Google Scholar] [CrossRef]
- Sarkar, S.C.; Verma, N.; Tiwari, P.K. Electrical discharges: An emerging modality in sterilization, disinfection, and therapeutics. Majlesi J. Telecommun. Devices 2021, 10, 23–32. [Google Scholar] [CrossRef]
- Rodrigues, F.; Pascoa, J.; Trancossi, M. Heat generation mechanisms of DBD plasma actuators. Exp. Therm. Fluid Sci. 2018, 90, 55–65. [Google Scholar] [CrossRef]
- Bian, D.L.; Wu, Y.; Jia, M.; Long, C.B.; Jiao, S.B. Comparison between AlN and Al2O3 ceramics applied to barrier dielectric of plasma actuator. Chin. Phys. B 2017, 26, 084703. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Nunes-Pereira, J.; Rodrigues, F.F.; Silva, A.P. Review of ceramic composites in aeronautics and aerospace: A multifunctional approach for TPS, TBC and DBD applications. Ceramics 2023, 6, 195–230. [Google Scholar] [CrossRef]
- Li, J.; Ma, C.; Zhu, S.; Yu, F.; Dai, B.; Yang, D. A review of recent advances of dielectric barrier discharge plasma in catalysis. Nanomaterials 2019, 9, 1428. [Google Scholar] [CrossRef] [PubMed]
- Morozova, L.V.; Drozdova, I.A. A combined method for synthesis of dense nanoceramics based on aluminum oxide. Inorg. Mater. Appl. Res. 2019, 10, 1227–1234. [Google Scholar] [CrossRef]
- Hassan, Y.A.; Hu, H. Current status of polymer nanocomposite dielectrics for high-temperature applications. Compos. Part A Appl. Sci. Manufac. 2020, 138, 106064. [Google Scholar] [CrossRef]
- Simoncelli, E.; Barbieri, D.; Laurita, R.; Liguori, A.; Stancampiano, A.; Viola, L.; Tonini, R.; Gherardi, M.; Colombo, V. Preliminary investigation of the antibacterial efficacy of a handheld Plasma Gun source for endodontic procedures. Clin. Plasma Med. 2015, 3, 77–86. [Google Scholar] [CrossRef]
- Gherardi, M.; Tonini, R.; Colombo, V. Plasma in dentistry: Brief history and current status. Trends Biotechnol. 2018, 36, 583–585. [Google Scholar] [CrossRef]
- Liang, Y.; Li, Y.; Sun, K.; Zhang, Q.; Li, W.; Zhu, W.; Zhang, J.; Fang, J. Plasma thorns: Atmospheric pressure non-thermal plasma source for dentistry applications. Plasma Process Polym. 2015, 2, 1069–1075. [Google Scholar] [CrossRef]
- Borges, A.C.; Kostov, K.G.; Pessoa, R.S.; de Abreu, G.M.A.; Lima, G.d.M.G.; Figueira, L.W.; Koga-Ito, C.Y. Applications of cold atmospheric pressure plasma in dentistry. Appl. Sci. 2021, 11, 1975. [Google Scholar] [CrossRef]
- Suprewicz, Ł.; Tokajuk, G.; Cieśluk, M.; Deptuła, P.; Sierpińska, T.; Wolak, P.; Wollny, T.; Tokajuk, J.; Głuszek, S.; Piktel, E.; et al. Bacteria Residing at root canals can induce cell proliferation and alter the mechanical properties of gingival and cancer cells. Int. J. Mol. Sci. 2020, 21, 7914. [Google Scholar] [CrossRef] [PubMed]
- Qi, Z.; Cao, H.; Jiang, H.; Zhao, J.; Tang, Z. Combinations of bacterial species associated with symptomatic endodontic infections in a Chinese population. Int. Endod. J. 2016, 49, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.; Rao, R.S.; Sanketh, D.S.; Amrutha, N. Microbial flora in oral diseases. J. Contemp. Dent. Pract. 2013, 14, 1202–1208. [Google Scholar] [PubMed]
