Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Powder Characterization
3.2. Initial Microstructure
3.3. Friction Performance
3.4. Electrochemical Performance
4. Conclusions
- (1)
- Sintering temperature had an important influence on the grain size, eutectic silicon size, and previous particle boundaries of AlSi10Mg alloys. The optimum sintering temperature was 525 °C, its resulting grain size was 9 μm, and the eutectic silicon size was 2 μm, which was uniformly dispersed in the matrix.
- (2)
- The AlSi10Mg alloy sintered at 525 °C exhibited excellent friction and wear properties. Its friction coefficient was 0.29, which was decreased by 22% compared to AlSi10Mg alloy sintered at 475 °C. The friction and wear mechanism of AlSi10Mg alloy was adhesive wear, and grain refinement and homogeneously precipitated micro-scale eutectic silicon can effectively improve wear resistance.
- (3)
- The AlSi10Mg alloy sintered at 500 °C exhibited excellent electrochemical performance based on the Icorr and Ecorr. Corrosion mainly occurred around eutectic silicon as well as the corrosion cracks due to the potential difference between eutectic silicon and the matrix.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kasprzak, W.; Amirkhiz, B.S.; Niewczas, M. Structure and properties of cast Al–Si based alloy with Zr–V–Ti additions and its evaluation of high temperature performance. J. Alloys Compd. 2014, 595, 67–79. [Google Scholar] [CrossRef]
- Cardinale, A.M.; Maccio, D.; Luciano, G.; Canepa, E.; Traverso, P. Thermal and corrosion behavior of as cast Al-Si alloys with rare earth elements. J. Alloys Compd. 2017, 695, 2180–2189. [Google Scholar] [CrossRef]
- Yang, X.K.; Zhang, L.W.; Zhang, S.Y.; Liu, M.; Zhou, K.; Mu, X.L. Properties degradation and atmospheric corrosion mechanism of 6061 aluminum alloy in industrial and marine atmosphere environments. Mater. Corros. 2016, 68, 529–535. [Google Scholar] [CrossRef]
- Lee, H.S.; Jeon, K.Y.; Kim, H.Y.; Hong, S.H. Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications. J. Mater. Sci. 2000, 35, 6231–6236. [Google Scholar] [CrossRef]
- Hun, C.; Chiu, Y.J.; Luo, Z.; Chen, C.; Chen, S. A New Technique for Batch Production of Tubular Anodic Aluminum Oxide Films for Filtering Applications. Appl. Sci. 2018, 8, 1055. [Google Scholar] [CrossRef]
- Yan, D.D.; Chen, S.M.; Gao, W.Q. Numerical Analysis and Defect Prediction of Gravity Casting for Automotive AlSi7Mg Turbocharger. Foundry Technol. 2018, 39, 2289–2291. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, S.; Wei, Z.; Bai, P. The Relationship between Residual Amount of Sr and Morphology of Eutectic Si Phase in A356 Alloy. Materials 2019, 12, 3222. [Google Scholar] [CrossRef]
- Xiao, Y.H.; Cheng, Y.Q.; Chen, Y.H.; Yuan, B.L.; He, Z.Y.; Mai, X.G. Effect of Sm on Mechanical Properties and Thermal Conductivity of Sr/B Compound Modified A356 Aluminum Alloy. Hot Work. Technol. 2022, 51, 55–59. [Google Scholar] [CrossRef]
- Reeturaj, T.; Amit, B.; Hemant, B. Effect of Addition of Grain Refiner and Modifier on Microstructural and Mechanical Properties of Squeeze Cast A356 Alloy. Trans. Indian Inst. Met. 2022, 75, 2395–2408. [Google Scholar] [CrossRef]
- He, B.; Qin, M.; Wu, L. Research Progress of Rate Earth Lanthanum on Microstructure Modification of A356 Aluminum Alloy. Hot Work. Technol. 2023. [Google Scholar] [CrossRef]
