A Review of Bio-Based Activated Carbon Properties Produced from Different Activating Chemicals during Chemicals Activation Process on Biomass and Its Potential for Malaysia
Abstract
:1. Introduction
1.1. History of Activated Carbon
1.2. Activated Carbon from Coal
1.3. Activated Carbon from Biomass
2. Biomass as a Precursor in AC Production
2.1. Type of Biomass for AC Production
2.2. Biomass in Malaysia for AC Production
3. Activation Process for Biomass-Based Activated Carbon Production
4. Chemical Activation Process
4.1. Chemicals Used for Activation
4.2. Factors Affecting Chemical Activation Process
4.2.1. Concentration
4.2.2. Pre-Treatment
4.2.3. Duration of Activation
4.2.4. Mass Ratio
4.3. Chemicals Recovery after Chemical Activation of Biomass for Activated Carbon
5. Future Research on the Activation Process for Biomass
6. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Marsh, H.; Reinoso, F.R. Activated Carbon; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 9780080444635. [Google Scholar]
- Bansal, R.C.; Goyal, M. Activated Carbon Adsorption; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Ngu, L.H. Carbon Capture Technologies. In Reference Module in Earth Systems and Environmental Sciences; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Ray, A.B. Activated Carbon. Ind. Eng. Chem. 1940, 32, 1166–1167. [Google Scholar] [CrossRef]
- Schanz, J.J.; Parry, R.H. The activated carbon industry. Ind. Eng. Chem. 1962, 54, 24–28. [Google Scholar] [CrossRef]
- Gundogdu, A.; Duran, C.; Senturk, H.B.; Soylak, M.; Imamoglu, M.; Onal, Y. Physicochemical Characteristics of a Novel Activated Carbon Produced from Tea Industry Waste. J. Anal. Appl. Pyrolysis 2013, 104, 249–259. [Google Scholar] [CrossRef]
- González-García, P. Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. Renew. Sustain. Energy Rev. 2018, 82, 1393–1414. [Google Scholar] [CrossRef]
- Ozdemir, I.; Şahin, M.; Orhan, R.; Erdem, M. Preparation and Characterization of Activated Carbon from Grape Stalk by Zinc Chloride Activation. Fuel Process Technol. 2014, 125, 200–206. [Google Scholar] [CrossRef]
- Danish, M.; Ahmad, T. A Review on Utilization of Wood Biomass as a Sustainable Precursor for Activated Carbon Production and Application. Renew. Sustain. Energy Rev. 2018, 87, 1–21. [Google Scholar] [CrossRef]
- Köseoğlu, E.; Akmil-Başar, C. Preparation, Structural Evaluation and Adsorptive Properties of Activated Carbon from Agricultural Waste Biomass. Adv. Powder Technol. 2015, 26, 811–818. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste Materials for Activated Carbon Preparation and Its Use in Aqueous-Phase Treatment: A Review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef]
- Peredo-Mancilla, D.; Ghouma, I.; Hort, C.; Ghimbeu, C.M.; Jeguirim, M.; Bessieres, D. CO2 and CH2 Adsorption Behavior of Biomass-Based Activated Carbons. Energies 2018, 11, 3136. [Google Scholar] [CrossRef]
- Jaya Rajan, M.; Indira Anish, C. Role of Activated Carbon in Water Treatment. In Water Quality—New Perspectives [Working Title]; IntechOpen: London, UK, 2022. [Google Scholar]
- Ahmad, M.; Rajapaksha, A.U.; Lim, J.E.; Zhang, M.; Bolan, N.; Mohan, D.; Vithanage, M.; Lee, S.S.; Ok, Y.S. Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere 2014, 99, 19–33. [Google Scholar] [CrossRef]
- Activated Carbon in Malaysia|OEC—The Observatory of Economic Complexity. Available online: https://oec.world/en/profile/bilateral-product/activated-carbon/reporter/mys (accessed on 9 September 2023).