- Milhan, N.V.M.; Chiappim, W.; Sampaio, A.d.G.; Vegian, M.R.d.C.; Pessoa, R.S.; Koga-Ito, C.Y. Applications of plasma-activated water in dentistry: A review. Int. J. Mol. Sci. 2022, 23, e4131. [Google Scholar] [CrossRef]
- Sliney, D.; Aron-Rosa, D.; DeLori, F.; Fankhauser, F.; Landry, R.; Mainster, M.; Marshall, J.; Rassow, B.; Stuck, B.; Trokel, S.; et al. Adjustment of guidelines for exposure of the eye to optical radiation from ocular instruments: Statement from a task group of the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Appl. Opt. 2005, 44, 2162–2176. [Google Scholar] [CrossRef] [PubMed]
- García-Alcantara, E.; López-Callejas, R.; Morales-Ramírez, P.R.; Peña-Eguiluz, R.; Fajardo-Muñoz, R.; Mercado-Cabrera, A.; Barocio, S.R.; Valencia-Alvarado, R.; Rodríguez-Méndez, B.G.; Muñoz-Castro, A.E.; et al. Accelerated mice skin acute wound healing in vivo by combined treatment of argon and helium plasma needle. Arch. Med. Res. 2013, 44, 169–177. [Google Scholar] [CrossRef]
- Peña-Eguiluz, R.; López-Callejas, R.; Mercado-Cabrera, A.; Rodríguez-Méndez, B.G.; Valencia-Alvarado, R.; González-Mendoza, B. Acute neck radiodermatitis treated by non-thermal plasma therapy: Case report. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 503–506. [Google Scholar] [CrossRef]
- Zhang, Z.-J.; Wang, K.-P.; Mo, J.-G.; Xiong, L.; Wen, Y. Photodynamic therapy regulates fate of cancer stem cells through reactive oxygen species. World J. Stem Cells 2020, 12, 562–584. [Google Scholar] [CrossRef]
- Rajput, V.D.; Harish; Singh, R.K.; Verma, K.K.; Sharma, L.; Quiroz-Figueroa, F.R.; Meena, M.; Gour, V.S.; Minkina, T.; Sushkova, S.; et al. Recent Developments in Enzymatic Antioxidant Defence Mechanism in Plants with Special Reference to Abiotic Stress. Biology 2021, 10, e267. [Google Scholar] [CrossRef]
- Shi, X.; Liu, S.; Jiang, R.; Chen, J.; Jin, S.; Mei, D.; Zhou, R.; Fang, Z.; Cullen, P.J. Development and characterization of touchable air plasma jet device for inactivation of oral bacteria. Results Phys. 2022, 36, e105405. [Google Scholar] [CrossRef]
- Nishime, T.M.C.; Borges, A.C.; Koga-Ito, C.Y.; Machida, M.; Hein, L.R.O.; Kostov, K.G. Non-thermal atmospheric pressure plasma jet applied to inactivation of different microorganisms. Surf. Coat. Technol. 2017, 312, 19–24. [Google Scholar] [CrossRef]
- Barjasteh, A.; Dehghani, Z.; Lamichhane, P.; Kaushik, N.; Choi, E.H.; Kaushik, N.K. Review: Recent progress in applications of non-thermal plasma for water purification, bio-sterilization, and decontamination. Appl. Sci. 2021, 11, 3372. [Google Scholar] [CrossRef]
- Jungbauer, G.; Moser, D.; Müller, S.; Pfister, W.; Sculean, A.; Eick, S. The antimicrobial effect of cold atmospheric plasma against dental pathogens: A systematic review of in-vitro studies. Antibiotics 2021, 10, 211. [Google Scholar] [CrossRef]