- Jia, P.; Hua, X.; Zhang, J.Y.; Teng, X.Y.; Gao, G.G.; Zhao, D.G.; Yang, Z.X.; Zuo, M.; Zhang, S.; Hu, G.Z. Strengthening effects of Y and Sr on Al–9Si–0.5Mg alloy. Mater. Res. Express 2018, 6, 016538. [Google Scholar] [CrossRef]
- Yin, X.; Yin, D.F.; Wang, K.X.; Li, J.L.; Chi, G.M.; Cao, H.Q. Effect of 0.2%Sn addition on microstructure and mechanical properties of Al-Si-Mg alloy. Heat Treat. Met. 2020, 45, 16–21. [Google Scholar] [CrossRef]
- Wang, R.Y.; Lu, W.H. Spheroidization of Eutectic Silicon in Direct-Electrolytic Al-Si Alloy. Metall. Mater. Trans. A 2013, 44, 2799–2809. [Google Scholar] [CrossRef]
- Öztürk, İ.; Ağaoğlu, G.H.; Erzi, E.; Dispinar, D.; Orhan, G. Corrosion Behavior of B and Ti Grain-Refined Sr-Modified A356. J. Mater. Eng. Perform. 2018, 27, 5197–5204. [Google Scholar] [CrossRef]
- Kim, S.B.; Kim, D.H.; Kang, J.W.; Koo, T.M.; Lee, Y.S.; Lee, J.Y.; Cho, Y.H.; Lee, J.M. Role of Ultrasonic Melt Treatment in the Improvement of Corrosion Resistance of Al–7Si–0.4Mg Cast Alloy. Met. Mater. Int. 2023, 29, 705–714. [Google Scholar] [CrossRef]
- Du, K.; Song, L.; Huang, S.; Yuan, X. Influence of Modification on Flow Stress Behavior and Corrosive Properties of a Hypoeutectic Al-Si Alloy. Materials 2022, 15, 2697. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.Z.; Xu, C.X.; Zhang, J.S.; Yang, Y.J.; Li, W.H. Effect of Al-Mn-Ti-P-Cu and Mg on microstructure and wear resistance of hypereutectic Al-25Si alloy. Chin. J. Nonferrous Met. 2011, 21, 3002–3010. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Zhang, Z.Y.; Zhao, Y.T.; Mu, S.Y.; Xu, J.S.; Zhang, T. Study on the grain refinement of A356 alloy by Al-3wt-% VN master alloy. Mater. Sci. Technol. 2020, 36, 819–826. [Google Scholar] [CrossRef]
- Zhang, X.L.; Liu, J.H.; Li, W.S.; Zhou, H.T. Effect of Sr-Ce modification on the microstructure and mechanical properties of A356 alloy. Int. J. Met. 2022, 17, 1008–1020. [Google Scholar] [CrossRef]
- Lu, S.; Du, R.; Liu, J.; Chen, L.; Wu, S. A new fast heat treatment process for cast A356 alloy motorcycle wheel hubs. China Foundry 2018, 15, 11–16. [Google Scholar] [CrossRef]
- Ragab, K.A.; Samuel, A.M.; Al-Ahmari, A.M.A.; Samuel, F.H.; Doty, H.W. Effect of Multi-Temperature Aging on the Characterization of Aluminum Based Castings Heat Treated Using Fluidized Bed Technique. Met. Mater. Int. 2013, 19, 783–802. [Google Scholar] [CrossRef]
- Emamy, M.; Malekan, M.; Pourmonshi, A.H.; Tavighi, K. The influence of heat treatment on the structure and tensile properties of thin-section A356 aluminum alloy casts refined by Ti, B and Zr. J. Mater. Res. 2017, 32, 3540–3547. [Google Scholar] [CrossRef]
- Sun, X.X. The effects of solution treatment on friction and wear properties of 2A12 aluminum alloy. Ordnance Mater. Sci. Eng. 2020, 43, 109–113. [Google Scholar] [CrossRef]
- Xia, T.D.; Peng, F.Q.; Zhao, W.J.; Zhang, Z.H. Study on Dry Tribological Behavior of Several Deformed Aluminum Alloy against Stainless Steel. Hot Work. Process 2010, 39, 53–56+61. [Google Scholar] [CrossRef]
- Basavakumar, K.G.; Mukunda, P.G.; Chakraborty, M. Influence of grain refinement and modification on dry sliding wear behaviour of Al-7Si and Al-7Si-2.5Cu cast alloys. J. Mater. Process. Technol. 2007, 186, 236–245. [Google Scholar] [CrossRef]
