Formulating Geopolymer Mortars through Construction and Demolition Waste (CDW) Recycling: A Comprehensive Case Study
Abstract
:1. Introduction
1.1. Environmental Impact of CDW
1.2. Geopolymers and CDW
2. Materials and Methods
2.1. Materials
2.1.1. Aggregates
2.1.2. Binder
2.1.3. Activators
2.2. Mix Design and Sample Preparation
- The 1 series were prepared using unwashed aggregates in saturated-surface dry conditions. The aggregate and the amount of water necessary to obtain saturated-surface dry (SSD) conditions were mixed the day before.
- The 2 series were prepared using a washed recycled aggregate (R) in saturated-surface dry conditions (SSD). In particular, the R aggregate was previously washed in water, to remove the impurities present on the surface of the aggregate, a possible barrier to the adhesion between aggregate and matrix. The aggregate and the amount of water necessary to obtain saturated-surface dry (SSD) conditions were mixed the day before.
- The 3 series were prepared using aggregates in dry conditions. The aggregates (N and washed R) were added in dry conditions and the amount of water to obtain the saturated-surface dry conditions was added to the water of the recipe. An additional mixing time (i.e., 5 min) was also applied.
2.3. Methods
2.3.1. Determination of Consistency
2.3.2. Physical Properties
2.3.3. Mechanical Properties
2.3.4. Microstructure
2.3.5. X-ray Diffraction Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Purchase, C.K.; Al Zulayq, D.M.; O’Brien, B.T.; Kowalewski, M.J.; Berenjian, A.; Tarighaleslami, A.H.; Seifan, M. Circular economy of construction and demolition waste: A literature review on lessons, challenges, and benefits. Materials 2021, 15, 76. [Google Scholar] [CrossRef] [PubMed]
- Petroche, D.M.; Ramirez, A.D. The Environmental Profile of Clinker, Cement, and Concrete: A Life Cycle Perspective Study Based on Ecuadorian Data. Buildings 2022, 12, 311. [Google Scholar] [CrossRef]
- Alhawat, M.; Ashour, A.; Yildirim, G.; Aldemir, A.; Sahmaran, M. Properties of geopolymers sourced from construction and demolition waste: A review. J. Build. Eng. 2022, 50, 104104. [Google Scholar] [CrossRef]
- Pawluczuk, E.; Kalinowska-Wichrowska, K.; Jiménez, J.R.; Fernández-Rodríguez, J.M.; David Suescum-Morales, D. Geopolymer concrete with treated recycled aggregates: Macro and microstructural behavior. J. Build. Eng. 2021, 44, 103317. [Google Scholar] [CrossRef]
- Farooq, F.; Xin, J.; Javed, M.F.; Akbar, A.; Shah, M.I.; Aslam, F.; Alyousef, R. Geopolymer concrete as sustainable material: A state of the art review. Constr. Build. Mater. 2021, 306, 124762. [Google Scholar] [CrossRef]
- Khan, S.A.; Kul, A.; Şahin, O.; Şahmaran, M.; Al-Ghamdi, S.G.; Koç, M. Energy-environmental performance assessment and cleaner energy solutions for a novel Construction and Demolition Waste-based geopolymer binder production process. Energy Rep. 2022, 8, 14464–14475. [Google Scholar] [CrossRef]
- Ozcelikci, E.; Kul, A.; Gunal, M.F.; Ozel, B.F.; Yildirim, G.; Ashour, A.; Sahmaran, M. A comprehensive study on the compressive strength, durability-related parameters and microstructure of geopolymer mortars based on mixed construction and demolition waste. J. Clean. Prod. 2023, 396, 136522. [Google Scholar] [CrossRef]
- Ilcan, H.; Sahin, O.; Kul, A.; Yildirim, G.; Sahmaran, M. Rheological properties and compressive strength of construction and demolition waste-based geopolymer mortars for 3D-Printing. Constr. Build. Mater. 2022, 328, 127114. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, S.; Huang, B.; Yang, Q.; Li, J. Comparison of mechanical, chemical, and thermal activation methods on the utilisation of recycled concrete powder from construction and demolition waste. J. Build. Eng. 2022, 61, 105295. [Google Scholar] [CrossRef]
- Gu, F.; Xie, J.; Vuye, C.; Wu, Y.; Junhui Zhang, J. Synthesis of geopolymer using alkaline activation of building-related construction and demolition wastes. J. Clean. Prod. 2023, 420, 138335. [Google Scholar] [CrossRef]
- Ibrahim, M.; Alimi, W.; Assaggaf, R.; Salami, B.A.; Oladapo, E.A. An overview of factors influencing the properties of concrete incorporating construction and demolition wastes. Constr. Build. Mater. 2023, 367, 130307. [Google Scholar] [CrossRef]
- Yaro, N.S.Y.; Sutanto, M.H.; Baloo, L.; Habib, N.Z.; Usman, A.; Yousafzai, A.K.; Ahmad, A.; Birniwa, A.H.; Jagaba, A.H.; Noor, A. A comprehensive Overview of the Utilization of Recycled Waste Materials and Technologies in Asphalt Pavements: Towards Environmental and Sustainable Low-Carbon Roads. Processes 2023, 11, 2095. [Google Scholar] [CrossRef]
- Ayub, T.; Mahmood, W.; Khan, A.-u.-R. Durability performance of SCC and SCGC containing recycled concrete aggregates: A comparative study. Sustainability 2021, 13, 8621. [Google Scholar] [CrossRef]
- EU Directives 2018/851; Construction and Demolition Waste Protocol and Guidelines. Official Journal of the European Union: Luxembourg, 2018.