- Lata, S.; Chakravorty, S.; Mitra, T.; Pradhan, P.K.; Mohanty, S.; Patel, P.; Jha, E.; Panda, P.K.; Verma, S.K.; Suar, M. Aurora borealis in dentistry: The applications of cold plasma in biomedicine. Mat. Today Bio 2022, 13, 100200. [Google Scholar] [CrossRef]
- Guo, L.; Zou, Z.; Smeets, R.; Kluwe, L.; Hartjen, P.; Gosau, M.; Henningsen, A. Attachment and osteogenic potential of dental pulp stem cells on non-thermal plasma and UV light treated titanium, zirconia and modified PEEK surfaces. Materials 2022, 15, 2225. [Google Scholar] [CrossRef]
- Stryczewska, H.D.; Boiko, O. Applications of plasma produced with electrical discharges in gases for agriculture and biomedicine. Appl. Sci. 2022, 12, 4405. [Google Scholar] [CrossRef]
- Das, S.; Prakash, G.V.; Mohapatra, S.; Kar, S.; Bhatt, S.; Gautam, H.; Singh, G.; Kapil, A.; Das, B.K.; Sood, S.; et al. Antimicrobial efficacy of argon cold atmospheric pressure plasma Jet on clinical isolates of multidrug-resistant ESKAPE bacteria. IEEE Trans. Radiat. Plasma Med. Sci. 2023, 7, 421–428. [Google Scholar] [CrossRef]
- Ibáñez-Mancera, N.G.; Toral-Rizo, V.H.; Lara-Carrillo, E.; López-Callejas, R. Plasma atmosférico no-térmico generado con gas helio como promotor de la cicatrización de herida por biopsia de glándulas salivales en Síndrome de Sjögren. Presentación de dos casos. Non-thermal atmospheric plasma generated with helium gas as a promoter of wound healing by salivary gland biopsy in Sjögren’s syndrome. Presentation two cases. Reumatol. Clín. 2022, 18, 439–440. [Google Scholar]
- Ibáñez-Mancera, N.G.; López-Callejas, R.; Pena-Eguiluz, R.; Rodríguez-Méndez, B.G.; Mercado-Cabrera, A.; Toral-Rizo, V.H.; Lara-Carrillo, E.; Valencia-Alvarado, R. Wound healing after biopsy in the mobile oral mucosa using a non-thermal atmospheric pressure plasma. IEEE Trans. Radiat. Plasma Med. Sci. 2022, 6, 928–935. [Google Scholar] [CrossRef]
- Ibáñez-Mancera, N.G.; López-Callejas, R.; Toral-Rizo, V.H.; Rodríguez-Méndez, B.G.; Peña-Eguiluz, R.; Lara-Carrillo, E.; Mercado-Cabrera, A.; Valencia-Alvarado, R. Cold atmospheric plasma benefits after a biopsy of the gingiva and palate: A case series. Plasma Med. 2022, 12, 1–9. [Google Scholar] [CrossRef]
- Ibáñez-Mancera, N.G.; López-Callejas, R.; Toral-Rizo, V.H.; Rodríguez-Méndez, B.G.; Lara-Carrillo, E.; Peña-Eguiluz, R.; do Amaral, R.C.; Mercado-Cabrera, A.; Valencia-Alvarado, R. Healing of recurrent aphthous stomatitis by non-thermal plasma: Pilot study. Biomedicines 2023, 11, 167. [Google Scholar] [CrossRef] [PubMed]
- López-Callejas, R.; Peña-Eguiluz, R.; Valencia-Alvarado, R.; Mercado-Cabrera, A.; Rodríguez-Méndez, B.G.; Serment-Guerrero, J.H.; Cabral-Prieto, A.; González-Garduño, A.C.; Domínguez-Cadena, N.A.; Muñoz-Infante, J.; et al. Alternative method for healing the diabetic foot by means of a plasma needle. Clin. Plasma Med. 2018, 9, 19–23. [Google Scholar] [CrossRef]
- González-Mendoza, B.; López-Callejas, R.; Rodríguez-Méndez, B.G.; Peña-Eguiluz, R.; Mercado-Cabrera, A.; Valencia-Alvarado, R.; Betancourt-Ángeles, M.; Reyes-Frías, M.L.; Reboyo-Barrios, D.; Chávez-Aguilar, E. Healing of wounds in lower extremities employing a non-thermal plasma. Clin. Plasma Med. 2019, 16, 100094. [Google Scholar] [CrossRef]
