Advances in Structural and Morphological Characterization of Thin Magnetic Films: A Review
Abstract
:1. Introduction
2. Imaging Techniques for Morphological Characterization
2.1. Scanning Transmission Electron Microscopy (TEM)
2.2. Scanning Electron Microscopy (SEM)
2.3. Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS)
2.4. Spin-Polarized Low-Energy Electron Microscopy (SPLEEM)
2.5. Photoemission Electron Microscopy (PEEM)
2.6. Atomic Force Microscopy (AFM)
3. X-ray-Scattering Techniques for Thin Films and Interfaces
3.1. Resonant X-ray Scattering (R-XRS)
3.2. High-Resolution X-ray Diffraction (HRXRD)
3.3. High-Resolution Crystal Truncation Rod Scattering (HRCTRS)
3.4. Grazing Incidence X-ray Diffraction (GIXRD)
3.5. Grazing Incidence Small-Angle Scattering (GISAXS)
3.6. X-ray Reflectivity (XRR)
3.7. Grazing Incidence X-ray Fluorescence (GIXRF)
3.8. X-ray Standing Wave Geometry (XSW)
3.9. Low-Energy Electron Diffraction (LEED)
3.10. Reflection High-Energy Electron Diffraction (RHEED)
3.11. Polarized Neutron Reflectometry (PNR)
3.12. Resonant X-ray Coherent Diffractive Imaging (CDI)
4. Spectrometric Techniques
4.1. X-ray Absorption Spectroscopy (XAS)
4.2. Standing Wave X-ray Absorption Fine Structure (SW-XAFS)
4.3. Polarized X-ray Absorption Fine Structure (P-XAFS)
4.4. X-ray Magnetic Circular Dichroism (XMCD)
4.5. X-ray Photoemission Spectroscopy
- a.
- Angle-resolved X-ray photoelectron spectroscopy (ARXPS)
- b.
- Spin-Polarized Photoemission Spectroscopy (SP-PES)
4.6. Resonant Inelastic X-ray Scattering (RIXS)
5. Summary and Future outlook
Author Contributions
Funding
Conflicts of Interest
List of Abbreviations
AES | Auger Electron Spectroscopy |
APECS | Auger-photoelectron coincidence spectroscopy |
AFM | Atomic Force Microscopy |
ALD | Atomic Layer Deposition |
ARXPS | Angle-resolved X-ray Photoelectron Spectroscopy |
A-XRD | Anomalous (Resonant) X-ray Diffraction |
A-XRR | Anomalous (Resonant) X-ray Reflectivity |
BSE | Backscattered Electron |
CDI | Coherent Diffractive Imaging |
CBED | Convergent-beam Electron Diffraction |
CTR | Crystal Truncation Rod |
CVD | Chemical Vapor Deposition |
EBSD | Electron Backscatter Diffraction |
EDS | Energy-dispersed Spectroscopy |
EELS | Electron Energy Loss Spectroscopy |
EXAFS | Extended X-ray Absorption Fine Structures |
FIB | Focused Ion Beam |
GIXRD | Grazing Incidence X-ray Diffraction |
GISAXS | Grazing Incidence Small-angle Scattering |
GIXRF | Grazing incidence X-ray Fluorescence |
HAADF | High-angle Annular Dark Field |
HRCTRS | High-resolution Crystal Truncation Rod Scattering |
HRTEM | High-resolution Transmission Electron Microscopy |
HRXRD | High-resolution X-ray diffraction |
LEED | Low-energy Electron Diffraction |
MExFM | Magnetic Exchange Force Microscopy |
MFM | Magnetic Force Microscopy |
MBE | Molecular Beam Epitaxy |
ND | Neutron Diffraction |
NR | Neutron Reflectivity |
Pair Correlation Functions | |
PEEM | Photoemission Electron Microscopy |
PES | Photoelectron Spectroscopy |
PLD | Pulsed Laser Deposition |
PMA | Perpendicular Magnetic Anisotropy |
RHEED | Reflection High-energy Electron Diffraction |
RSM | Reciprocal Space Map |
RIXS | Resonant Inelastic X-ray Scattering |
R-XSW | Resonant X-ray Standing Wave |
R-XRD | Resonant X-ray Diffraction |
R-XRR | Resonant X-ray Reflectivity |
SEM | Scanning Electron Microscopy |
SXES | Soft X-ray Emission Spectroscopy |
SPLEEM | Spin-polarized Low-energy Electron Microscopy |
SP-PES | Spin-polarized Photoemission Spectroscopy |
SP-STM | Spin-polarized Scanning Tunneling Microscopy |
STEM | Scanning Transmission Electron Microscopy |
TEM | Transmission Electron Microscopy |
ToF-SIMS | Time-of-flight Secondary Ion Mass Spectrometry |
XAFS | X-ray Absorption Fine Structure |
XAS | X-ray Absorption Spectroscopy |
XANES | X-ray Absorption Near Edge Structure |
XES | X-ray Emission Spectroscopy |
XMCD | X-ray Magnetic Circular Dichroism |
XPS | X-ray Photoemission Spectroscopy |
XRD | X-ray Diffraction |
XRF | X-ray Fluorescence |
XRR | X-ray Reflectivity |
XRS | X-ray Scattering |
XSW | X-ray Standing Waves |
SW-XAFS | Standing Waves–X-ray Absorption Fine Structure |
XTEM | Cross-sectional Transmission Electron Microscopy |
References
- Mbam, S.O.; Nwonu, S.E.; Orelaja, O.A.; Nwigwe, U.S.; Gou, X.F. Thin-Film Coating; Historical Evolution, Conventional Deposition Technologies, Stress-State Micro/Nano-Level Measurement/Models and Prospects Projection: A Critical Review. Mater. Res. Express 2019, 6, 122001. [Google Scholar] [CrossRef]
- Poulopoulos, P.; Baberschke, K. Magnetism in Thin Films. J. Phys. Condens. Matter 1999, 11, 9495–9515. [Google Scholar] [CrossRef]
- Krishnan, K.M. Magnetic Surfaces, Interfaces, and Thin Films. In Fundamentals and Applications of Magnetic Materials; Oxford University Press: Oxford, UK, 2016; pp. 409–475. [Google Scholar]
- Sheng, P.; Wang, B.; Li, R. Flexible Magnetic Thin Films and Devices. J. Semicond. 2018, 39, 011006. [Google Scholar] [CrossRef]
- Tudu, B.; Tiwari, A. Recent Developments in Perpendicular Magnetic Anisotropy Thin Films for Data Storage Applications. Vacuum 2017, 146, 329–341. [Google Scholar] [CrossRef]
- Lordan, D.; Wei, G.; McCloskey, P.; O’Mathuna, C.; Masood, A. Origin of Perpendicular Magnetic Anisotropy in Amorphous Thin Films. Sci. Rep. 2021, 11, 3734. [Google Scholar] [CrossRef]
- Chen, C.W. Fabrication and Characterization of Thin Films with Perpendicular Magnetic Anisotropy for High-Density Magnetic Recording. J. Mater. Sci. 1991, 26, 1705–1728. [Google Scholar] [CrossRef]
- Mao, S.; Lu, J.; Zhao, X.; Wang, X.; Wei, D.; Liu, J.; Xia, J.; Zhao, J. MnGa-Based Fully Perpendicular Magnetic Tunnel Junctions with Ultrathin Co2MnSi Interlayers. Sci. Rep. 2017, 7, 43064. [Google Scholar] [CrossRef]
- Ikeda, S.; Miura, K.; Yamamoto, H.; Mizunuma, K.; Gan, H.D.; Endo, M.; Kanai, S.; Hayakawa, J.; Matsukura, F.; Ohno, H. A Perpendicular-Anisotropy CoFeB–MgO Magnetic Tunnel Junction. Nat. Mater. 2010, 9, 721–724. [Google Scholar] [CrossRef]
- Peng, S.Z.; Zhang, Y.; Wang, M.X.; Zhang, Y.G.; Zhao, W. Magnetic Tunnel Junctions for Spintronics: Principles and Applications. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley: Hoboken, NJ, USA, 2014; pp. 1–16. [Google Scholar]
- Wang, Z.; Zhou, T.; Jiang, T.; Sun, H.; Zang, Y.; Gong, Y.; Zhang, J.; Tong, M.; Xie, X.; Liu, Q.; et al. Dimensional Crossover and Topological Nature of the Thin Films of a Three-Dimensional Topological Insulator by Band Gap Engineering. Nano Lett. 2019, 19, 4627–4633. [Google Scholar] [CrossRef]
- Richardella, A.; Kandala, A.; Lee, J.S.; Samarth, N. Characterizing the Structure of Topological Insulator Thin Films. APL Mater. 2015, 3, 083303. [Google Scholar] [CrossRef]
- Asmar, M.M.; Sheehy, D.E.; Vekhter, I. Topological Phases of Topological-Insulator Thin Films. Phys. Rev. B 2018, 97, 075419. [Google Scholar] [CrossRef]
- He, L.; Kou, X.; Wang, K.L. Review of 3D Topological Insulator Thin-Film Growth by Molecular Beam Epitaxy and Potential Applications. Phys. Status Solidi (RRL) Rapid Res. Lett. 2013, 7, 50–63. [Google Scholar] [CrossRef]
- Liu, X.; Fan, B.; Hübener, H.; De Giovannini, U.; Duan, W.; Rubio, A.; Tang, P. Floquet Engineering of Magnetism in Topological Insulator Thin Films. Electron. Struct. 2023, 5, 024002. [Google Scholar] [CrossRef]
- Liu, J.; Hesjedal, T. Magnetic Topological Insulator Heterostructures: A Review. Adv. Mater. 2023, 35, 2102427. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, T.; Kobayashi, R.; Kubota, T.; Saito, K.; Ono, K.; Ohhara, T.; Nakao, A.; Takanashi, K. Mn2VAl Heusler Alloy Thin Films: Appearance of Antiferromagnetism and Exchange Bias in a Layered Structure with Fe. J. Phys. D Appl. Phys. 2018, 51, 065001. [Google Scholar] [CrossRef]
- Guillemard, C.; Petit-Watelot, S.; Devolder, T.; Pasquier, L.; Boulet, P.; Migot, S.; Ghanbaja, J.; Bertran, F.; Andrieu, S. Issues in Growing Heusler Compounds in Thin Films for Spintronic Applications. J. Appl. Phys. 2020, 128, 241102. [Google Scholar] [CrossRef]
- Elphick, K.; Frost, W.; Samiepour, M.; Kubota, T.; Takanashi, K.; Sukegawa, H.; Mitani, S.; Hirohata, A. Heusler Alloys for Spintronic Devices: Review on Recent Development and Future Perspectives. Sci. Technol. Adv. Mater. 2021, 22, 235–271. [Google Scholar] [CrossRef]
- Nair, R.S.; Rang, M.S.; Kelly, P.J. Spin Hall Effect in a Thin Pt Film. Phys. Rev. B 2021, 104, L220411. [Google Scholar] [CrossRef]
- Boldrin, D.; Samathrakis, I.; Zemen, J.; Mihai, A.; Zou, B.; Johnson, F.; Esser, B.D.; McComb, D.W.; Petrov, P.K.; Zhang, H.; et al. Anomalous Hall Effect in Noncollinear Antiferromagnetic Mn3NiN Thin Films. Phys. Rev. Mater. 2019, 3, 094409. [Google Scholar] [CrossRef]