- Provis, J.L. Alkali-Activated materials. Cem. Concr. Res. 2018, 114, 40–48. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how and what? Mater. Struct. Constr. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Provis, J.L.; van Deventer, J.S.J. Geopolymers and other alkali-activated materials. In Lea’s Chemistry of Cement and Concrete, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 779–805. [Google Scholar]
- Provis, J.L.; Palomo, A.; Shi, C. Advances in understanding alkali-activated materials. Cem. Concr. Res. 2015, 78, 110–125. [Google Scholar] [CrossRef]
- Zhao, J.; Tong, L.; Li, B.; Chen, T.; Wang, C.; Yang, G.; Zheng, Y. Eco-friendly geopolymer materials: A review of performance improvement, potential application and sustainability assessment. J. Clean. Prod. 2021, 307, 127085. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Alabduljabbar, H.; El-Zeadani, M. Clean production and properties of geopolymer concrete; A review. J. Clean. Prod. 2020, 251, 119679. [Google Scholar] [CrossRef]
- Waqas, R.M.; Butt, F.; Danish, A.; Alqurashi, M.; Mosaberpanah, M.A.; Masood, B.; Hussein, E.E. Influence of bentonite on mechanical and durability properties of high-calcium fly ash geopolymer concrete with natural and recycled aggregates. Materials 2021, 14, 7790. [Google Scholar] [CrossRef]
- Alhazmi, H.; Shah, S.A.R.; Mahmood, A. Sustainable development of innovative green construction materials: A study for Economical eco-friendly recycled aggregate based geopolymer concrete. Materials 2020, 13, 4881. [Google Scholar] [CrossRef]
- Le, H.-B.; Bui, Q.-B.; Tang, L. Geopolymer recycled aggregate concrete: From experiments to empirical models. Materials 2021, 14, 1180. [Google Scholar] [CrossRef]
- Saccani, A.; Manzi, S.; Lancellotti, I.; Barbieri, L. Manufacturing and durability of alkali activated mortars containing different types of glass waste as aggregates valorisation. Constr. Build. Mater. 2020, 237, 117733. [Google Scholar] [CrossRef]
- Thomas, B.S.; Yang, J.; Bahurudeen, A.; Chinnu, S.N.; Abdalla, J.A.; Hawileh, R.A.; Hamada, M. Geopolymer concrete incorporating recycled aggregates: A comprehensive review. Clean. Mater. 2022, 3, 100056. [Google Scholar] [CrossRef]
- Junak, J.; Sicakova, A. Effect of surface modifications of recycled concrete aggregate on concrete properties. Buildings 2017, 8, 2. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, L. Experimental study of interfacial transition zones between geopolymer binder and recycled aggregate. Constr. Build. Mater 2018, 167, 749–756. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer concrete: A review of some recent developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- Kirthika, S.K.; Singh, S.K. Durability studies on recycled fine aggregate concrete. Constr. Build. Mater. 2020, 250, 118850. [Google Scholar] [CrossRef]
- Panizza, M.; Natali, M.; Garbin, E.; Tamburini, S.; Secco, M. Assessment of geopolymers with Construction and Demolition Waste (CDW) aggregates as a building material. Constr. Build. Mater. 2018, 181, 119–133. [Google Scholar] [CrossRef]
- Panizza, M.; Natali, M.; Garbin, E.; Ducman, V.; Tamburini, S. Optimization and mechanical-physical characterization of geopolymers with Construction and Demolition Waste (CDW) aggregates for construction products. Constr. Build. Mater. 2020, 264, 120158. [Google Scholar] [CrossRef]