- Peña Eguiluz, R.; López-Callejas, R.; González-Arciniega, E.; Rodríguez-Méndez, B.G.; Mercado-Cabrera, A.; Guakil-Haber, A.; Kuri-García, A.; Espinosa-Mancilla, A.E.; Valencia-Alvarado, R. Non-thermal plasma wound healing after removal of a neck tumor in a patient with HIV: A case report. Otolaryngol. Case Rep. 2022, 22, 100391. [Google Scholar] [CrossRef]
- Peña-Eguiluz, R.; Serment-Guerrero, J.H.; Azorín-Vega, E.P.; Mercado-Cabrera, A.; Flores-Fuentes, A.A.; Jaramillo-Sierra, B.; Hernández-Arias, A.N.; Girón-Romero, K.; López-Callejas, R.; Rodríguez-Méndez, B.G.; et al. Development and characterization of a non-thermal plasma source for therapeutic treatments. IEEE Trans. Biomed. Eng. 2021, 68, 1467–1476. [Google Scholar] [CrossRef]
- Alghamdi, F.; Shakir, M. The Influence of Enterococcus faecalis as a Dental Root Canal Pathogen on Endodontic Treatment: A Systematic Review. Cureus 2020, 12, 7257. [Google Scholar] [CrossRef]
- Wong, J.; Manoil, D.; Näsman, P.; Belibasakis, G.N.; Neelakantan, P. Microbiological Aspects of root canal infections and disinfection strategies: An update review on the current knowledge and challenges. Front. Oral Health 2021, 2, 672887. [Google Scholar] [CrossRef]
- Afkhami, F.; Forghan, P.; Gutmann, J.L.; Kishen, A. Silver nanoparticles and their therapeutic applications in endodontics: A narrative review. Pharmaceutics 2023, 15, 715. [Google Scholar] [CrossRef]
- Baik, K.Y.; Jo, H.; Ki, S.H.; Kwon, G.-C.; Cho, G. Synergistic effect of hydrogen peroxide and cold atmospheric pressure plasma-jet for microbial disinfection. Appl. Sci. 2023, 13, 3324. [Google Scholar] [CrossRef]
- Xia, B.; Vyas, H.K.N.; Zhou, R.; Zhang, T.; Hong, J.; Rothwell, J.G.; Rice, S.A.; Carter, D.; Ostrikov, K.; Cullen, P.J.; et al. The importance of superoxide anion for Escherichia coli biofilm removal using plasma-activated water. J. Environ. Chem. Eng. 2023, 11, 109977. [Google Scholar] [CrossRef]
- Hameed, T.A.; Humud, H.R.; Ali, L.F. Assessment of plasma jet therapy of tooth root canal infected with Escherichia coli and Enterococcus faecalis biofilm in vitro. Egypt. J. Hosp. Med. 2023, 90, 2359–2362. [Google Scholar] [CrossRef]
- Lima, G.d.M.G.; Borges, A.C.; Nishime, T.M.C.; Santana-Melo, G.d.F.; Kostov, K.G.; Mayer, M.P.A.; Koga-Ito, C.Y. Cold Atmospheric Plasma Jet as a Possible Adjuvant Therapy for Periodontal Disease. Molecules 2021, 26, e5590. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.S.; Chew, N.S.L.; Low, M.; Tan, M.K. Plasma-Activated Water: Physicochemical Properties, Generation Techniques, and Applications. Processes 2023, 11, 2213. [Google Scholar] [CrossRef]
- Lu, X.P.; Ye, T.; Cao, Y.G.; Sun, Z.Y.; Xiong, Q.; Tang, Z.Y.; Xiong, Z.L.; Hu, J.; Jiang, Z.H.; Yuan Pan, Y. The roles of the various plasma agents in the inactivation of bacteria. J. Appl. Phys. 2008, 104, 053309. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N. Inactivation of bacteria by non-thermal plasmas. In Biomedical Engineering-Frontiers and Challenges; Rezai, R.F., Ed.; IntechOpen: London, UK, 2011; pp. 25–54. [Google Scholar]