- Seifert, T.S.; Martens, U.; Radu, F.; Ribow, M.; Berritta, M.; Nádvorník, L.; Starke, R.; Jungwirth, T.; Wolf, M.; Radu, I.; et al. Frequency-Independent Terahertz Anomalous Hall Effect in DyCo5, Co32Fe68, and Gd27Fe73 Thin Films from DC to 40 THz. Adv. Mater. 2021, 33, 2007398. [Google Scholar] [CrossRef]
- Higo, T.; Qu, D.; Li, Y.; Chien, C.L.; Otani, Y.; Nakatsuji, S. Anomalous Hall Effect in Thin Films of the Weyl Antiferromagnet Mn3Sn. Appl. Phys. Lett. 2018, 113, 202402. [Google Scholar] [CrossRef]
- Kumar Mallik, S.; Kumar Jena, A.; Kapila Sharma, N.; Sahoo, S.; Charan Sahu, M.; Gupta, S.K.; Ahuja, R.; Sahoo, S. Transition Metal Substituted MoS2/WS2 van Der Waals Heterostructure for Realization of Dilute Magnetic Semiconductors. J. Magn. Magn. Mater. 2022, 560, 169567. [Google Scholar] [CrossRef]
- Need, R.F.; Bac, S.-K.; Liu, X.; Lee, S.; Kirby, B.J.; Dobrowolska, M.; Kossut, J.; Furdyna, J.K. Magnetic Properties and Electronic Origin of the Interface between Dilute Magnetic Semiconductors with Orthogonal Magnetic Anisotropy. Phys. Rev. Mater. 2020, 4, 054410. [Google Scholar] [CrossRef]
- Anbuselvan, D.; Nilavazhagan, S.; Santhanam, A.; Chidhambaram, N.; Gunavathy, K.V.; Ahamad, T.; Alshehri, S.M. Room Temperature Ferromagnetic Behavior of Nickel-Doped Zinc Oxide Dilute Magnetic Semiconductor for Spintronics Applications. Phys. E Low. Dimens. Syst. Nanostruct 2021, 129, 114665. [Google Scholar] [CrossRef]
- Waseem, S.; Anjum, S.; Zeeshan, T. Exploration of Ti0.9Fe0.1-xNixO2 Thin Films as Dilute Magnetic Semiconductors. Thin Solid. Film. 2021, 737, 138941. [Google Scholar] [CrossRef]
- Martin, L.W.; Chu, Y.H.; Ramesh, R. Advances in the Growth and Characterization of Magnetic, Ferroelectric, and Multiferroic Oxide Thin Films. Mater. Sci. Eng. R Rep. 2010, 68, 89–133. [Google Scholar] [CrossRef]
- Mercey, B.; Wolfman, J.; Raveau, B. Magnetic Oxide Thin Films. Curr. Opin. Solid. State Mater. Sci. 1999, 4, 24–27. [Google Scholar] [CrossRef]
- Ahn, C.H.; Rabe, K.M.; Triscone, J.-M. Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures. Science 2004, 303, 488–491. [Google Scholar] [CrossRef]
- Chen, H.-L.; Yang, Y.-S. Effect of Crystallographic Orientations on Electrical Properties of Sputter-Deposited Nickel Oxide Thin Films. Thin Solid. Film. 2008, 516, 5590–5596. [Google Scholar] [CrossRef]
- Bessais, L. Structure and Magnetic Properties of Intermetallic Rare-Earth-Transition-Metal Compounds: A Review. Materials 2021, 15, 201. [Google Scholar] [CrossRef]
- Hesjedal, T. Rare Earth Doping of Topological Insulators: A Brief Review of Thin Film and Heterostructure Systems. Phys. Status Solidi (A) 2019, 216, 1800726. [Google Scholar] [CrossRef]
- Suzuki, D.H.; Valvidares, M.; Gargiani, P.; Huang, M.; Kossak, A.E.; Beach, G.S.D. Thickness and Composition Effects on Atomic Moments and Magnetic Compensation Point in Rare-Earth Transition-Metal Thin Films. Phys. Rev. B 2023, 107, 134430. [Google Scholar] [CrossRef]
- Ludwig, A.; Quandt, E. Rare Earth Transition Metal Thin Films and Devices. In Modern Trends in Magnetostriction Study and Application; Springer: Dordrecht, The Netherlands, 2001; pp. 57–69. [Google Scholar]
- Makushko, P.; Kosub, T.; Pylypovskyi, O.V.; Hedrich, N.; Li, J.; Pashkin, A.; Avdoshenko, S.; Hübner, R.; Ganss, F.; Wolf, D.; et al. Flexomagnetism and Vertically Graded Néel Temperature of Antiferromagnetic Cr2O3 Thin Films. Nat. Commun. 2022, 13, 6745. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, S.A.; Hong, D.; Pearson, J.E.; Hoffmann, A. Antiferromagnetic Oxide Thin Films for Spintronic Applications. Coatings 2021, 11, 786. [Google Scholar] [CrossRef]
- Scholl, A.; Stöhr, J.; Lüning, J.; Seo, J.W.; Fompeyrine, J.; Siegwart, H.; Locquet, J.-P.; Nolting, F.; Anders, S.; Fullerton, E.E.; et al. Observation of Antiferromagnetic Domains in Epitaxial Thin Films. Science 2000, 287, 1014–1016. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, S.; Hou, Z.; Tang, Y.; Zhang, J.; Wang, T.; Li, K.; Zhao, W.; Liu, X.; Chen, L.; et al. Recent Progress on Topological Structures in Ferroic Thin Films and Heterostructures. Adv. Mater. 2021, 33, 2000857. [Google Scholar] [CrossRef]
- Zeissler, K.; Finizio, S.; Barton, C.; Huxtable, A.J.; Massey, J.; Raabe, J.; Sadovnikov, A.V.; Nikitov, S.A.; Brearton, R.; Hesjedal, T.; et al. Diameter-Independent Skyrmion Hall Angle Observed in Chiral Magnetic Multilayers. Nat. Commun. 2020, 11, 428. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Chen, G.; Liu, K.; Zang, J.; te Velthuis, S.G.E.; Hoffmann, A. Skyrmions in Magnetic Multilayers. Phys. Rep. 2017, 704, 1–49. [Google Scholar] [CrossRef]
- Bass, J. CPP Magnetoresistance of Magnetic Multilayers: A Critical Review. J. Magn. Magn. Mater. 2016, 408, 244–320. [Google Scholar] [CrossRef]
- Camley, R.E.; Stamps, R.L. Magnetic Multilayers: Spin Configurations, Excitations and Giant Magnetoresistance. J. Phys. Condens. Matter 1993, 5, 3727–3786. [Google Scholar] [CrossRef]
- Chen, Q.; Onellion, M.; Wall, A.; Dowben, P.A. The Influence of Interfaces on Magnetic Thin Films and Multilayers. J. Phys. Condens. Matter 1992, 4, 7985–7996. [Google Scholar] [CrossRef]
- Schlom, D.G.; Chen, L.-Q.; Pan, X.; Schmehl, A.; Zurbuchen, M.A. A Thin Film Approach to Engineering Functionality into Oxides. J. Am. Ceram. Soc. 2008, 91, 2429–2454. [Google Scholar] [CrossRef]
- Vaz, C.A.F.; Bland, J.A.C.; Lauhoff, G. Magnetism in Ultrathin Film Structures. Rep. Progress. Phys. 2008, 71, 056501. [Google Scholar] [CrossRef]
- Coey, J.M.D.; Ariando; Pickett, W.E. Magnetism at the Edge: New Phenomena at Oxide Interfaces. MRS Bull. 2013, 38, 1040–1047. [Google Scholar] [CrossRef]
- Dikin, D.A.; Mehta, M.; Bark, C.W.; Folkman, C.M.; Eom, C.B.; Chandrasekhar, V. Coexistence of Superconductivity and Ferromagnetism in Two Dimensions. Phys. Rev. Lett. 2011, 107, 056802. [Google Scholar] [CrossRef]
- Adamo, C.; Ke, X.; Schiffer, P.; Soukiassian, A.; Warusawithana, M.; Maritato, L.; Schlom, D.G. Electrical and Magnetic Properties of (SrMnO3)n/(LaMnO3)2n Superlattices. Appl. Phys. Lett. 2008, 92, 112508. [Google Scholar] [CrossRef]
- Sadoc, A.; Mercey, B.; Simon, C.; Grebille, D.; Prellier, W.; Lepetit, M.-B. Large Increase of the Curie Temperature by Orbital Ordering Control. Phys. Rev. Lett. 2010, 104, 046804. [Google Scholar] [CrossRef]
- Kaplan, B.; Gehring, G.A. The Domain Structure in Ultrathin Magnetic Films. J. Magn. Magn. Mater. 1993, 128, 111–116. [Google Scholar] [CrossRef]
- Allenspach, R. Ultrathin Films: Magnetism on the Microscopic Scale. J. Magn. Magn. Mater. 1994, 129, 160–185. [Google Scholar] [CrossRef]
- Herklotz, A.; Lee, D.; Guo, E.-J.; Meyer, T.L.; Petrie, J.R.; Lee, H.N. Strain Coupling of Oxygen Non-Stoichiometry in Perovskite Thin Films. J. Phys. Condens. Matter 2017, 29, 493001. [Google Scholar] [CrossRef]
- Trukhanov, S.V.; Trukhanov, A.V.; Vasiliev, A.N.; Balagurov, A.M.; Szymczak, H. Magnetic State of the Structural Separated Anion-Deficient La0.70Sr0.30MnO2.85 Manganite. J. Exp. Theor. Phys. 2011, 113, 819–825. [Google Scholar] [CrossRef]
- Jilani, A.; Abdel-wahab, M.S.; Hammad, A.H. Advance Deposition Techniques for Thin Film and Coating. In Modern Technologies for Creating the Thin-Film Systems and Coatings; InTech: London, UK, 2017. [Google Scholar] [CrossRef]
- Ashfold, M.N.R.; Claeyssens, F.; Fuge, G.M.; Henley, S.J. Pulsed Laser Ablation and Deposition of Thin Films. Chem. Soc. Rev. 2004, 33, 23. [Google Scholar] [CrossRef] [PubMed]
- Oviroh, P.O.; Akbarzadeh, R.; Pan, D.; Coetzee, R.A.M.; Jen, T.-C. New Development of Atomic Layer Deposition: Processes, Methods and Applications. Sci. Technol. Adv. Mater. 2019, 20, 465–496. [Google Scholar] [CrossRef] [PubMed]
- Kadyrzhanov, K.K.; Shlimas, D.I.; Kozlovskiy, A.L.; Zdorovets, M.V. Research of the Shielding Effect and Radiation Resistance of Composite CuBi2O4 Films as Well as Their Practical Applications. J. Mater. Sci. Mater. Electron. 2020, 31, 11729–11740. [Google Scholar] [CrossRef]
- Santos, A.J.; Lacroix, B.; Maudet, F.; Paumier, F.; Hurand, S.; Dupeyrat, C.; Gómez, V.J.; Huffaker, D.L.; Girardeau, T.; García, R.; et al. Application of Advanced (S)TEM Methods for the Study of Nanostructured Porous Functional Surfaces: A Few Working Examples. Mater. Charact. 2022, 185, 111741. [Google Scholar] [CrossRef]
- Petford-Long, A.K.; Chiaramonti, A.N. Transmission Electron Microscopy of Multilayer Thin Films. Annu. Rev. Mater. Res. 2008, 38, 559–584. [Google Scholar] [CrossRef]
- Klie, R.F.; Zhu, Y. Atomic Resolution STEM Analysis of Defects and Interfaces in Ceramic Materials. Micron 2005, 36, 219–231. [Google Scholar] [CrossRef]
- Son, D.-H.; Kim, S.-H.; Kim, S.-Y.; Kim, Y.-I.; Sim, J.-H.; Park, S.-N.; Jeon, D.-H.; Hwang, D.-K.; Sung, S.-J.; Kang, J.-K.; et al. Effect of Solid-H2S Gas Reactions on CZTSSe Thin Film Growth and Photovoltaic Properties of a 12.62% Efficiency Device. J. Mater. Chem. A Mater. 2019, 7, 25279–25289. [Google Scholar] [CrossRef]