- Alves, A.T.; Lasmar, D.J.; Miranda, I.P.d.A.; Chaar, J.d.S.; Reis, J.d.S.; Alves, A.T.; Lasmar, D.J.; Miranda, I.P.d.A.; Chaar, J.d.S.; Reis, J.d.S. The Potential of Activated Carbon in the Treatment of Water for Human Consumption, a Study of the State of the Art and Its Techniques Used for Its Development. Adv. Biosci. Biotechnol. 2021, 12, 143–153. [Google Scholar] [CrossRef]
- Khitan, Z.J.; Khawaja, I.; Mufson, M.A.; Sanabria, J.R.; Abraham, N.G.; Peterson, S.J.; Sundaram, U.; Shapiro, J.I. Can Charcoal Improve Outcomes in COVID-19 Infections? Med. Hypotheses 2020, 144, 110176. [Google Scholar] [CrossRef] [PubMed]
- Januário, E.F.D.; Fachina, Y.J.; Wernke, G.; Demiti, G.M.M.; Beltran, L.B.; Bergamasco, R.; Vieira, A.M.S. Application of Activated Carbon Functionalized with Graphene Oxide for Efficient Removal of COVID-19 Treatment-Related Pharmaceuticals from Water. Chemosphere 2022, 289, 133213. [Google Scholar] [CrossRef] [PubMed]
- Amarasinghe, B.M.W.P.K.; Williams, R.A. Tea Waste as a Low Cost Adsorbent for the Removal of Cu and Pb from Wastewater. Chem. Eng. J. 2007, 132, 299–309. [Google Scholar] [CrossRef]
- Wang, B.; Lan, J.; Bo, C.; Gong, B.; Ou, J. Adsorption of Heavy Metal onto Biomass-Derived Activated Carbon: Review. RSC Adv. 2023, 13, 4275. [Google Scholar] [CrossRef]
- Neolaka, Y.A.B.; Riwu, A.A.P.; Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Darmokoesoemo, H.; Kusuma, H.S. Potential of Activated Carbon from Various Sources as a Low-Cost Adsorbent to Remove Heavy Metals and Synthetic Dyes. Results Chem. 2023, 5, 100711. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Hogland, W.; Marques, M.; Sillanpää, M. An Overview of the Modification Methods of Activated Carbon for Its Water Treatment Applications. Chem. Eng. J. 2013, 219, 499–511. [Google Scholar] [CrossRef]
- Aziz, A.; Al-Khatib, I.A.; Rahman, R.O.A.; Imai, T.; Hung, Y.-T.; Almeida-Naranjo, C.E.; Guerrero, V.H.; Alejandra Villamar-Ayala, C. Emerging Contaminants and Their Removal from Aqueous Media Using Conventional/Non-Conventional Adsorbents: A Glance at the Relationship between Materials, Processes, and Technologies. Water 2023, 15, 1626. [Google Scholar] [CrossRef]
- Das, D.; Gaur, V.; Verma, N. Removal of Volatile Organic Compound by Activated Carbon Fiber. Carbon 2004, 42, 2949–2962. [Google Scholar] [CrossRef]
- Solís-Fuentes, J.A.; Galán-Méndez, F.; del Rosario Hernández-Medel, M.; García-Gómez, R.S.; Bernal-González, M.; Mendoza-Pérez, S.; del Carmen Durán-Domínguez-de, M. Effectiveness of Bagasse Activated Carbon in Raw Cane Juice Clarification. Food Biosci. 2019, 32, 100437. [Google Scholar] [CrossRef]
- Mostafalou, S.; Mohammadi, P. Charcoal. Ref. Modul. Biomed. Sci. 2023. [Google Scholar] [CrossRef]
- Liu, X.; Tian, J.; Li, Y.; Sun, N.; Mi, S.; Xie, Y.; Chen, Z. Enhanced Dyes Adsorption from Wastewater via Fe3O4 Nanoparticles Functionalized Activated Carbon. J. Hazard. Mater. 2019, 373, 397–407. [Google Scholar] [CrossRef] [PubMed]