- Mravlje, J.; Regvar, M.; Vogel-Mikuš, K. Development of cold plasma technologies for surface decontamination of seed fungal pathogens: Present status and Perspectives. J. Fungi 2021, 7, 650. [Google Scholar] [CrossRef]
- Kerlikowski, A.; Matthes, R.; Pink, C.; Steffen, H.; Schlüter, R.; Holtfreter, B.; Weltmann, K.-D.; von Woedtke, T.; Kocher, T.; Jablonowski, L. Effects of cold atmospheric pressure plasma and disinfecting agents on Candida albicans in root canals of extracted human teeth. J. Biophotonics 2020, 13, e202000221. [Google Scholar] [CrossRef]
Element | Raw Powder [at.%] | Processed Powder [at.%] |
---|---|---|
C | 63.70 | 40.71 |
O | 25.10 | 39.31 |
Mg | 0.39 | 6.22 |
Si | 5.16 | 3.82 |
Zr | 5.25 | 3.28 |
Al | 0.31 | - |
P | - | 6.66 |
Treatment | log10 CFU/mL | p Value versus ζ | Significance * |
---|---|---|---|
ζ | 5.59 ± 0.03 | Without value | Without value |
Control | 7.17 ± 0.11 | 0.999 | 0 |
α | 6.16 ± 0.01 | 0.999 | 0 |
α + α | 6.02 ± 0.25 | 0.999 | 0 |
γ | 6.09 ± 0.05 | 0.999 | 0 |
γ + γ | 5.87 ± 0.48 | 0.999 | 0 |
α + γ | 5.56 ± 0.07 | 0.999 | 0 |
ε | 2.88 ± 0.16 | <0.001 | 1 |
ε + ε | 2.15 ± 0.21 | <0.001 | 1 |
β | 2.47 ± 0.06 | <0.001 | 1 |
η | 2.03 ± 1.36 | <0.001 | 1 |
η + γ | 1.26 ± 0.10 | <0.001 | 1 |
η + ε | 0.97 ± 0.06 | <0.001 | 1 |
γ + ε | 1.60 ± 0.08 | <0.001 | 1 |
γ + ε + ε | 0.87 ± 0.15 | <0.001 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arguello-Sánchez, R.; López-Callejas, R.; Rodríguez-Méndez, B.G.; Scougall-Vilchis, R.; Velázquez-Enríquez, U.; Mercado-Cabrera, A.; Peña-Eguiluz, R.; Valencia-Alvarado, R.; Medina-Solís, C.E. Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection. Materials 2023, 16, 7204. https://doi.org/10.3390/ma16227204
Arguello-Sánchez R, López-Callejas R, Rodríguez-Méndez BG, Scougall-Vilchis R, Velázquez-Enríquez U, Mercado-Cabrera A, Peña-Eguiluz R, Valencia-Alvarado R, Medina-Solís CE. Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection. Materials. 2023; 16(22):7204. https://doi.org/10.3390/ma16227204
Chicago/Turabian StyleArguello-Sánchez, Raúl, Régulo López-Callejas, Benjamín Gonzalo Rodríguez-Méndez, Rogelio Scougall-Vilchis, Ulises Velázquez-Enríquez, Antonio Mercado-Cabrera, Rosendo Peña-Eguiluz, Raúl Valencia-Alvarado, and Carlo Eduardo Medina-Solís. 2023. "Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection" Materials 16, no. 22: 7204. https://doi.org/10.3390/ma16227204
APA StyleArguello-Sánchez, R., López-Callejas, R., Rodríguez-Méndez, B. G., Scougall-Vilchis, R., Velázquez-Enríquez, U., Mercado-Cabrera, A., Peña-Eguiluz, R., Valencia-Alvarado, R., & Medina-Solís, C. E. (2023). Innovative Curved-Tip Reactor for Non-Thermal Plasma and Plasma-Treated Water Generation: Synergistic Impact Comparison with Sodium Hypochlorite in Dental Root Canal Disinfection. Materials, 16(22), 7204. https://doi.org/10.3390/ma16227204