- Min, H.S. Scanning Electron Microscopy Analysis of Thin Films: A Review. In Research Aspects in Chemical and Materials Sciences; B P International (a part of SCIENCEDOMAIN International); ResearchGate: Berlin, Germany, 2022; Volume 5, pp. 16–28. [Google Scholar]
- Everhart, T.E. Thin-Film Measurements in the Scanning Electron Microscope. J. Vac. Sci. Technol. 1970, 7, 322. [Google Scholar] [CrossRef]
- Sikora, M.; Wojcieszak, D.; Chudzyńska, A.; Zięba, A. Improved Methodology of Cross-Sectional SEM Analysis of Thin-Film Multilayers Prepared by Magnetron Sputtering. Coatings 2023, 13, 316. [Google Scholar] [CrossRef]
- Benninghoven, A. Chemical Analysis of Inorganic and Organic Surfaces and Thin Films by Static Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS). Angew. Chem. Int. Ed. Engl. 1994, 33, 1023–1043. [Google Scholar] [CrossRef]
- Priebe, A.; Michler, J. Review of Recent Advances in Gas-Assisted Focused Ion Beam Time-of-Flight Secondary Ion Mass Spectrometry (FIB-TOF-SIMS). Materials 2023, 16, 2090. [Google Scholar] [CrossRef] [PubMed]
- Herzog, R.F.K.; Viehböck, F.P. Ion Source for Mass Spectrography. Phys. Rev. 1949, 76, 855–856. [Google Scholar] [CrossRef]
- Pillatsch, L.; Östlund, F.; Michler, J. FIBSIMS: A Review of Secondary Ion Mass Spectrometry for Analytical Dual Beam Focussed Ion Beam Instruments. Progress. Cryst. Growth Charact. Mater. 2019, 65, 1–19. [Google Scholar] [CrossRef]
- Duden, T.; Bauer, E. Spin-Polarized Low Energy Electron Microscopy. Surf. Rev. Lett. 1998, 05, 1213–1219. [Google Scholar] [CrossRef]
- Bauer, E.; Duden, T.; Zdyb, R. Spin-Polarized Low Energy Electron Microscopy of Ferromagnetic Thin Films. J. Phys. D Appl. Phys. 2002, 35, 2327–2331. [Google Scholar] [CrossRef]
- Rougemaille, N.; Schmid, A.K. Magnetic Imaging with Spin-Polarized Low-Energy Electron Microscopy. Eur. Phys. J. Appl. Phys. 2010, 50, 20101. [Google Scholar] [CrossRef]
- Locatelli, A.; Bauer, E. Recent Advances in Chemical and Magnetic Imaging of Surfaces and Interfaces by XPEEM. J. Phys. Condens. Matter 2008, 20, 093002. [Google Scholar] [CrossRef]
- Johnson, P.D. Spin-Polarized Photoemission. Rep. Progress. Phys. 1997, 60, 1217–1304. [Google Scholar] [CrossRef]
- Stan, G.; King, S.W. Atomic Force Microscopy for Nanoscale Mechanical Property Characterization. J. Vac. Sci. Technol. B 2020, 38, 060801. [Google Scholar] [CrossRef]
- Hartmann, U. Magnetic force microscopy. Annu. Rev. Mater. Sci. 1999, 29, 53–87. [Google Scholar] [CrossRef]
- Karoutsos, V. Scanning Probe Microscopy: Instrumentation and Applications on Thin Films and Magnetic Multilayers. J. Nanosci. Nanotechnol. 2009, 9, 6783–6798. [Google Scholar] [CrossRef] [PubMed]
- Stoev, K.N.; Sakurai, K. Review on Grazing Incidence X-Ray Spectrometry and Reflectometry. Spectrochim. Acta Part. B At. Spectrosc. 1999, 54, 41–82. [Google Scholar] [CrossRef]
- Shcherbina, M.A.; Chvalun, S.N.; Ponomarenko, S.A.; Kovalchuk, M.V. Modern Approaches to Investigation of Thin Films and Monolayers: X-Ray Reflectivity, Grazing-Incidence X-Ray Scattering and X-Ray Standing Waves. Russ. Chem. Rev. 2014, 83, 1091–1119. [Google Scholar] [CrossRef]
- Ulyanenkov, A.; Omote, K.; Harada, J. The Genetic Algorithm: Refinement of X-Ray Reflectivity Data from Multilayers and Thin Films. Phys. B Condens. Matter 2000, 283, 237–241. [Google Scholar] [CrossRef]
- Yasaka, M. X-Ray Thin-Film Measurement Techniques V. X-Ray Reflectivity Measurement. Rigaku J. 2010, 26, 1–9. [Google Scholar]
- Chason, E.; Mayer, T.M. Thin Film and Surface Characterization by Specular X-Ray Reflectivity. Crit. Rev. Solid. State Mater. Sci. 1997, 22, 1–67. [Google Scholar] [CrossRef]
- Ade, H. Characterization of Organic Thin Films with Resonant Soft X-Ray Scattering and Reflectivity near the Carbon and Fluorine Absorption Edges. Eur. Phys. J. Spec. Top. 2012, 208, 305–318. [Google Scholar] [CrossRef]
- Macke, S.; Radi, A.; Hamann-Borrero, J.E.; Verna, A.; Bluschke, M.; Brück, S.; Goering, E.; Sutarto, R.; He, F.; Cristiani, G.; et al. Element Specific Monolayer Depth Profiling. Adv. Mater. 2014, 26, 6554–6559. [Google Scholar] [CrossRef]
- Zwiebler, M.; Hamann-Borrero, J.E.; Vafaee, M.; Komissinskiy, P.; Macke, S.; Sutarto, R.; He, F.; Büchner, B.; Sawatzky, G.A.; Alff, L.; et al. Electronic Depth Profiles with Atomic Layer Resolution from Resonant Soft X-Ray Reflectivity. New J. Phys. 2015, 17, 083046. [Google Scholar] [CrossRef]
- Pasquali, L.; Mukherjee, S.; Terzi, F.; Giglia, A.; Mahne, N.; Koshmak, K.; Esaulov, V.; Toccafondi, C.; Canepa, M.; Nannarone, S. Structural and Electronic Properties of Anisotropic Ultrathin Organic Films from Dichroic Resonant Soft X-Ray Reflectivity. Phys. Rev. B 2014, 89, 045401. [Google Scholar] [CrossRef]
- Verna, A.; Capelli, R.; Pasquali, L. Resonant Soft X-Ray Reflectivity in the Study of Magnetic Properties of Low-Dimensional Systems. Magnetochemistry 2021, 7, 136. [Google Scholar] [CrossRef]
- Sanyal, M.K.; Sinha, S.K.; Gibaud, A.; Huang, K.G.; Carvalho, B.L. Fourier Reconstruction of Density Profiles of Thin Films Using Anomalous X-Ray Reflectivity. Europhys. Lett. 1993, 21, 691–696. [Google Scholar] [CrossRef]
- Miniotas, A.; Vailionis, A.; Svedberg, E.B.; Karlsson, U.O. Misfit Strain Induced Lattice Distortions in Heteroepitaxially Grown LaxCa1−xMnO3 Thin Films Studied by Extended X-Ray Absorption Fine Structure and High-Resolution X-Ray Diffraction. J. Appl. Phys. 2001, 89, 2134–2137. [Google Scholar] [CrossRef]
- Kwak, Y.M.; Oh, K.L.; Ko, Y.J.; Park, S.H.; Ryu, S.; Kim, M.S.; Lee, K.-T.; Lee, M.; Jeen, H.; Jung, J.H. Magnetoresistance of Epitaxial SrRuO3 Thin Films on a Flexible CoFe2O4-Buffered Mica Substrate. Curr. Appl. Phys. 2022, 34, 71–75. [Google Scholar] [CrossRef]
- Konya, T. X-ray thin-film measurement techniques iii. high resolution X-ray diffractometry. Rigaku J. 2009, 25, 1–8. [Google Scholar]
- Simbrunner, J.; Salzmann, I.; Resel, R. Indexing of Grazing-Incidence X-Ray Diffraction Patterns. Crystallogr. Rev. 2023, 29, 19–37. [Google Scholar] [CrossRef]
- Simbrunner, J.; Schrode, B.; Domke, J.; Fritz, T.; Salzmann, I.; Resel, R. An Efficient Method for Indexing Grazing-Incidence X-Ray Diffraction Data of Epitaxially Grown Thin Films. Acta Crystallogr. A Found. Adv. 2020, 76, 345–357. [Google Scholar] [CrossRef]
- Huang, T.C. Surface and Ultra-Thin Film Characterization by Grazing-Incidence Asymmetric Bragg Diffraction. Adv. X-ray Anal. 1989, 33, 91–100. [Google Scholar] [CrossRef]
- Levine, J.R.; Cohen, J.B.; Chung, Y.W.; Georgopoulos, P. Grazing-Incidence Small-Angle X-Ray Scattering: New Tool for Studying Thin Film Growth. J. Appl. Crystallogr. 1989, 22, 528–532. [Google Scholar] [CrossRef]
- Renaud, G.; Lazzari, R.; Leroy, F. Probing Surface and Interface Morphology with Grazing Incidence Small Angle X-Ray Scattering. Surf. Sci. Rep. 2009, 64, 255–380. [Google Scholar] [CrossRef]
- Stoev, K.; Sakurai, K. Recent Progresses in Nanometer Scale Analysis of Buried Layers and Interfaces in Thin Films by X-Rays and Neutrons. Anal. Sci. 2020, 36, 901–922. [Google Scholar] [CrossRef] [PubMed]
- Majkrzak, C.F. Neutron Diffraction Studies of Thin Film Multilayer Structures. Phys. B+C 1986, 136, 69–74. [Google Scholar] [CrossRef]
- Schreyer, A.; Schmitte, T.; Siebrecht, R.; Bödeker, P.; Zabel, H.; Lee, S.H.; Erwin, R.W.; Majkrzak, C.F.; Kwo, J.; Hong, M. Neutron Scattering on Magnetic Thin Films: Pushing the Limits (Invited). J. Appl. Phys. 2000, 87, 5443–5448. [Google Scholar] [CrossRef]
- Sinha, S.K.; Sirota, E.B.; Garoff, S.; Stanley, H.B. X-Ray and Neutron Scattering from Rough Surfaces. Phys. Rev. B 1988, 38, 2297–2311. [Google Scholar] [CrossRef]
- Majkrzak, C.F. Neutron Scattering Studies of Magnetic Thin Films and Multilayers. Phys. B Condens. Matter 1996, 221, 342–356. [Google Scholar] [CrossRef]
- Ankner, J.F.; Felcher, G.P. Polarized-Neutron Reflectometry. J. Magn. Magn. Mater. 1999, 200, 741–754. [Google Scholar] [CrossRef]
- Felcher, G.P.; Hilleke, R.O.; Crawford, R.K.; Haumann, J.; Kleb, R.; Ostrowski, G. Polarized Neutron Reflectometer: A New Instrument to Measure Magnetic Depth Profiles. Rev. Sci. Instrum. 1987, 58, 609–619. [Google Scholar] [CrossRef]
- Callori, S.J.; Saerbeck, T.; Cortie, D.L.; Lin, K.-W. Using Polarized Neutron Reflectometry to Resolve Effects of Light Elements and Ion Exposure on Magnetization. Solid State Phys. 2020, 71, 73–116. [Google Scholar] [CrossRef]
- Lo, Y.H.; Zhao, L.; Gallagher-Jones, M.; Rana, A.; Lodico, J.; Xiao, W.; Regan, B.C.; Miao, J. In Situ Coherent Diffractive Imaging. Nat. Commun. 2018, 9, 1826. [Google Scholar] [CrossRef]