- Hugo, M.A.; Tamires, M.B.; Carolina, R.B.; Adrina, P.S.; Thiago, A.C.; Rocha, O.L. Study of Dry Wear Behavior and Resistance in Samples of a Horizontally Solidified and T6/Heat-Treated Automotive AlSiMg Alloy. Tribol. Lett. 2020, 68, 60. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, S.Q.; Yang, Z.X.; Zhang, C.Q. The influence of porosity and precipitates on the corrosion behavior of A356 aluminum alloy. J. Electroanal. Chem. 2023, 948, 117796. [Google Scholar] [CrossRef]
- Huang, Y.W. Review on Corrosion of Aluminum and Aluminum Alloys and the Influencing Factors. Shanghai Nonferrous Met. 2012, 33, 89–95. [Google Scholar] [CrossRef]
- Kairy, S.K.; Turk, S.; Birbilis, N.; Shekhter, A. The role of microstructure and microchemistry on intergranular corrosion of aluminium alloy AA7085-T7452. Corros. Sci. 2018, 143, 414–427. [Google Scholar] [CrossRef]
- Fu, H.; Wang, W.; Chen, X.J.; Pia, G.; Li, J.X. Grain boundary design based on fractal theory to improve intergranular corrosion resistance of TWIP steels. Mater. Des. 2020, 185, 108253. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Zhang, J.X.; Gu, X.H.; Qin, P.; Dai, N.W.; Li, X.P.; Kruth, J.P.; Zhang, L.C. Improved corrosion behavior of ultrafine-grained eutectic Al-12Si alloy produced by selective laser melting. Mater. Des. 2018, 146, 239–248. [Google Scholar] [CrossRef]
AlSi10Mg | Al | Si | Mg | Fe | Cu | Mn | Ti | Zn |
---|---|---|---|---|---|---|---|---|
Standard | Margin | 9~11 | 0.2~0.45 | ≤0.55 | ≤0.05 | ≤0.45 | ≤0.15 | ≤0.10 |
Area 1 | 85.07 | 12.74 | 0.97 | 0.38 | 0.39 | 0.17 | 0.11 | 0.16 |
Spot 1 | 85.92 | 11.50 | 1.10 | 0.54 | 0.56 | 0.16 | 0.09 | 0.12 |
at% | Al | Si | Mg | Fe | Cu | Mn | Ti | Zn |
---|---|---|---|---|---|---|---|---|
Area 1 | 95.21 | 3.38 | 1.06 | 0.07 | 0.12 | 0.05 | 0.04 | 0.07 |
Spot 1 | 96.37 | 2.15 | 1.04 | 0.09 | 0.10 | 0.10 | 0.06 | 0.08 |
Spot 2 | 9.40 | 90.11 | 0.11 | 0.06 | 0.15 | 0.08 | 0.02 | 0.07 |
Positions | N | O | Mg | Al | Si |
---|---|---|---|---|---|
Point 1 | 0.33 | 0.45 | 0.79 | 95.93 | 2.51 |
Point 2 | 0.06 | 1.98 | 0.84 | 72.66 | 24.47 |
Point 3 | 5.73 | 34.24 | 0.01 | 47.53 | 12.49 |
Point 4 | 0.06 | 3.86 | 0.67 | 66.18 | 29.22 |
Point 5 | 1.90 | 26.56 | 0.20 | 64.00 | 7.34 |
Point 6 | 4.92 | 34.63 | 0.42 | 49.97 | 10.06 |
Point 7 | 0.72 | 8.82 | 0.47 | 83.53 | 6.45 |
Point 8 | 1.05 | 12.65 | 0.19 | 72.49 | 13.62 |
Sintering Temperature/°C | Icorr/A·cm−2 | Ecorr/V | Rs/(Ω·cm−2) | CPEdl-T/10−6/(F·cm−2) | CPEdl-P | Rct/(Ω·cm−2) |
---|---|---|---|---|---|---|
475 | 6.23 × 10−6 | −0.65 | 30.30 | 8.48 | 0.86 | 5148 |
500 | 1.33 × 10−6 | −0.57 | 26.59 | 1.37 | 0.86 | 18,431 |
525 | 1.87 × 10−6 | −0.58 | 28.14 | 3.16 | 0.81 | 16,712 |
550 | 4.51 × 10−6 | −0.62 | 24.77 | 8.61 | 0.76 | 7630 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rong, G.; Xin, W.; Zhou, M.; Ma, T.; Wang, X.; Jiang, X. Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering. Materials 2023, 16, 7394. https://doi.org/10.3390/ma16237394
Rong G, Xin W, Zhou M, Ma T, Wang X, Jiang X. Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering. Materials. 2023; 16(23):7394. https://doi.org/10.3390/ma16237394
Chicago/Turabian StyleRong, Guangfei, Wenjie Xin, Minxu Zhou, Tengfei Ma, Xiaohong Wang, and Xiaoying Jiang. 2023. "Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering" Materials 16, no. 23: 7394. https://doi.org/10.3390/ma16237394
APA StyleRong, G., Xin, W., Zhou, M., Ma, T., Wang, X., & Jiang, X. (2023). Exploring Microstructure, Wear Resistance, and Electrochemical Properties of AlSi10Mg Alloy Fabricated Using Spark Plasma Sintering. Materials, 16(23), 7394. https://doi.org/10.3390/ma16237394