- El Maguana, Y.; Elhadiri, N.; Benchanaa, M.; Chikri, R. Activated Carbon for Dyes Removal: Modeling and Understanding the Adsorption Process. J. Chem. 2020, 2020, 2096834. [Google Scholar] [CrossRef]
- Jha, P.K.; Jha, V.K. Iodine Adsorption Characteristics of Activated Carbon Obtained from Spinacia Oleracea (Spinach) Leaves. Mong. J. Chem. 2020, 21, 1–11. [Google Scholar] [CrossRef]
- Klimaviciute, R.; Bendoraitiene, J.; Rutkaite, R.; Danilovas, P. Adsorption of Iodine on Cationic Cross-Linked Starches. Chemija 2011, 22, 188–196. [Google Scholar]
- Leicester, H.M. Tobias Lowitz—Discoverer of Basic Laboratory Methods. J. Chem. Educ. 1945, 22, 149. [Google Scholar] [CrossRef]
- Cecen, F.; Aktaş, Ö. Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment; Wiley-VCH: Weinheim, Germany, 2011; p. 388. ISBN 978-3-527-32471-2. [Google Scholar]
- Teng, H.; Yeh, T.S.; Hsu, L.Y. Preparation of Activated Carbon from Bituminous Coal with Phosphoric Acid Activation. Carbon 1998, 36, 1387–1395. [Google Scholar] [CrossRef]
- Wang, J.; Ma, J.; Sun, Y. Adsorption of Methylene Blue by Coal-Based Activated Carbon in High-Salt Wastewater. Water 2022, 14, 3576. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Jiang, B.; Yu, G.; Ren, B.; Zheng, H. One-Step Preparation of Activated Carbon for Coal Bed Methane Separation/Storage and Its Methane Adsorption Characteristics. ACS Omega 2022, 7, 45107–45119. [Google Scholar] [CrossRef]
- Rostamian, R.; Heidarpour, M.; Mousavi, S.F.; Afyuni, M. Characterization and Sodium Sorption Capacity of Biochar and Activated Carbon Prepared from Rice Hus; JKUAT: Juja, Kenya, 2018. [Google Scholar]
- Khuong, D.A.; Nguyen, H.N.; Tsubota, T. Activated Carbon Produced from Bamboo and Solid Residue by CO2 Activation Utilized as CO2 Adsorbents. Biomass Bioenergy 2021, 148, 106039. [Google Scholar] [CrossRef]
- Malini, K.; Selvakumar, D.; Kumar, N.S. Activated Carbon from Biomass: Preparation, Factors Improving Basicity and Surface Properties for Enhanced CO2 Capture Capacity—A Review. J. CO2 Util. 2023, 67, 102318. [Google Scholar] [CrossRef]
- Varma, R.S. Biomass-Derived Renewable Carbonaceous Materials for Sustainable Chemical and Environmental Applications. ACS Sustain. Chem. Eng. 2019, 7, 6458–6470. [Google Scholar] [CrossRef]
- Abuelnoor, N.; AlHajaj, A.; Khaleel, M.; Vega, L.F.; Abu-Zahra, M.R.M. Activated Carbons from Biomass-Based Sources for CO2 Capture Applications. Chemosphere 2021, 282, 131111. [Google Scholar] [CrossRef] [PubMed]
- Maniarasu, R.; Rathore, S.K.; Murugan, S. Potential of Using Biomass Based Activated Carbon for Carbon Dioxide Capture. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1130, 012022. [Google Scholar] [CrossRef]
- Feng, P.; Li, J.; Wang, H.; Xu, Z. Biomass-Based Activated Carbon and Activators: Preparation Activated Carbon from Corncob by Chemical Activation with Biomass Liquids. ACS Omega 2020, 5, 24064. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhao, N.; Lei, S.; Yan, R.; Tian, X.; Wang, J.; Song, Y.; Xu, D.; Guo, Q.; Liu, L. Promising Biomass-Based Activated Carbons Derived from Willow Catkins for High Performance Supercapacitors. Electrochim. Acta 2015, 166, 1–11. [Google Scholar] [CrossRef]