- Robinson, I.; Harder, R. Coherent X-Ray Diffraction Imaging of Strain at the Nanoscale. Nat. Mater. 2009, 8, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Ishikawa, T.; Robinson, I.K.; Murnane, M.M. Beyond Crystallography: Diffractive Imaging Using Coherent X-ray Light Sources. Science 2015, 348, 530–535. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Abdolrahimi, M.; Colantoni, E.; Tortora, L.; Vayalil, S.K.; Gupta, M.; Reddy, V.R.; Carlomagno, I.; Das, G.; Aquilanti, G.; et al. Depth Selective Local Coordination in CoFeB Thin Films Probed by XAFS and ToF-SIMS. J. Alloys Compd. 2023, 960, 170588. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, D.; Meneghini, C. Interface Structure in Magnetic Multilayers Using X-Ray Standing Waves. Phys. Rev. B 2007, 75, 064424. [Google Scholar] [CrossRef]
- Gupta, A.; Kumar, D.; Meneghini, C.; Zegenhagen, J. Depth Resolved X-Ray Absorption Fine Structure Study in Magnetic Multilayers Using X-Ray Standing Waves. J. Appl. Phys. 2007, 101, 09D117. [Google Scholar] [CrossRef]
- Meneghini, C.; Maret, M.; Parasote, V.; Cadeville, M.C.; Hazemann, J.L.; Cortes, R.; Colonna, S. Structural Origin of Magnetic Anisotropy in Co-Pt Alloy Films Probed by Polarized XAFS. Eur. Phys. J. B 1999, 7, 347–357. [Google Scholar] [CrossRef]
- Feder, R. Polarized Electrons in Surface Physics; World Scientific: Singapore, 1986; ISBN 978-9971-978-49-5. [Google Scholar]
- Stöhr, J. X-Ray Magnetic Circular Dichroism Spectroscopy of Transition Metal Thin Films. J. Electron. Spectros Relat. Phenom. 1995, 75, 253–272. [Google Scholar] [CrossRef]
- van der Laan, G.; Figueroa, A.I. X-Ray Magnetic Circular Dichroism—A Versatile Tool to Study Magnetism. Coord. Chem. Rev. 2014, 277–278, 95–129. [Google Scholar] [CrossRef]
- Greczynski, G.; Haasch, R.T.; Hellgren, N.; Lewin, E.; Hultman, L. X-Ray Photoelectron Spectroscopy of Thin Films. Nat. Rev. Methods Primers 2023, 3, 40. [Google Scholar] [CrossRef]
- Seah, M.P. A Review of the Analysis of Surfaces and Thin Films by AES and XPS. Vacuum 1984, 34, 463–478. [Google Scholar] [CrossRef]
- Krishna, D.N.G.; Philip, J. Review on Surface-Characterization Applications of X-Ray Photoelectron Spectroscopy (XPS): Recent Developments and Challenges. Appl. Surf. Sci. Adv. 2022, 12, 100332. [Google Scholar] [CrossRef]
- Iwai, H.; Hammond, J.S.; Tanuma, S. Recent Status of Thin Film Analyses by XPS. J. Surf. Anal. 2009, 15, 264–270. [Google Scholar] [CrossRef]
- Fadley, C.S. Angle-Resolved X-Ray Photoelectron Spectroscopy. Prog. Surf. Sci. 1984, 16, 275–388. [Google Scholar] [CrossRef]
- Brundle, C.R. Depth-Resolved Composition and Chemistry of Ultra-Thin Films by Angle-Resolved X-Ray Photoelectron Spectroscopy. In Proceedings of the AIP Conference Proceedings, Richardson, TX, USA, 15–18 March 2005; AIP: Melville, NY, USA; pp. 307–313. [Google Scholar]
- Trost, F.; Ayyer, K.; Prasciolu, M.; Fleckenstein, H.; Barthelmess, M.; Yefanov, O.; Dresselhaus, J.L.; Li, C.; Bajt, S.; Carnis, J.; et al. Imaging via Correlation of X-Ray Fluorescence Photons. Phys. Rev. Lett. 2023, 130, 173201. [Google Scholar] [CrossRef] [PubMed]
- de Boer, D.K.G. Glancing-Incidence X-Ray Fluorescence of Layered Materials. Phys. Rev. B 1991, 44, 498–511. [Google Scholar] [CrossRef]
- Rotella, H.; Caby, B.; Ménesguen, Y.; Mazel, Y.; Valla, A.; Ingerle, D.; Detlefs, B.; Lépy, M.-C.; Novikova, A.; Rodriguez, G.; et al. Elemental Depth Profiling in Transparent Conducting Oxide Thin Film by X-Ray Reflectivity and Grazing Incidence X-Ray Fluorescence Combined Analysis. Spectrochim. Acta Part. B At. Spectrosc. 2017, 135, 22–28. [Google Scholar] [CrossRef]
- von Bohlen, A. Total Reflection X-Ray Fluorescence and Grazing Incidence X-Ray Spectrometry—Tools for Micro- and Surface Analysis. A Review. Spectrochim. Acta Part. B At. Spectrosc. 2009, 64, 821–832. [Google Scholar] [CrossRef]
- Hague, C.F.; Mariot, J.-M.; Ilakovac, V.; Delaunay, R.; Marsi, M.; Sacchi, M.; Rueff, J.-P.; Felsch, W. Charge Transfer at the Metal-Insulator Transition in V2O3 Thin Films by Resonant Inelastic X-Ray Scattering. Phys. Rev. B 2008, 77, 045132. [Google Scholar] [CrossRef]
- Shao, Y.; Kuo, C.; Feng, X.; Chuang, Y.; Seok, T.J.; Choi, J.H.; Park, T.J.; Cho, D. Interface Carriers and Enhanced Electron-Phonon Coupling Effect in Al2O3/TiO2 Heterostructure Revealed by Resonant Inelastic Soft X-Ray Scattering. Adv. Funct. Mater. 2021, 31, 2104430. [Google Scholar] [CrossRef]
- Fürsich, K.; Lu, Y.; Betto, D.; Bluschke, M.; Porras, J.; Schierle, E.; Ortiz, R.; Suzuki, H.; Cristiani, G.; Logvenov, G.; et al. Resonant Inelastic X-Ray Scattering Study of Bond Order and Spin Excitations in Nickelate Thin-Film Structures. Phys. Rev. B 2019, 99, 165124. [Google Scholar] [CrossRef]
- Watanabe, M.; Ejima, T.; Miyata, N.; Imazono, T.; Yanagihara, M. Studies of Multilayer Structure in Depth Direction by Soft X-Ray Spectroscopy. Nucl. Sci. Tech. 2006, 17, 257–267. [Google Scholar] [CrossRef]
- Iwami, M. Structural Study of Buried Interface Using Soft X-Ray Emission Spectroscopy. Appl. Surf. Sci. 1997, 113–114, 377–383. [Google Scholar] [CrossRef]
- Riviere, J.C.; Myhra, S. Handbook of Surface and Interface Analysis, 2nd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2017. [Google Scholar]
- Priebe, A.; Xie, T.; Bürki, G.; Pethö, L.; Michler, J. The Matrix Effect in TOF-SIMS Analysis of Two-Element Inorganic Thin Films. J. Anal. At. Spectrom. 2020, 35, 1156–1166. [Google Scholar] [CrossRef]
- Priebe, A.; Pethö, L.; Huszar, E.; Xie, T.; Utke, I.; Michler, J. High Sensitivity of Fluorine Gas-Assisted FIB-TOF-SIMS for Chemical Characterization of Buried Sublayers in Thin Films. ACS Appl. Mater. Interfaces 2021, 13, 15890–15900. [Google Scholar] [CrossRef] [PubMed]
- Priebe, A.; Barnes, J.-P.; Edwards, T.E.J.; Huszár, E.; Pethö, L.; Michler, J. Elemental Characterization of Al Nanoparticles Buried under a Cu Thin Film: TOF-SIMS vs. STEM/EDX. Anal. Chem. 2020, 92, 12518–12527. [Google Scholar] [CrossRef] [PubMed]
- Priebe, A.; Sastre, J.; Futscher, M.H.; Jurczyk, J.; Puydinger dos Santos, M.V.; Romanyuk, Y.E.; Michler, J. Detection of Au+ Ions During Fluorine Gas-Assisted Time-of-Flight Secondary Ion Mass Spectrometry (TOF-SIMS) for the Complete Elemental Characterization of Microbatteries. ACS Appl. Mater. Interfaces 2021, 13, 41262–41274. [Google Scholar] [CrossRef]
- Lollobrigida, V.; Basso, V.; Borgatti, F.; Torelli, P.; Kuepferling, M.; Coïsson, M.; Olivetti, E.S.; Celegato, F.; Tortora, L.; Stefani, G.; et al. Chemical, Electronic, and Magnetic Structure of LaFeCoSi Alloy: Surface and Bulk Properties. J. Appl. Phys. 2014, 115, 203901. [Google Scholar] [CrossRef]
- Loria, R.; Meneghini, C.; Torokhtii, K.; Tortora, L.; Pompeo, N.; Cirillo, C.; Attanasio, C.; Silva, E. Robustness of the 0−π Transition against Compositional and Structural Ageing in Superconductor/Ferromagnetic/Superconductor Heterostructures. Phys. Rev. B 2015, 92, 184106. [Google Scholar] [CrossRef]
- Piperno, L.; Vannozzi, A.; Pinto, V.; Angrisani Armenio, A.; Rondino, F.; Santoni, A.; Mancini, A.; Rufoloni, A.; Augieri, A.; Tortora, L.; et al. Interaction between Untreated SrTiO3 Substrates and Solution-Derived YBa2Cu3O7−δ Films. Appl. Surf. Sci. 2020, 528, 146402. [Google Scholar] [CrossRef]
- Altman, M.S. Trends in Low Energy Electron Microscopy. J. Phys. Condens. Matter 2010, 22, 084017. [Google Scholar] [CrossRef]
- Altman, M.S.; Pinkvos, H.; Hurst, J.; Poppa, H.; Marx, G.; Bauer, E. Spin Polarized Low Energy Electron Microscopy of Surface Magnetic Structure. MRS Proc. 1991, 232, 125. [Google Scholar] [CrossRef]
- Duden, T.; Bauer, E. Influence of Au and Cu Overlayers on the Magnetic Structure of Co Films on W(110). Phys. Rev. B 1999, 59, 468–473. [Google Scholar] [CrossRef]
- Man, K.L.; Ling, W.L.; Paik, S.Y.; Poppa, H.; Altman, M.S.; Qiu, Z.Q. Modification of Initial Growth and Magnetism in Fe/Cu(100). Phys. Rev. B 2001, 65, 024409. [Google Scholar] [CrossRef]
- Zdyb, R.; Bauer, E. Magnetic Domain Structure and Spin-Reorientation Transition in Ultrathin Fe-Co Alloy Films. Phys. Rev. B 2003, 67, 134420. [Google Scholar] [CrossRef]
- Rougemaille, N.; Portalupi, M.; Brambilla, A.; Biagioni, P.; Lanzara, A.; Finazzi, M.; Schmid, A.K.; Duò, L. Exchange-Induced Frustration in Fe/NiO Multilayers. Phys. Rev. B 2007, 76, 214425. [Google Scholar] [CrossRef]
- Duden, T.; Bauer, E. Biquadratic Exchange in Ferromagnetic/Nonferromagnetic Sandwiches: A Spin-Polarized Low-Energy Electron Microscopy Study. Phys. Rev. B 1999, 59, 474–479. [Google Scholar] [CrossRef]
- Duden, T.; Bauer, E. Exchange Coupling in Co/Cu/Co Sandwiches Studied by Spin-Polarized Low Energy Electron Microscopy. J. Magn. Magn. Mater. 1999, 191, 301–312. [Google Scholar] [CrossRef]
- El Gabaly, F.; Gallego, S.; Muñoz, C.; Szunyogh, L.; Weinberger, P.; Klein, C.; Schmid, A.K.; McCarty, K.F.; de la Figuera, J. Imaging Spin-Reorientation Transitions in Consecutive Atomic Co Layers on Ru(0001). Phys. Rev. Lett. 2006, 96, 147202. [Google Scholar] [CrossRef]