- Volpintesta, F.; Ossoli, E.; Reggiani, A.; Stabile, P.; Santulli, C.; Paris, E. Geopolymers-based application for the up-cycling utilization of construction and demolition waste from the 2016 central Italy earthquakes. Mater. Lett. 2023, 336, 133849. [Google Scholar] [CrossRef]
- De Rossi, A.; Ribeiro, M.J.; Labrincha, J.A.; Novais, R.M.; Hotza, D.; Moreira, R.F.P.M. Effect of the particle size range of construction and demolition waste on the fresh and hardened-state properties of fly ash-based geopolymer mortars with total replacement of sand. Process Saf. Environ. Prot. 2019, 129, 130–137. [Google Scholar] [CrossRef]
- Nuaklong, P.; Sata, V.; Chindaprasirt, P. Properties of metakaolin-high calcium fly ash geopolymer concrete containing recycled aggregate from crushed concrete specimens. Constr. Build. Mater. 2018, 161, 365–373. [Google Scholar] [CrossRef]
- Akbarnezhad, A.; Huan, M.; Mesgari, S.; Castel, A. Recycling of geopolymer concrete. Constr. Build. Mater. 2015, 101, 152–158. [Google Scholar] [CrossRef]
- Giannopoulou, I.; Robert, P.M.; Sakkas, K.-M.; Petrou, M.F.; Nicolaides, D. High temperature performance of geopolymers based on construction and demolition waste. J. Build. Eng. 2023, 72, 106575. [Google Scholar] [CrossRef]
- Akduman, S.; Kocaer, O.; Aldemir, A.; Sahmaran, M.; Yıldırım, G.; Almahmood, H.; Ashour, A. Experimental investigations on the structural behaviour of reinforced geopolymer beams produced from recycled construction materials. J. Build. Eng. 2021, 41, 102776. [Google Scholar] [CrossRef]
- Shen, J.; Yue Li, Y.; Lin, H.; Li, H.; Lv, J.; Feng, S.; Ci, J. Prediction of compressive strength of alkali-activated construction demolition waste geopolymers using ensemble machine learning. Constr. Build. Mater. 2022, 360, 129600. [Google Scholar] [CrossRef]
- EN 196-1; Methods of Testing Cement—Part 1: Determination of Strength. European Committee for Standardization: Brussels, Belgium, 2016.
- Manzi, S.; Mazzotti, C.; Bignozzi, M.C. Short and long-term behavior of structural concrete with recycled concrete aggregate. Cem. Concr. Comp. 2013, 37, 312–318. [Google Scholar] [CrossRef]
- Manzi, S.; Mazzotti, C.; Bignozzi, M.C. Self-compacting concrete with recycled aggregate: Study of the long term properties. Constr. Build. Mater. 2017, 157, 582–590. [Google Scholar] [CrossRef]
- EN 1097-6; Tests for Mechanical and Physical Properties of Aggregates—Part 6: Determination of Particle Density and Water Absorption. European Committee for Standardization: Brussels, Belgium, 2022.
- Carabba, L.; Santandrea, M.; Carloni, C.; Manzi, S.; Bignozzi, M.C. Steel fiber reinforced geopolymer matrix (S-FRGM) composites applied to reinforced concrete structures for strengthening applications: A preliminary study. Compos. Part B Eng. 2017, 128, 83–90. [Google Scholar] [CrossRef]
- EN 1015-3; Determination of Consistency of Fresh Mortars by Flow Table. European Committee for Standardization: Brussels, Belgium, 2007.
- EN 772-13; Determination of Net and Gross Dry Density. European Committee for Standardization: Brussels, Belgium, 2002.
- EN 772-21; Determination of Water Absorption. European Committee for Standardization: Brussels, Belgium, 2011.
- EN 15801; Conservation of Cultural Property—Test Methods—Determination of water Absorption by Capillarity. European Committee for Standardization: Brussels, Belgium, 2010.
- EN 12504-4; Testing Concrete in Structures—Part 4: Determination of Ultrasonic Pulse Velocity. European Committee for Standardization: Brussels, Belgium, 2021.