- Klass, D.L. Energy Consumption, Reserves, Depletion, and Environmental Issues. In Biomass for Renewable Energy, Fuels, and Chemicals; Academic Press: San Diego, CA, USA, 1998; pp. 1–27. [Google Scholar] [CrossRef]
- Yong, J.B.; Tan, L.S.; Tan, J. Comparative Life Cycle Assessment of Biomass-Based and Coal-Based Activated Carbon Production. Progress. Energy Environ. 2022, 20, 1–15. [Google Scholar] [CrossRef]
- Amstaetter, K.; Eek, E.; Cornelissen, G. Sorption of PAHs and PCBs to Activated Carbon: Coal versus Biomass-Based Quality. Chemosphere 2012, 87, 573–578. [Google Scholar] [CrossRef] [PubMed]
- Ekinci, E.; Budinova, T.; Yardim, F.; Petrov, N.; Razvigorova, M.; Minkova, V. Removal of Mercury Ion from Aqueous Solution by Activated Carbons Obtained from Biomass and Coals. Fuel Process Technol. 2002, 77–78, 437–443. [Google Scholar] [CrossRef]
- Zhao, C.; Ge, L.; Mai, L.; Chen, S.; Li, Q.; Yao, L.; Li, D.; Wang, Y.; Xu, C. Preparation and Performance of Coal-Based Activated Carbon Based on an Orthogonal Experimental Study. Energy 2023, 274, 127353. [Google Scholar] [CrossRef]
- Lee, C.L.; H’Ng, P.S.; Paridah, M.T.; Chin, K.L.; Rashid, U.; Maminski, M.; Go, W.Z.; Raja Nazrin, R.A.; Asyikin Rosli, S.N.; Khoo, P.S. Production of Bioadsorbent from Phosphoric Acid Pretreated Palm Kernel Shell and Coconut Shell by Two-Stage Continuous Physical Activation via N2 and Air. R. Soc. Open Sci. 2018, 5, 180775. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhang, L.; Zhao, B.; Qin, L.; Wang, Y.; Xing, F. The N-Doped Activated Carbon Derived from Sugarcane Bagasse for CO2 Adsorption. Ind. Crops Prod. 2018, 128, 290–297. [Google Scholar] [CrossRef]
- Bilgen, S. Structure and Environmental Impact of Global Energy Consumption. Renew. Sustain. Energy Rev. 2014, 38, 890–902. [Google Scholar] [CrossRef]
- Bian, Z.; Inyang, H.I.; Daniels, J.L.; Otto, F.; Struthers, S. Environmental Issues from Coal Mining and Their Solutions. Min. Sci. Technol. 2010, 20, 215–223. [Google Scholar] [CrossRef]
- Goswami, S. Impact of Coal Mining on Environment. Eur. Res. 2015, 3, 185–196. [Google Scholar] [CrossRef]
- Gan, Y.X. Activated Carbon from Biomass Sustainable Sources. J. Carbon Res. 2021, 7, 39. [Google Scholar] [CrossRef]
- Neme, I.; Gonfa, G.; Masi, C. Activated Carbon from Biomass Precursors Using Phosphoric Acid: A Review. Heliyon 2022, 8, e11940. [Google Scholar] [CrossRef]
- Mall, I.D.; Srivastava, V.C.; Agarwal, N.K.; Mishra, I.M. Removal of Congo Red from Aqueous Solution by Bagasse Fly Ash and Activated Carbon: Kinetic Study and Equilibrium Isotherm Analyses. Chemosphere 2005, 61, 492–501. [Google Scholar] [CrossRef]
- Bade, M.M.; Dubale, A.A.; Bebizuh, D.F.; Atlabachew, M. Highly Efficient Multisubstrate Agricultural Waste-Derived Activated Carbon for Enhanced CO2 Capture. ACS Omega 2022, 7, 18770–18779. [Google Scholar] [CrossRef]