- Ramchal, R.; Schmid, A.K.; Farle, M.; Poppa, H. Spiral-like Continuous Spin-Reorientation Transition of Fe/Ni Bilayers on Cu(100). Phys. Rev. B 2004, 69, 214401. [Google Scholar] [CrossRef]
- Graf, J.; Jozwiak, C.; Schmid, A.K.; Hussain, Z.; Lanzara, A. Mapping the Spin-Dependent Electron Reflectivity of Fe and Co Ferromagnetic Thin Films. Phys. Rev. B 2005, 71, 144429. [Google Scholar] [CrossRef]
- Scheunemann, T.; Feder, R.; Henk, J.; Bauer, E.; Duden, T.; Pinkvos, H.; Poppa, H.; Wurm, K. Quantum Well Resonances in Ferromagnetic Co Films. Solid. State Commun. 1997, 104, 787–792. [Google Scholar] [CrossRef]
- Vogel, J.; Kuch, W.; Camarero, J.; Fukumoto, K.; Pennec, Y.; Bonfim, M.; Pizzini, S.; Petroff, F.; Fontaine, A.; Kirschner, J. Time and Layer Resolved Magnetic Domain Imagig of FeNi/Cu/Co Trilayers Using X-Ray Photoelectron Emission Microscopy (Invited). J. Appl. Phys. 2004, 95, 6533–6536. [Google Scholar] [CrossRef]
- Anders, S.; Padmore, H.A.; Duarte, R.M.; Renner, T.; Stammler, T.; Scholl, A.; Scheinfein, M.R.; Stöhr, J.; Séve, L.; Sinkovic, B. Photoemission Electron Microscope for the Study of Magnetic Materials. Rev. Sci. Instrum. 1999, 70, 3973–3981. [Google Scholar] [CrossRef]
- Schneider, C.M.; Schönhense, G. Investigating Surface Magnetism by Means of Photoexcitation Electron Emission Microscopy. Rep. Progress. Phys. 2002, 65, 1785–1839. [Google Scholar] [CrossRef]
- Rempfer, G.F.; Skoczylas, W.P.; Hayes Griffith, O. Design and Performance of a High-Resolution Photoelectron Microscope. Ultramicroscopy 1991, 36, 196–221. [Google Scholar] [CrossRef]
- Brüche, E. Elektronenmikroskopische Abbildung Mit Lichtelektrischen Elektronen. Z. Phys. 1933, 86, 448–450. [Google Scholar] [CrossRef]
- Schneider, C.M.; Frömter, R.; Ziethen, C.; Swiech, W.; Brookes, N.B.; Schönhense, G.; Kirschner, J. Magnetic Domain Imaging with a Photoemission Microscope. MRS Proc. 1997, 475, 381. [Google Scholar] [CrossRef]
- Tonner, B.P.; Dunham, D.; Zhang, J.; O’Brien, W.L.; Samant, M.; Weller, D.; Hermsmeier, B.D.; Stöhr, J. Imaging Magnetic Domains with the X-Ray Dichroism Photoemission Microscope. Nucl. Instrum. Methods Phys. Res. A 1994, 347, 142–147. [Google Scholar] [CrossRef]
- Phillips, R.W. Atomic Force Microscopy for Thin Film Analysis. Surf. Coat. Technol. 1994, 68–69, 770–775. [Google Scholar] [CrossRef]
- Mwema, F.M.; Oladijo, O.P.; Sathiaraj, T.S.; Akinlabi, E.T. Atomic Force Microscopy Analysis of Surface Topography of Pure Thin Aluminum Films. Mater. Res. Express 2018, 5, 046416. [Google Scholar] [CrossRef]
- Bîrleanu, C.; Pustan, M.; Șerdean, F.; Merie, V. AFM Nanotribomechanical Characterization of Thin Films for MEMS Applications. Micromachines 2021, 13, 23. [Google Scholar] [CrossRef] [PubMed]
- Ballif, C.; Moutinho, H.R.; Hasoon, F.S.; Dhere, R.G.; Al-Jassim, M.M. Cross-Sectional Atomic Force Microscopy Imaging of Polycrystalline Thin Films. Ultramicroscopy 2000, 85, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Berger, R.; Butt, H.-J.; Retschke, M.B.; Weber, S.A.L. Electrical Modes in Scanning Probe Microscopy. Macromol. Rapid Commun. 2009, 30, 1167–1178. [Google Scholar] [CrossRef]
- Lai, K.; Kundhikanjana, W.; Kelly, M.A.; Shen, Z.-X. Nanoscale Microwave Microscopy Using Shielded Cantilever Probes. Appl. Nanosci. 2011, 1, 13–18. [Google Scholar] [CrossRef]
- Kalinin, S.V.; Setter, N.; Kholkin, A.L. Electromechanics on the Nanometer Scale: Emerging Phenomena, Devices, and Applications. MRS Bull. 2009, 34, 634–642. [Google Scholar] [CrossRef]
- Chapman, J.N. The Investigation of Magnetic Domain Structures in Thin Foils by Electron Microscopy. J. Phys. D Appl. Phys. 1984, 17, 623–647. [Google Scholar] [CrossRef]
- Schmidt, F.; Rave, W.; Hubert, A. Enhancement of Magneto-Optical Domain Observation by Digital Image Processing. IEEE Trans. Magn. 1985, 21, 1596–1598. [Google Scholar] [CrossRef]
- Martin, Y.; Wickramasinghe, H.K. Magnetic Imaging by “Force Microscopy” with 1000 Å Resolution. Appl. Phys. Lett. 1987, 50, 1455–1457. [Google Scholar] [CrossRef]
- Prins, M.W.J.; Groeneveld, R.H.M.; Abraham, D.L.; van Kempen, H.; van Kesteren, H.W. Near-Field Magneto-Optical Imaging in Scanning Tunneling Microscopy. Appl. Phys. Lett. 1995, 66, 1141–1143. [Google Scholar] [CrossRef]
- Bode, M.; Getzlaff, M.; Wiesendanger, R. Spin-Polarized Vacuum Tunneling into the Exchange-Split Surface State of Gd(0001). Phys. Rev. Lett. 1998, 81, 4256–4259. [Google Scholar] [CrossRef]
- Fischer, P. Magnetic Soft X-Ray Transmission Microscopy. Curr. Opin. Solid. State Mater. Sci. 2003, 7, 173–179. [Google Scholar] [CrossRef]
- Stöhr, J.; Wu, Y.; Hermsmeier, B.D.; Samant, M.G.; Harp, G.R.; Koranda, S.; Dunham, D.; Tonner, B.P. Element-Specific Magnetic Microscopy with Circularly Polarized X-Rays. Science 1993, 259, 658–661. [Google Scholar] [CrossRef]
- Marx, G.K.L.; Elmers, H.J.; Schönhense, G. Magneto-Optical Linear Dichroism in Threshold Photoemission Electron Microscopy of Polycrystalline Fe Films. Phys. Rev. Lett. 2000, 84, 5888–5891. [Google Scholar] [CrossRef] [PubMed]
- Als-Nielsen, J.; McMorrow, D. Elements of Modern X-Ray Physics, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Warren, B.E. X-Ray Diffraction; Dover Publications: New York, NY, USA, 1990. [Google Scholar]
- Segmüller, A.; Noyan, I.C.; Speriosu, V.S. X-Ray Diffraction Studies of Thin Films and Multilayer Structures. Progress. Cryst. Growth Charact. 1989, 18, 21–66. [Google Scholar] [CrossRef]
- Clemens, B.M.; Bain, J.A. Stress Determination in Textured Thin Films Using X-Ray Diffraction. MRS Bull. 1992, 17, 46–51. [Google Scholar] [CrossRef]
- Cianci, M.; Helliwell, J.R.; Helliwell, M.; Kaucic, V.; Logar, N.Z.; Mali, G.; Tusar, N.N. Anomalous Scattering in Structural Chemistry and Biology. Crystallogr. Rev. 2005, 11, 245–335. [Google Scholar] [CrossRef]
- Prokert, F.; Schell, N.; Gorbunov, A. Use of Anomalous Scattering for Synchrotron X-Ray Reflectivity Studies of Fe–Cr and Co–Cu Double Layers. Nucl. Instrum. Methods Phys. Res. B 2003, 199, 123–127. [Google Scholar] [CrossRef]
- Park, C.; Fenter, P.A. Phasing of Resonant Anomalous X-Ray Reflectivity Spectra and Direct Fourier Synthesis of Element-Specific Partial Structures at Buried Interfaces. J. Appl. Crystallogr. 2007, 40, 290–301. [Google Scholar] [CrossRef]
- Lynn, J.W.; Keimer, B. Magnetic Scattering. In Handbook of Magnetism and Magnetic Materials; Springer International Publishing: Cham, Switzerland, 2021; pp. 1–42. [Google Scholar]
- Di Matteo, S. Resonant X-Ray Diffraction: Multipole Interpretation. J. Phys. D Appl. Phys. 2012, 45, 163001. [Google Scholar] [CrossRef]
- Templeton, D.H.; Templeton, L.K. X-Ray Dichroism and Polarized Anomalous Scattering of the Uranyl Ion. Acta Crystallogr. Sect. A 1982, 38, 62–67. [Google Scholar] [CrossRef]
- Goering, E.; Will, J.; Geissler, J.; Justen, M.; Weigand, F.; Schuetz, G. X-Ray Magnetic Circular Dichrois—A Universal Tool for Magnetic Investigations. J. Alloys Compd. 2001, 328, 14–19. [Google Scholar] [CrossRef]
- Waseda, Y. Anomalous X-Ray Scattering for Materials Characterization, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Coelho, L.N.; Diaz, B.; Magalhães-Paniago, R.; Malachias, A. Resonant X-Ray Diffraction of Self-Assembled Epitaxial Systems: From Direct to Complementary Chemical Information. Eur. Phys. J. Spec. Top. 2012, 208, 217–229. [Google Scholar] [CrossRef]
- Matsumura, T.; Okuyama, D.; Niioka, S.; Ishida, H.; Satoh, T.; Murakami, Y.; Toyosaki, H.; Yamada, Y.; Fukumura, T.; Kawasaki, M. X-Ray Anomalous Scattering of Diluted Magnetic Oxide Semiconductors: Possible Evidence of Lattice Deformation for High Temperature Ferromagnetism. Phys. Rev. B 2007, 76, 115320. [Google Scholar] [CrossRef]
- Lee, C.-H.; Chang, W.-C.; kumar Anbalagan, A. Anomalous X-Ray Scattering Study on Oxidized TbxDy1−xFe2−y Thin Films: Influence of Thermal Annealing on the Oxide Composition. Radiat. Phys. Chem. 2020, 175, 108915. [Google Scholar] [CrossRef]
- Lee, C.; Chen, H.; Haw, S.; Anbalagan, A.K.; Chen, J. Determination of Order Parameter of YMn0.5Fe0.5O3 Epitaxial Thin Films by Anomalous X-ray Scattering Technique. J. Chin. Chem. Soc. 2023, 70, 1087–1094. [Google Scholar] [CrossRef]
- Asubar, J.T.; Jinbo, Y.; Uchitomi, N. MBE Growth of Mn-Doped ZnSnAs2 Thin Films. J. Cryst. Growth 2009, 311, 929–932. [Google Scholar] [CrossRef]
- Oh, K.L.; Kwak, Y.M.; Kong, D.S.; Ryu, S.; Kim, H.; Jeen, H.; Choi, S.; Jung, J.H. Mechanical Stability of Ferrimagnetic CoFe2O4 Flexible Thin Films. Curr. Appl. Phys. 2021, 31, 87–92. [Google Scholar] [CrossRef]
- Inaba, K.; Kobayashi, S.; Uehara, K.; Okada, A.; Reddy, S.L.; Endo, T. High Resolution X-Ray Diffraction Analyses of (La,Sr)MnO3/ZnO/Sapphire(0001) Double Heteroepitaxial Films. Adv. Mater. Phys. Chem. 2013, 3, 72–89. [Google Scholar] [CrossRef]