- Tan, J.; Cizer, Ö.; Vandevyvere, B.; De Vlieger, J.; Dan, H.; Li, J. Efflorescence mitigation in construction and demolition waste (CDW) based geopolymer. J. Build. Eng. 2022, 58, 105001. [Google Scholar] [CrossRef]
Type | ρrd (kg/m3) | ρssd (kg/m3) | WA (%) |
---|---|---|---|
N | 2600 | 2700 | 2.2 |
R | 1800 | 2000 | 12.7 |
Series | % R | F (g) | N (g) | R (g) | MTK (g) | Na2SiO3 (g) | NaOH (g) | H2O (g) |
---|---|---|---|---|---|---|---|---|
A | 0 | 675 | 675 | 0 | 450 | 225 | 45 | 65 |
B | 12.5 | 675 | 506 | 169 | 450 | 225 | 45 | 65 |
C | 25 | 675 | 338 | 338 | 450 | 225 | 45 | 65 |
Series | Recipe | N | R | Mixing Time | ||
---|---|---|---|---|---|---|
A1 | A | SSD | unwashed | n.p. | n.p. | 5 min |
A3 | A | dry | unwashed | n.p. | n.p. | 10 min |
B1 | B | SSD | unwashed | SSD | unwashed | 5 min |
B2 | B | SSD | unwashed | SSD | washed | 5 min |
B3 | B | dry | unwashed | dry | washed | 10 min |
C1 | C | SSD | unwashed | SSD | unwashed | 5 min |
C2 | C | SSD | unwashed | SSD | washed | 5 min |
C3 | C | dry | unwashed | dry | washed | 10 min |
Sample Name | % R | dm (mm) | C (%) | ρb (kg/m3) | WA (%) | OP (%) |
---|---|---|---|---|---|---|
A1 | 0 | 170 | 70 | 2060 ± 0 | 9.0 ± 0.1 | 18.4 ± 0.1 |
A3 | 0 | 145 | 45 | 2040 ± 20 | 9.1 ± 0.1 | 18.7 ± 0.0 |
B1 | 12.5 | 177 | 77 | 2020 ± 0 | 9.8 ± 0.0 | 19.8 ± 0.0 |
B2 | 12.5 | 175 | 75 | 2040 ± 10 | 9.7 ± 0.2 | 19.9 ± 0.3 |
B3 | 12.5 | 150 | 50 | 2010 ± 10 | 9.9 ± 0.2 | 19.8 ± 0.2 |
C1 | 25 | 170 | 70 | 1990 ± 20 | 10.5 ± 0.2 | 21.0 ± 0.2 |
C2 | 25 | 180 | 80 | 2000 ± 10 | 10.7 ± 0.1 | 21.4 ± 0.2 |
C3 | 25 | 150 | 50 | 1950 ± 0 | 11.0 ± 0.1 | 21.5 ± 0.1 |
Sample Name | % R | σf (MPa) | σc (MPa) | Ed (GPa) |
---|---|---|---|---|
A1 | 0 | 6.3 ± 0.6 | 30.9 ± 1.9 | 26.1 ± 0.5 |
A3 | 0 | 5.8 ± 0.6 | 31.8 ± 0.7 | 26.8 ± 0.6 |
B1 | 12.5 | 3.5 ± 0.9 | 16.4 ± 2.5 | 21.1 ± 0.7 |
B2 | 12.5 | 4.7 ± 0.1 | 24.3 ± 1.9 | 20.5 ± 0.6 |
B3 | 12.5 | 4.8 ± 0.1 | 22.9 ± 1.7 | 19.6 ± 0.3 |
C1 | 25 | 3.3 ± 0.2 | 15.1 ± 1.6 | 15.8 ± 0.5 |
C2 | 25 | 3.7 ± 0.9 | 14.4 ± 1.8 | 18.1 ± 0.6 |
C3 | 25 | 3.3 ± 0.1 | 14.4 ± 0.7 | 14.9 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manzi, S.; Baldazzi, L.; Saccani, A. Formulating Geopolymer Mortars through Construction and Demolition Waste (CDW) Recycling: A Comprehensive Case Study. Materials 2023, 16, 7304. https://doi.org/10.3390/ma16237304
Manzi S, Baldazzi L, Saccani A. Formulating Geopolymer Mortars through Construction and Demolition Waste (CDW) Recycling: A Comprehensive Case Study. Materials. 2023; 16(23):7304. https://doi.org/10.3390/ma16237304
Chicago/Turabian StyleManzi, Stefania, Luca Baldazzi, and Andrea Saccani. 2023. "Formulating Geopolymer Mortars through Construction and Demolition Waste (CDW) Recycling: A Comprehensive Case Study" Materials 16, no. 23: 7304. https://doi.org/10.3390/ma16237304
APA StyleManzi, S., Baldazzi, L., & Saccani, A. (2023). Formulating Geopolymer Mortars through Construction and Demolition Waste (CDW) Recycling: A Comprehensive Case Study. Materials, 16(23), 7304. https://doi.org/10.3390/ma16237304