- Ani, J.U.; Akpomie, K.G.; Okoro, U.C.; Aneke, L.E.; Onukwuli, O.D.; Ujam, O.T. Potentials of Activated Carbon Produced from Biomass Materials for Sequestration of Dyes, Heavy Metals, and Crude Oil Components from Aqueous Environment. Appl. Water Sci. 2020, 10, 1–11. [Google Scholar] [CrossRef]
- Amin, N.K. Removal of Reactive Dye from Aqueous Solutions by Adsorption onto Activated Carbons Prepared from Sugarcane Bagasse Pith. Desalination 2008, 223, 152–161. [Google Scholar] [CrossRef]
- Ozturk, M.; Saba, N.; Altay, V.; Iqbal, R.; Hakeem, K.R.; Jawaid, M.; Ibrahim, F.H. Biomass and Bioenergy: An Overview of the Development Potential in Turkey and Malaysia. Renew. Sustain. Energy Rev. 2017, 79, 1285–1302. [Google Scholar] [CrossRef]
- Business Potential of Coconut-Based Products in the Global Markets|FFTC Agricultural Policy Platform (FFTC-AP). Available online: https://ap.fftc.org.tw/article/3046 (accessed on 7 September 2023).
- Foo, K.Y.; Hameed, B.H. Preparation of Oil Palm (Elaeis) Empty Fruit Bunch Activated Carbon by Microwave-Assisted KOH Activation for the Adsorption of Methylene Blue. Desalination 2011, 275, 302–305. [Google Scholar] [CrossRef]
- Palm Oil in Malaysia|OEC—The Observatory of Economic Complexity. Available online: https://oec.world/en/profile/bilateral-product/palm-oil/reporter/mys?redirect=true (accessed on 8 September 2023).
- Wan Nik, W.B.; Rahman, M.M.; Yusof, A.; Ani, F.; Che Adnan, C. Production of Activated Carbon from Palm Oil Shell Waste and Its Adsorption Characteristics. In Proceedings of the 1st International Conference on Natural Resources, Engineering and Technology, Putrajaya, Malaysia, 24–25 July 2006; pp. 646–654. [Google Scholar]
- Abed Habeeb, O.; Kanthasamy, R.; Ali, G.A.M.; Mohd Yunus, R. Application of Response Surface Methodology for Optimization of Palm Kernel Shell Activated Carbon Preparation Factors for Removal of H2S from Industrial Waste Water. J. Teknol. (Sci. Eng.) 2017, 79, 2180–3722. [Google Scholar] [CrossRef]
- Liew, R.K.; Chong, M.Y.; Osazuwa, O.U.; Nam, W.L.; Phang, X.Y.; Su, M.H.; Cheng, C.K.; Chong, C.T.; Lam, S.S. Production of Activated Carbon as Catalyst Support by Microwave Pyrolysis of Palm Kernel Shell: A Comparative Study of Chemical versus Physical Activation. Res. Chem. Intermed. 2018, 44, 3849–3865. [Google Scholar] [CrossRef]
- Zainal, N.H.; Aziz, A.A.; Idris, J.; Jalani, N.F.; Mamat, R.; Ibrahim, M.F.; Hassan, M.A.; Abd-Aziz, S. Reduction of POME Final Discharge Residual Using Activated Bioadsorbent from Oil Palm Kernel Shell. J. Clean. Prod. 2018, 182, 830–837. [Google Scholar] [CrossRef]
- Shawal Nasri, N.; Jibril, M.; Abbas Ahmad Zaini, M.; Mohsin, R.; Usman Dadum, H.; Murtala Musa, A. Synthesis and Characterization of Bio-Based Porous Carbons by Two Step Physical Activation with CO2; Citeseer: University Park, PA, USA, 2014. [Google Scholar]
- Andas, J.; Rahman, M.L.A.; Yahya, M.S.M. Preparation and Characterization of Activated Carbon from Palm Kernel Shell. IOP Conf. Ser. Mater. Sci. Eng 2017, 226, 012156. [Google Scholar] [CrossRef]