- Lee, S.A.; Oh, S.; Lee, J.; Hwang, J.-Y.; Kim, J.; Park, S.; Bae, J.-S.; Hong, T.E.; Lee, S.; Kim, S.W.; et al. Tuning Electromagnetic Properties of SrRuO3 Epitaxial Thin Films via Atomic Control of Cation Vacancies. Sci. Rep. 2017, 7, 11583. [Google Scholar] [CrossRef]
- Robinson, I.K. Direct Determination of the Au(110) Reconstructed Surface by X-Ray Diffraction. Phys. Rev. Lett. 1983, 50, 1145–1148. [Google Scholar] [CrossRef]
- Feidenhans’l, R. Surface Structure Determination by X-Ray Diffraction. Surf. Sci. Rep. 1989, 10, 105–188. [Google Scholar] [CrossRef]
- Disa, A.S.; Walker, F.J.; Ahn, C.H. High-Resolution Crystal Truncation Rod Scattering: Application to Ultrathin Layers and Buried Interfaces. Adv. Mater. Interfaces 2020, 7, 1901772. [Google Scholar] [CrossRef]
- Fewster, P.F. X-Ray Analysis of Thin Films and Multilayers. Rep. Progress. Phys. 1996, 59, 1339–1407. [Google Scholar] [CrossRef]
- Bouroushian, M.; Kosanovic, T. Characterization of Thin Films by Low Incidence X-Ray Diffraction. Cryst. Struct. Theory Appl. 2012, 1, 35–39. [Google Scholar] [CrossRef]
- Bilello, J.C.; Yalisove, S.N.; Rek, Z.U. The Evolution of Texture in Thin Films and Multilayers via Synchrotron Transmission Laue and Grazing-Incidence X-Ray Scattering. J. Phys. D Appl. Phys. 1995, 28, A295–A300. [Google Scholar] [CrossRef]
- Hirose, T.; Teranishi, H.; Ohsawa, M.; Ueda, A.; Ishiwata, O.; Ataka, T.; Ozawa, K.; Komiya, S.; Iida, A. In-Plane Anisotropy in Thin-Film Media Analyzed by Grazing Incidence X-Ray Diffraction [CoCrTaPt/Cr]. IEEE Trans. Magn. 1997, 33, 2971–2973. [Google Scholar] [CrossRef]
- Braun, F.; Eckelt, F.; Voss, L.; Rothweiler, P.; Lützenkirchen-Hecht, D. Time-Resolved in-Situ Investigation of Co-Nitride Thin Film Growth by Grazing Incidence X-Ray Absorption Spectroscopy. Radiat. Phys. Chem. 2023, 204, 110707. [Google Scholar] [CrossRef]
- Foran, G.J.; Gentle, I.R.; Garrett, R.F.; Creagh, D.C.; Peng, J.B.; Barnes, G.T. Time-Resolved Grazing-Incidence Diffraction Studies of Thin Films Using an Imaging-Plate Camera and Focusing Monochromator. J. Synchrotron Radiat. 1998, 5, 107–111. [Google Scholar] [CrossRef]
- Naudon, A.; Thiaudiere, D. Grazing-Incidence Small-Angle Scattering. Morphology of Deposited Clusters and Nanostructure of Thin Films. J. Appl. Crystallogr. 1997, 30, 822–827. [Google Scholar] [CrossRef]
- Parratt, L.G. Surface Studies of Solids by Total Reflection of X-Rays. Phys. Rev. 1954, 95, 359–369. [Google Scholar] [CrossRef]
- Carlomagno, I.; Verna, A.; Forrest, T.; Meneghini, C. Structural Profile of a MgO/Co/MgO Trilayer Using Soft X-Ray Resonant Magnetic Reflectivity. In Synchrotron Radiation Science and Applications; Di Cicco, A., Giuli, G., Trapananti, A., Eds.; Springer Proceedings in Physics; Springer: Cham, Switzerland, 2021; Volume 220, pp. 155–167. [Google Scholar] [CrossRef]
- Kuschel, T.; Klewe, C.; Schmalhorst, J.-M.; Bertram, F.; Kuschel, O.; Schemme, T.; Wollschläger, J.; Francoual, S.; Strempfer, J.; Gupta, A.; et al. Static Magnetic Proximity Effect in Pt/NiFeO4 and Pt/Fe Bilayers Investigated by X-Ray Resonant Magnetic Reflectivity. Phys. Rev. Lett. 2015, 115, 097401. [Google Scholar] [CrossRef] [PubMed]
- Tonnerre, J.M.; Sève, L.; Barbara-Dechelette, A.; Bartolomé, F.; Raoux, D.; Chakarian, V.; Kao, C.C.; Fischer, H.; Andrieu, S.; Fruchart, O. Soft X-Ray Resonant Magnetic Reflectivity Study of Thin Films and Multilayers. J. Appl. Phys. 1998, 83, 6293–6295. [Google Scholar] [CrossRef]
- Batterman, B.W. Effect of Dynamical Diffraction in X-Ray Fluorescence Scattering. Phys. Rev. 1964, 133, A759–A764. [Google Scholar] [CrossRef]
- Zegenhagen, J.; Kazimirov, A. The X-Ray Standing Wave Technique, Principles and Application. In Series on Synchrotron Radiation Techniques and Applications; World Scientific: Singapore, 2013; Volume 7. [Google Scholar]
- Zegenhagen, J. Surface Structure Determination with X-Ray Standing Waves. Surf. Sci. Rep. 1993, 18, 202–271. [Google Scholar] [CrossRef]
- Rajput, P.; Gupta, A.; Meneghini, C.; Avasthi, D.K.; Darowski, N.; Zizak, I.; Erko, A. Depth Resolved Structural Study of Heavy Ion Induced Phase Formation in Si/Fe/Si Trilayer. Hyperfine Interact. 2008, 185, 9–15. [Google Scholar] [CrossRef]
- Gupta, A.; Rajput, P.; Meneghini, C. Depth-Resolved X-Ray Absorption Fine Structure Study of Fe/Si Interfaces Using X-Ray Standing Waves. Phys. Rev. B 2007, 76, 195401. [Google Scholar] [CrossRef]
- Garai, D.; Carlomagno, I.; Solokha, V.; Wilson, A.; Meneghini, C.; Morawe, C.; Murzin, V.; Gupta, A.; Zegenhagen, J. Swelling of Steel Film by Hydrogen Absorption at Cathodic Potential in Electrolyte. Phys. Status Solidi (B) 2020, 257, 2000055. [Google Scholar] [CrossRef]
- Singh, S.; Basu, S. Investigation of Interface Magnetism of Complex Oxide Heterostructures Using Polarized Neutron Reflectivity. Curr. Appl. Phys. 2017, 17, 615–625. [Google Scholar] [CrossRef]
- Singh, S.; Swain, M.; Basu, S. Kinetics of Interface Alloy Phase Formation at Nanometer Length Scale in Ultra-Thin Films: X-Ray and Polarized Neutron Reflectometry. Prog. Mater. Sci. 2018, 96, 1–50. [Google Scholar] [CrossRef]
- Xiong, G.; Moutanabbir, O.; Reiche, M.; Harder, R.; Robinson, I. Coherent X-Ray Diffraction Imaging and Characterization of Strain in Silicon-on-Insulator Nanostructures. Adv. Mater. 2014, 26, 7747–7763. [Google Scholar] [CrossRef]
- Miao, J.; Ishikawa, T.; Johnson, B.; Anderson, E.H.; Lai, B.; Hodgson, K.O. High Resolution 3D X-Ray Diffraction Microscopy. Phys. Rev. Lett. 2002, 89, 088303. [Google Scholar] [CrossRef] [PubMed]
- Miao, J. Extending the Methodology of X-Ray Crystallography to Non-Crystalline Specimens. In Proceedings of the AIP Conference Proceedings, Stanford, CA, USA, 13–15 October 1999; AIP: Melville, NY, USA; pp. 3–6. [Google Scholar]
- Williams, G.J.; Pfeifer, M.A.; Vartanyants, I.A.; Robinson, I.K. Three-Dimensional Imaging of Microstructure in Au Nanocrystals. Phys. Rev. Lett. 2003, 90, 175501. [Google Scholar] [CrossRef] [PubMed]
- Sayre, D. Prospects for Long-Wavelength X-Ray Microscopy and Diffraction. In Imaging Processes and Coherence in Physics; Springer: Berlin/Heidelberg, Germany, 2005; pp. 229–235. [Google Scholar]
- Shechtman, Y.; Eldar, Y.C.; Cohen, O.; Chapman, H.N.; Miao, J.; Segev, M. Phase Retrieval with Application to Optical Imaging: A Contemporary Overview. IEEE Signal Process Mag. 2015, 32, 87–109. [Google Scholar] [CrossRef]
- Marchesini, S. Invited Article: A Unified Evaluation of Iterative Projection Algorithms for Phase Retrieval. Rev. Sci. Instrum. 2007, 78, 011301. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, C.; Scagnoli, V. Imaging Three-Dimensional Magnetic Systems with X-Rays. J. Phys. Condens. Matter 2020, 32, 213001. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, C.; Guizar-Sicairos, M.; Scagnoli, V.; Gliga, S.; Holler, M.; Raabe, J.; Heyderman, L.J. Three-Dimensional Magnetization Structures Revealed with X-Ray Vector Nanotomography. Nature 2017, 547, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Lanterne, A.; Gaspar, G.; Hu, Y.; Øvrelid, E.; Di Sabatino, M. Characterization of the Loss of the Dislocation-Free Growth during Czochralski Silicon Pulling. J. Cryst. Growth 2017, 458, 120–128. [Google Scholar] [CrossRef]
- Shao, Z.; Schnitzer, N.; Ruf, J.; Gorobtsov, O.Y.; Dai, C.; Goodge, B.H.; Yang, T.; Nair, H.; Stoica, V.A.; Freeland, J.W.; et al. Real-Space Imaging of Periodic Nanotextures in Thin Films via Phasing of Diffraction Data. Proc. Natl. Acad. Sci. USA 2023, 120, e2303312120. [Google Scholar] [CrossRef]
- Teo, B.K. EXAFS: Basic Principles and Data Analysis; Springer: Berlin/Heidelberg, Germany, 1986; Volume 9, ISBN 978-3-642-50033-6. [Google Scholar]
- Bunker, G. Introduction to XAFS; Cambridge University Press: Cambridge, UK, 2010; ISBN 9780521767750. [Google Scholar]
- Filipponi, A.; Di Cicco, A.; Natoli, C.R. X-Ray-Absorption Spectroscopy and n-Body Distribution Functions in Condensed Matter. I. Theory. Phys. Rev. B 1995, 52, 15122–15134. [Google Scholar] [CrossRef]
- Filipponi, A.; Di Cicco, A. X-Ray-Absorption Spectroscopy and n-Body Distribution Functions in Condensed Matter. II. Data Analysis and Applications. Phys. Rev. B 1995, 52, 15135–15149. [Google Scholar] [CrossRef]
- Pettifer, R.F.; Mathon, O.; Pascarelli, S.; Cooke, M.D.; Gibbs, M.R.J. Measurement of Femtometre-Scale Atomic Displacements by X-Ray Absorption Spectroscopy. Nature 2005, 435, 78–81. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Meneghini, C.; Saraiya, A.; Principi, G.; Avasthi, D.K. Depth Selective XANES Study of Swift Heavy Ion Irradiation Effects in Metal/Si Systems. Nucl. Instrum. Methods Phys. Res. B 2003, 212, 458–464. [Google Scholar] [CrossRef]