- Lee, C.L.; Chin, K.L.; H’ng, P.S.; Hafizuddin, M.S.; Khoo, P.S. Activation Temperature and Particle Size of Palm Kernel Shell vs. the Surface Properties of Activated Carbon. Bioresources 2023, 18, 1714–1730. [Google Scholar] [CrossRef]
- Durán, I.; Álvarez-Gutiérrez, N.; Rubiera, F.; Pevida, C. Biogas Purification by Means of Adsorption on Pine Sawdust-Based Activated Carbon: Impact of Water Vapor. Chem. Eng. J. 2018, 353, 197–207. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Yang, R.; Li, G.; Hu, C. The Role of H3PO4 in the Preparation of Activated Carbon from NaOH-Treated Rice Husk Residue. RSC Adv. 2015, 5, 32626–32636. [Google Scholar] [CrossRef]
- Okman, I.; Karagöz, S.; Tay, T.; Erdem, M. Activated Carbons From Grape Seeds By Chemical Activation With Potassium Carbonate And Potassium Hydroxide. Appl. Surf. Sci. 2014, 293, 138–142. [Google Scholar] [CrossRef]
- Mohamad Nor, N.; Lau, L.C.; Lee, K.T.; Mohamed, A.R. Synthesis of Activated Carbon from Lignocellulosic Biomass and Its Applications in Air Pollution Control—A Review. J. Environ. Chem. Eng. 2013, 1, 658–666. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U.; Steele, P.H. Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy Fuels 2006, 20, 848–889. [Google Scholar] [CrossRef]
- Barelli, L.; Bidini, G.; de Arespacochaga, N.; Pérez, L.; Sisani, E. Biogas Use in High Temperature Fuel Cells: Enhancement of KOH-KI Activated Carbon Performance toward H2S Removal. Int. J. Hydrog. Energy 2017, 42, 10341–10353. [Google Scholar] [CrossRef]
- Montes, V.; Hill, J.M. Activated Carbon Production: Recycling KOH to Minimize Waste. Mater. Lett. 2018, 220, 238–240. [Google Scholar] [CrossRef]
- Zhao, H.; Zhong, H.; Jiang, Y.; Li, H.; Tang, P.; Li, D.; Feng, Y. Porous ZnCl2-Activated Carbon from Shaddock Peel: Methylene Blue Adsorption Behavior. Materials 2022, 15, 895. [Google Scholar] [CrossRef]
- Hock, P.E.; Zaini, M.A.A. Activated Carbons by Zinc Chloride Activation for Dye Removal—A Commentary. Acta Chim. Slovaca 2018, 11, 99–106. [Google Scholar] [CrossRef]
- Ogungbenro, A.E.; Quang, D.V.; Al-Ali, K.A.; Vega, L.F.; Abu-Zahra, M.R.M. Synthesis and Characterization of Activated Carbon from Biomass Date Seeds for Carbon Dioxide Adsorption. J. Environ. Chem. Eng. 2020, 8, 104257. [Google Scholar] [CrossRef]
- Wang, F. A Novel Magnetic Activated Carbon Produced via Hydrochloric Acid Pickling Water Activation for Methylene Blue Removal. J. Porous Mater. 2018, 25, 611–619. [Google Scholar] [CrossRef]
- Tan, I.W.; Abdullah, M.O.; Lim, L.L.P.; Yeo, T.H.C. Surface Modification and Characterization of Coconut Shell-Based Activated Carbon Subjected to Acidic and Alkaline Treatments. J. Appl. Sci. Process Eng. 2017, 4, 186–194. [Google Scholar] [CrossRef]
- Yang, H.M.; Zhang, D.H.; Chen, Y.; Ran, M.J.; Gu, J.C. Study on the Application of KOH to Produce Activated Carbon to Realize the Utilization of Distiller’s Grains. IOP Conf. Ser. Earth Environ. Sci. 2017, 69, 012051. [Google Scholar] [CrossRef]
- Bergna, D.; Varila, T.; Romar, H.; Lassi, U. Activated Carbon from Hydrolysis Lignin: Effect of Activation Method on Carbon Properties. Biomass Bioenergy 2022, 159, 106387. [Google Scholar] [CrossRef]
- Zhu, G.; Xing, X.; Wang, J.; Zhang, X. Effect of Acid and Hydrothermal Treatments on the Dye Adsorption Properties of Biomass-Derived Activated Carbon. J. Mater. Sci. 2017, 52, 7664–7676. [Google Scholar] [CrossRef]
- Ceyhan, A.A.; Şahin, Ö.; Saka, C.; Yalçin, A. A Novel Thermal Process for Activated Carbon Production from the Vetch Biomass with Air at Low Temperature by Two-Stage Procedure. J. Anal. Appl. Pyrolysis 2013, 104, 170–175. [Google Scholar] [CrossRef]
- Ahmed, M.J.; Theydan, S.K. Physical and Chemical Characteristics of Activated Carbon Prepared by Pyrolysis of Chemically Treated Date Stones and Its Ability to Adsorb Organics. Powder Technol. 2012, 229, 237–245. [Google Scholar] [CrossRef]
- Zakaria, R.; Jamalluddin, N.A.; Abu Bakar, M.Z. Effect of Impregnation Ratio and Activation Temperature on the Yield and Adsorption Performance of Mangrove Based Activated Carbon for Methylene Blue Removal. Results Mater. 2021, 10, 100183. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Utilization of Rice Husks as a Feedstock for Preparation of Activated Carbon by Microwave Induced KOH and K2CO3 Activation. Bioresour. Technol. 2011, 102, 9814–9817. [Google Scholar] [CrossRef]
- Wu, Q.F.; Zhang, F.S. A Clean Process for Activator Recovery during Activated Carbon Production from Waste Biomass. Fuel 2012, 94, 426–432. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Varjani, S.; Saravanan, A. A Critical Review on the Biochar Production Techniques, Characterization, Stability and Applications for Circular Bioeconomy. Biotechnol. Rep. 2020, 28, e00570. [Google Scholar] [CrossRef]
- Gayathiri, M.; Pulingam, T.; Lee, K.T.; Sudesh, K. Activated Carbon from Biomass Waste Precursors: Factors Affecting Production and Adsorption Mechanism. Chemosphere 2022, 294, 133764. [Google Scholar] [CrossRef]
- Mahato, N.; Sinha, M.; Sharma, K.; Koteswararao, R.; Cho, M.H. Modern Extraction and Purification Techniques for Obtaining High Purity Food-Grade Bioactive Compounds and Value-Added Co-Products from Citrus Wastes. Foods 2019, 8, 523. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, Y. Recent Progress in the Conversion of Biomass Wastes into Functional Materials for Value-Added Applications. Sci. Technol. Adv. Mater. 2020, 21, 787. [Google Scholar] [CrossRef] [PubMed]
- Firdaus, R.M.; Desforges, A.; Emo, M.; Mohamed, A.R.; Vigolo, B. Physical and Chemical Activation of Graphene-Derived Porous Nanomaterials for Post-Combustion Carbon Dioxide Capture. Nanomaterials 2021, 11, 2419. [Google Scholar] [CrossRef] [PubMed]
- Blankenship, L.S.; Mokaya, R. Modulating the Porosity of Carbons for Improved Adsorption of Hydrogen, Carbon Dioxide, and Methane: A Review. Mater. Adv. 2022, 3, 1905–1930. [Google Scholar] [CrossRef]
Precursor | BET Value (m2/g) | Micropore Volume (cm3/g) | References |
---|---|---|---|
Coal-based | |||
Solumnar coal | 334.27 | 0.93 | [48] |
CBAC | 165.815 | 0.006 | [34] |