- Carlomagno, I.; Drnec, J.; Scaparro, A.M.; Cicia, S.; Mobilio, S.; Felici, R.; Meneghini, C. Effectiveness of Co Intercalation between Graphene and Ir (1 1 1). Chem. Phys. Lett. 2018, 697, 7–11. [Google Scholar] [CrossRef]
- Carlomagno, I.; Scaparro, A.M.; Carlini, L.; Drnec, J.; Vinai, G.; Torelli, P.; Felici, R.; Mobilio, S.; Meneghini, C. Evidence of a Thermally-Induced Microstructural Anisotropy in Gr/Co/Ir(111) Systems. Appl. Surf. Sci. 2021, 535, 146365. [Google Scholar] [CrossRef]
- Maret, M.; Bley, F.; Meneghini, C.; Albrecht, M.; Köhler, J.; Bucher, E.; Hazemann, J.L. The Cr Local Structure in Epitaxial CrPt3 (111) Films Probed Using Polarized X-Ray Absorption Fine Structure. J. Phys. Condens. Matter 2005, 17, 2529–2541. [Google Scholar] [CrossRef]
- Liscio, F.; Maret, M.; Meneghini, C.; Mobilio, S.; Proux, O.; Makarov, D.; Albrecht, M. Structural Origin of Perpendicular Magnetic Anisotropy in Epitaxial CoPt3 Nanostructures Grown on WSe2 (0001). Phys. Rev. B 2010, 81, 125417. [Google Scholar] [CrossRef]
- Amemiya, K.; Sakata, K. Determination of Anisotropy in Magnetic Moments at the Interface of Au/Co/Au Thin Film without a Thickness-Dependent Experiment. Phys. Rev. B 2022, 106, 134424. [Google Scholar] [CrossRef]
- Nordling, C.; Sokolowski, E.; Siegbahn, K. Precision Method for Obtaining Absolute Values of Atomic Binding Energies. Phys. Rev. 1957, 105, 1676–1677. [Google Scholar] [CrossRef]
- Mahan, G.D. Theory of Photoemission in Simple Metals. Phys. Rev. B 1970, 2, 4334–4350. [Google Scholar] [CrossRef]
- Gotter, R.; Offi, F.; Da Pieve, F.; Ruocco, A.; Stefani, G.; Ugenti, S.; Trioni, M.I.; Bartynski, R.A. Electronic and Magnetic Properties of Thin Films Probed by Auger Photoelectron Coincidence Spectroscopy (APECS). J. Electron. Spectros Relat. Phenom. 2007, 161, 128–133. [Google Scholar] [CrossRef]
- Fadley, C.S. Hard X-Ray Photoemission with Angular Resolution and Standing-Wave Excitation. J. Electron. Spectros Relat. Phenom. 2013, 190, 165–179. [Google Scholar] [CrossRef]
- Sanchez-Martinez, A.; Ceballos-Sanchez, O.; Vazquez-Lepe, M.O.; Duong, T.; Arroyave, R.; Espinosa-Magaña, F.; Herrera-Gomez, A. Diffusion of In and Ga in TiN/HfO2/InGaAs Nanofilms. J. Appl. Phys. 2013, 114, 143504. [Google Scholar] [CrossRef]
- Sakhonenkov, S.S.; Filatova, E.O.; Gaisin, A.U.; Kasatikov, S.A.; Konashuk, A.S.; Pleshkov, R.S.; Chkhalo, N.I. Angle Resolved Photoelectron Spectroscopy as Applied to X-Ray Mirrors: An in Depth Study of Mo/Si Multilayer Systems. Phys. Chem. Chem. Phys. 2019, 21, 25002–25010. [Google Scholar] [CrossRef] [PubMed]
- Amemiya, K. Sub-Nm Resolution Depth Profiling of the Chemical State and Magnetic Structure of Thin Films by a Depth-Resolved X-Ray Absorption Spectroscopy Technique. Phys. Chem. Chem. Phys. 2012, 14, 10477. [Google Scholar] [CrossRef] [PubMed]
- Donath, M. Spin-Dependent Electronic Structure at Magnetic Surfaces: The Low-Miller-Index Surfaces of Nickel. Surf. Sci. Rep. 1994, 20, 251–316. [Google Scholar] [CrossRef]
- Ciccacci, F. Polarization Effects in Empty States at the Fe(100)-Vacuum and Fe(100)-Noble Metal Interfaces. Phys. Scr. 1996, T66, 190–195. [Google Scholar] [CrossRef]
- Dąbrowski, M.; Peixoto, T.R.F.; Pazgan, M.; Winkelmann, A.; Cinal, M.; Nakagawa, T.; Takagi, Y.; Yokoyama, T.; Bisio, F.; Bauer, U.; et al. Oscillations of the Orbital Magnetic Moment Due to d-Band Quantum Well States. Phys. Rev. Lett. 2014, 113, 067203. [Google Scholar] [CrossRef] [PubMed]
- Ghiringhelli, G.; Matsubara, M.; Dallera, C.; Fracassi, F.; Gusmeroli, R.; Piazzalunga, A.; Tagliaferri, A.; Brookes, N.B.; Kotani, A.; Braicovich, L. NiO as a Test Case for High Resolution Resonant Inelastic Soft X-Ray Scattering. J. Phys. Condens. Matter 2005, 17, 5397–5412. [Google Scholar] [CrossRef]
- Massel, F.; Hikima, K.; Rensmo, H.; Suzuki, K.; Hirayama, M.; Xu, C.; Younesi, R.; Liu, Y.-S.; Guo, J.; Kanno, R.; et al. Excess Lithium in Transition Metal Layers of Epitaxially Grown Thin Film Cathodes of Li2MnO3 Leads to Rapid Loss of Covalency during First Battery Cycle. J. Phys. Chem. C 2019, 123, 28519–28526. [Google Scholar] [CrossRef]
- Lupascu, A.; Clancy, J.P.; Gretarsson, H.; Nie, Z.; Nichols, J.; Terzic, J.; Cao, G.; Seo, S.S.A.; Islam, Z.; Upton, M.H.; et al. Tuning Magnetic Coupling in Sr2IrO4 Thin Films with Epitaxial Strain. Phys. Rev. Lett. 2014, 112, 147201. [Google Scholar] [CrossRef]
- Chiu, C.-C.; Chang, Y.-W.; Shao, Y.-C.; Liu, Y.-C.; Lee, J.-M.; Huang, S.-W.; Yang, W.; Guo, J.; de Groot, F.M.F.; Yang, J.-C.; et al. Spectroscopic Characterization of Electronic Structures of Ultra-Thin Single Crystal La0.7Sr0.3MnO3. Sci. Rep. 2021, 11, 5250. [Google Scholar] [CrossRef] [PubMed]
- Pelliciari, J.; Lee, S.; Gilmore, K.; Li, J.; Gu, Y.; Barbour, A.; Jarrige, I.; Ahn, C.H.; Walker, F.J.; Bisogni, V. Tuning Spin Excitations in Magnetic Films by Confinement. Nat. Mater. 2021, 20, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Brookes, N.B.; Betto, D.; Cao, K.; Lu, Y.; Kummer, K.; Giustino, F. Spin Waves in Metallic Iron and Nickel Measured by Soft X-Ray Resonant Inelastic Scattering. Phys. Rev. B 2020, 102, 064412. [Google Scholar] [CrossRef]
Classification | Examples | References |
---|---|---|
Perpendicular Magnetic Anisotropy Films | Pt/Co, Pd/Co, Ta/CoFeB, Fe/Pt,Fe/Pd, Co/Pt | [5,6,7] |
Magnetic Tunnel Junction Films | CoFeB/MgO/CoFeB and CoFeB/AlOx/CoFeB, MnGa/Co2MnSi | [8,9,10] |
Topological Insulator Thin Films | Cr doped (Bi,Sb)2Te3, (Zn,Cr)Te/BST/(Zn,Cr)Te, MnBi2Te4/Bi2Te3 | [11,12,13,14,15,16] |
Heusler Alloy Thin Films | Co2FeAl, Co2MnGa, NiMnSb, Co2(Cr,Fe)Al | [17,18,19] |
Spin Hall Effect Materials | Pt, W, Mn3Sn, Cr | [20,21,22,23] |
Dilute Magnetic Semiconductors | GaMnAs, InMnAs, Fe-doped SiGe, Ni-doped ZnO | [24,25,26,27] |
Magnetic Oxide Thin Films | magnetite (Fe3O4), hematite (Fe2O3), and cobalt ferrite (CoFe2O4), La0.7Sr0.3MnO3/SrIrO3, Pt/Tm3Fe5O12 | [28,29,30,31] |
Rare Earth–Transition Metal Thin Films | GdCo, TbFe, HoCo, TbDyFe, SmFeB | [22,32,33,34,35] |
Antiferromagnetic Thin Films | Mn2Au and Mn3X (X = Ge, Sn) | [36,37,38] |
Magnetic Multilayers | exchange-coupled layers, patterned magnetic nanostructures and artificial multiferroic structures | [39,40,41,42,43] |
Class | Technique | Probe | Information | Facility | References |
---|---|---|---|---|---|
Imaging | TEM, STEM, XTEM | Transmitted electrons | Provides morphological, structural, compositional and electronic information with atomic-scale resolution. Identifies crystal structures and orientations, visualizes defects, probes elemental maps and may visualize magnetic domains. TEM: A broad parallel beam illuminates the whole sample. STEM: Focused electron beams are rastered across the sample, and spatial variations in transmission, scattering or fluorescence are measured. XTEM: Thin cross-sections of the samples allow for the direct imaging of the atomic structure and chemistry at internal interfaces. | Lab. | [59,61] |
SEM | Secondary electrons | Provides nanometer-scale imaging of morphology and crystallographic analysis of sample surfaces. Coupled with spectroscopic probes (i.e., EDS or EELS) enables elemental mapping. Spin-polarized SEM probes magnetic states. | Lab. | [63,64,65] | |
ToF-SIMS | Secondary ions | The obtained mass spectra and images can confirm the surface homogeneity in the thin films. Depth profiling through sputtering enables 3-dimensional representation of cation distribution at nanometer resolution. | Lab. | [66,67,68,69] | |
SPLEEM | Backscattered electrons | Uses spin-polarized low-energy electrons to image magnetic domain structures and spin orientations on sample surfaces. | Sync. | [70,71,72] | |
PEEM | Electrons | Exploits X-ray-excited photoelectrons to image magnetic domains and spin dynamics with high spatial and temporal resolution. | Sync. | [73,74] | |
AFM/MFM | Current/Magnetostatic forces | Measures short-range forces between the tip and sample surface, enabling real-space imaging and the analysis of topography, mechanical, electrical and magnetic properties at nanometer to sub-nanometer resolution. | Lab. | [75,76,77] | |
Diffraction & Scattering | XRR | Reflected X-rays | Measures the reflection of X-rays at shallow angles to probe layer thickness, roughness, density and buried interfaces with sub-nanometer precision. | Lab. Sync. | [78,79,80,81,82] |
A-XRR | Reflected X-rays | Adds chemical selective information, exploiting the anomalous scattering effect. Effective when the X-ray energy is tuned close to an absorption edge in the sample. Exploiting the XMCD effect allows for the provision of element-specific magnetic information. | Sync. | [83,84,85,86,87,88] | |
XRD, HRXRD | Diffracted X-rays | Provides crystallographic information about the crystallographic structure, strain, disorder and coherence length of crystallites. It is possible to exploit the anomalous scattering effect to obtain element-specific structural information. | Lab. Sync. | [89,90,91] | |
GIXRD, GISAXS | Diffracted X-rays | By analyzing diffuse X-ray scattering, structural information can be obtained for buried layers and interfaces. | Lab. Sync. | [92,93,94,95,96] | |
ND | Diffracted neutron | Like XRD, ND provides crystallographic information about the crystallographic structure, strain, disorder and coherence length of crystallites. It is helpful especially for detecting lighter elements. Neutron sensitivity to the magnetic moment allows for the direct probing of the magnetic structure of buried layers and interfaces. Available only at synchrotron radiation facilities. | Sync. | [97,98,99] | |
NR | Reflected neutron | Like XRR, NR probes layer thickness, roughness, density and buried interfaces with sub-nanometer precision. It can exploit neutron sensitivity to obtain information about magnetic structures. Available only at synchrotron radiation facilities. | Sync. | [97,99,100,101] | |
PNR | Reflected neutron | The spin dependence of neutron scattering can reveal the buried magnetic layer structure and interfacial magnetic profiles. Available only at synchrotron radiation facilities. | Sync. | [102,103,104] | |
CDI | Scattered coherent X-rays | Measures the diffraction pattern produced when a coherent beam of X-rays (or electrons) interacts with a sample to visualize the internal structure of objects at the nanoscale. Strain mapping is possible. | Sync. | [105,106,107] | |
XSW, RXSW | Interference between incident and reflected X-rays | When an X-ray beam is reflected at a shallow angle, it forms a standing wave pattern. By tuning to resonant modes, the XSW field probes precise depths. Combined with XRF, XRD, XAFS and XMCD, it adds depth-selective information to these techniques. Tuning the X-ray energy to an absorption edge enhances the standing wave field at the resonant atomic species, providing elemental and depth specificity. Some key advantages of XSW combined with XRF, XRD, XAFS, and XMCD are the possibility to probe light elements, highly diluted elements, and a depth resolution down to the nanometer or sub-nanometer scale, making them ideal complements to neutron- and electron-based techniques for studying buried layers and interfaces in thin-film magnetic systems. Proper modeling is needed to translate the measured signals into quantitative depth profiles. | Lab. Sync. | [79,108,109,110] | |
Spectroscopies | XAFS, P-XAFS | Absorbed X-ray photons | Provides chemically selective information about local atomic structure, valence states and magnetic properties through dichroism effects. Available only at synchrotron radiation facilities. Polarized XAFS adds some directional sensitivity to the XAFS techniques. | Sync. | [111,112] |
XMCD | Absorbed X-ray photons | Element-specific magnetic properties and detailed spin-ordering information. Available only at synchrotron radiation facilities. | Sync. | [113,114] | |
PES, XPS | Photoelectrons | Measures electronic band structure and chemical composition, and probes occupied electronic states and chemical composition at surfaces and interfaces. Ambient pressure XPS enables in situ studies. | Lab. Sync. | [115,116,117,118] | |
Spin-polarized PES | Photoelectrons | Probes the energy and spin polarization of the photoemitted electrons, providing insights into the electronic structure and magnetic properties. | Sync. | [74] | |
ARXPS | Photoelectrons | Measures the energy and emission angle of photoemitted electrons to obtain information about their energy and momentum distribution. This provides valuable insights into a material’s band structure. Tuning the emission angle provides depth-sensitive chemical information. | Lab. Sync. | [119,120] | |
XRF | Fluorescence X-rays | By tuning the X-ray energy to the absorption edges of different elements, XRF can provide elemental composition and chemical information from buried layers and interfaces. The fluorescence yield is measured as a function of the incident angle. | Lab. Sync. | [121,122,123,124] | |
RIXS | Photons | Probes the re-emitted X-ray from specific energy levels. Provides chemical selective insights into electronic excitations, spin states and magnetism. | Sync. | [125,126,127] | |
SXES | Photoelectrons | Consists of focusing an X-ray beam onto a sample and measuring the X-ray emissions. Probes the electronic structure and bonding characteristics from shallow depths. | Sync. | [128,129] |
Mode | Sensing | Information Obtained | References |
---|---|---|---|
Conductive AFM | Current | conductivity, film uniformity and defects, dielectric breakdown, dopant distribution | [161] |
Electrostatic Force Microscopy | Electrostatic Forces | electrostatic gradients, capacitance variations, embedded conductors | [161] |
Kelvin Probe Force Microscopy | Electric Potential | surface potential, work function, film uniformity and coverage | [161] |
Scanning Microwave Impedance Microscopy | Capacitance and Resistance | film thickness, dielectric constant, permittivity or conductivity variations, buried charge | [162] |
Piezoresponse Force Microscopy | Electromechanical Response | piezoelectric domains, polarization vector and switching, ferroelectric coercive field | [163] |
Magnetic Force Microscopy | Magnetostatic Forces | magnetic domains, magnetization hysteresis, magnetic coercive field | [76,77] |
Technique | Mechanism | Lateral Resolution (nm) | Depth Resolution (Å) | Element Selectivity | Reference |
---|---|---|---|---|---|
Transmission Electron Microscopy (TEM) | Lorentz Force Deflection | ≥50 | - | No | [164] |
Magneto-Optical Kerr Effect (MOKE) | Magneto-optical Effects | ~500 | ≈200 | No | [165] |
Magnetic Force Microscopy (MFM) | Magnetic Dipole interaction | ≥100 | - | No | [166] |
Scanning Near-field Optical Microscopy (SNOM) | Magneto-optical Effects | ≥250 | ~100 | No | [167] |
Spin-polarized Scanning Tunnelling Microscopy (SP-STEM) | Spin-dependent Tunneling | ≤1 | ~1 | No | [168] |
Spin-polarized LEEM | Exchange Scattering | ≥50 | ~5 | No | [139] |
X-ray Transmission Microscopy (XTM) | Magnetic X-ray Dichroism | ~50 | - | Yes | [169] |
X-ray Photoemission Electron Microscopy (XPEEM) | Magnetic X-ray Dichroism | ~50 | ~20 | Yes | [170] |
Ultra-violet Photoemission Electron Microscopy (UVPEEM) | Magnetic Linear Dichroism | ~50 | ~20 | No | [171] |
GIXRD | GISAXS | |
---|---|---|
Information Obtained | Study of the crystal structure and orientation of thin films. Determines the lattice parameters, crystal phases, crystallinity and crystallographic orientation in the film. | Investigates the nanostructures and surface morphology of thin films. Information about the size, shape, spatial arrangement and interactions of nanoscale features on the film surface. Also detects the presence of nanoparticles, pores, phase separation, self-assembly and other nanoscale phenomena. |
Measurement Principle | Involves measuring the scattering of X-rays by the crystal planes in the thin film. | The incident X-rays interact with the nanostructures on the thin film surface, resulting in scattering in different directions. |
Suited For | Suitable for studying epitaxial layers, polycrystalline films and crystalline structures in general. | Suitable for studying thin films with nanoscale features, including ultrathin films and films having a non-crystalline or amorphous structure. |
Structure of Thin Film | Thickness | Composition | Lattice Strain | Residual Stress | Defects | Crystal Orientation | Surface Roughness | Lateral Structure |
---|---|---|---|---|---|---|---|---|
Perfect Epitaxial | HRXRD | HRXRD | 100% | - | - | HRXRD | XRR | XRR |
XRR | ||||||||
Textured Polycrystalline | XRR | XRPD | GIXRD | GIXRD | XRPD | GIXRD | XRR | XRR |
GIXRD | GIXRD | GISAXS | GISAXS | |||||
Polycrystalline | XRR | XRPD | - | GIXRD | XRPD | GISAXS | XRR | XRR |
GIXRD | GIXRD | GISAXS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aich, P.; Meneghini, C.; Tortora, L. Advances in Structural and Morphological Characterization of Thin Magnetic Films: A Review. Materials 2023, 16, 7331. https://doi.org/10.3390/ma16237331
Aich P, Meneghini C, Tortora L. Advances in Structural and Morphological Characterization of Thin Magnetic Films: A Review. Materials. 2023; 16(23):7331. https://doi.org/10.3390/ma16237331
Chicago/Turabian StyleAich, Payel, Carlo Meneghini, and Luca Tortora. 2023. "Advances in Structural and Morphological Characterization of Thin Magnetic Films: A Review" Materials 16, no. 23: 7331. https://doi.org/10.3390/ma16237331
APA StyleAich, P., Meneghini, C., & Tortora, L. (2023). Advances in Structural and Morphological Characterization of Thin Magnetic Films: A Review. Materials, 16(23), 7331. https://doi.org/10.3390/ma16237331