Biomass-based | |||
Coconut shell | 1687 | 0.79 | [49] |
Sugarcane bagasse | 1113 | 0.5 | [50] |
Apricot stones | 1000 | n.a | [46] |
Palm kernel shell | 465 | 0.63 | [49] |
Biomass Type | Characteristics | References |
---|---|---|
Rice Husk | strong sodium adsorption capabilities 134.2 mg/g) | [36] |
Sugarcane Bagasse Pith | capability for adsorbing Congo red and reactive orange dyes | [56] |
Wood Waste | can separate a wide range of organic and inorganic pollutants | [7] |
Kernel-Based | Fiber-Based | Shell-Based |
---|---|---|
- Desiccated coconut | - Coconut fiber | - Activated carbon |
- Powdered coconut | - Coconut fiber products | - Charcoal |
- Coconut milk | ||
- Copra | ||
- Copra meal | ||
- Coconut oil | ||
- Fresh coconut | ||
- Young coconut |
Countries | 2016 | 2017 | 2018 | 2019 | 2020 |
---|---|---|---|---|---|
China | 6,777,949 | 10,220,273 | 12,022,593 | 16,194,192 | 8,367,683 |
Japan | 0 | 32,101,774 | 44,771,065 | 58,632,491 | 36,040,141 |
Indonesia | 1,246,959 | 237,580 | 3,329,247 | 3,895,019 | 2,239,971 |
Philippines | 935,938 | 1,174,205 | 1,459,667 | 1,207,539 | 1,463,244 |
Singapore | 1,928,691 | 1,926,385 | 2,366,837 | 2,789,879 | 2,305,071 |
Thailand | 5,207,938 | 4,677,472 | 4,046,799 | 4,358,462 | 4,798,868 |
Vietnam | 4,207,343 | 5,532,209 | 5,814,425 | 5,875,996 | 4,007,583 |
Other countries | 33,236,910 | 38,164,625 | 37,625,715 | 48,625,590 | 47,923,918 |
TOTAL | 86,518,473 | 99,492,247 | 111,436,348 | 141,577,168 | 107,146,479 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chew, T.W.; H’Ng, P.S.; Luqman Chuah Abdullah, B.C.T.G.; Chin, K.L.; Lee, C.L.; Mohd Nor Hafizuddin, B.M.S.; TaungMai, L. A Review of Bio-Based Activated Carbon Properties Produced from Different Activating Chemicals during Chemicals Activation Process on Biomass and Its Potential for Malaysia. Materials 2023, 16, 7365. https://doi.org/10.3390/ma16237365
Chew TW, H’Ng PS, Luqman Chuah Abdullah BCTG, Chin KL, Lee CL, Mohd Nor Hafizuddin BMS, TaungMai L. A Review of Bio-Based Activated Carbon Properties Produced from Different Activating Chemicals during Chemicals Activation Process on Biomass and Its Potential for Malaysia. Materials. 2023; 16(23):7365. https://doi.org/10.3390/ma16237365
Chicago/Turabian StyleChew, Tung Woey, Paik San H’Ng, Bin Chuah Teong Guan Luqman Chuah Abdullah, Kit Ling Chin, Chuan Li Lee, Bin Mohd Sahfani Mohd Nor Hafizuddin, and Lulu TaungMai. 2023. "A Review of Bio-Based Activated Carbon Properties Produced from Different Activating Chemicals during Chemicals Activation Process on Biomass and Its Potential for Malaysia" Materials 16, no. 23: 7365. https://doi.org/10.3390/ma16237365
APA StyleChew, T. W., H’Ng, P. S., Luqman Chuah Abdullah, B. C. T. G., Chin, K. L., Lee, C. L., Mohd Nor Hafizuddin, B. M. S., & TaungMai, L. (2023). A Review of Bio-Based Activated Carbon Properties Produced from Different Activating Chemicals during Chemicals Activation Process on Biomass and Its Potential for Malaysia. Materials, 16(23), 7365. https://doi.org/10.3390/ma16237365