Fabrication of Liquid Crystalline Polyurethane/Polyhedral Oligomeric Silsesquioxane Nanofibers via Electrospinning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Scanning Electron Microscopy (SEM)
2.2.2. Differential Scanning Calorimetry (DSC)
2.2.3. X-ray Diffraction (XRD)
2.2.4. SAXS
2.2.5. Dynamic Mechanical Analysis (DMA)
2.2.6. Tensile Strength
3. Results and Discussion
3.1. Morphological Study
3.2. X-ray Studies
3.3. Calorimetric Study
3.4. Thermomechanical Study
3.5. Mechanical Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhardwaj, N.; Kundu, S.C. Electrospinning: A Fascinating Fiber Fabrication Technique. Biotechnol. Adv. 2010, 28, 325–347. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Xin, H.; Li, D.; Zhao, Y.; Shi, L.; Lin, Y.; Yu, J.; Yu, Z.; Zhu, C.; et al. Coaxial Electrospinning Synthesis Hollow Mo2C@C Core-Shell Nanofibers for High-Performance and Long-Term Lithium-Ion Batteries. Appl. Surf. Sci. 2019, 473, 352–358. [Google Scholar] [CrossRef]
- Li, L.; Peng, S.; Lee, J.K.Y.; Ji, D.; Srinivasan, M.; Ramakrishna, S. Electrospun Hollow Nanofibers for Advanced Secondary Batteries. Nano Energy 2017, 39, 111–139. [Google Scholar] [CrossRef]
- Silva, P.E.S.; Vistulo De Abreu, F.; Godinho, M.H. Shaping Helical Electrospun Filaments: A Review. Soft Matter 2017, 13, 6678–6688. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Thomas, N.L. Fabrication of Porous Fibers via Electrospinning: Strategies and Applications. Polym. Rev. 2020, 60, 595–647. [Google Scholar] [CrossRef]
- Scaffaro, R.; Lopresti, F.; Botta, L.; Rigogliuso, S.; Ghersi, G. Melt Processed PCL/PEG Scaffold with Discrete Pore Size Gradient for Selective Cellular Infiltration. Macromol. Mater. Eng. 2016, 301, 182–190. [Google Scholar] [CrossRef]
- Anjum, S.; Rahman, F.; Pandey, P.; Arya, D.K.; Alam, M.; Rajinikanth, P.S.; Ao, Q. Electrospun Biomimetic Nanofibrous Scaffolds: A Promising Prospect for Bone Tissue Engineering and Regenerative Medicine. Int. J. Mol. Sci. 2022, 23, 9206. [Google Scholar] [CrossRef] [PubMed]
- Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors 2020, 20, 5214. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Jia, Z.; Liu, T.; Wei, G.; Su, Z. Electrospinning Nanoparticles-Based Materials Interfaces for Sensor Applications. Sensors 2019, 19, 3977. [Google Scholar] [CrossRef]
- Kim, D.K.; Hwang, M.; Lagerwall, J.P.F. Liquid Crystal Functionalization of Electrospun Polymer Fibers. J. Polym. Sci. Polym. Phys. 2013, 51, 855–867. [Google Scholar] [CrossRef]
- Singh, U.; Davis, F.; Mohan, S.; Mitchell, G. Electro-Active Nanofibres Electrospun from Blends of Poly-Vinyl Cinnamate and a Cholesteric Liquid Crystalline Silicone Polymer. J. Mater. Sci. 2013, 48, 7613–7619. [Google Scholar] [CrossRef]
- Rosu, C.; Manaila Maximean, D.; Kundu, S.; Almeida, P.L.; Danila, O. Perspectives on the Electrically Induced Properties of Electrospun Cellulose/Liquid Crystal Devices. J. Electrostat. 2011, 69, 623–630. [Google Scholar] [CrossRef]
- Enz, E.; Lagerwall, J. Electrospun Microfibres with Temperature Sensitive Iridescence from Encapsulated Cholesteric Liquid Crystal. J. Mater. Chem. 2010, 20, 6866–6872. [Google Scholar] [CrossRef]
- Krause, S.; Dersch, R.; Wendorff, J.H.; Finkelmann, H. Photocrosslinkable Liquid Crystal Main-Chain Polymers: Thin Films and Electrospinning. Macromol. Rapid Commun. 2007, 28, 2062–2068. [Google Scholar] [CrossRef]
- Thum, M.D.; Ratchford, D.C.; Casalini, R.; Wynne, J.H.; Lundin, J.G. Azobenzene-Doped Liquid Crystals in Electrospun Nanofibrous Mats for Photochemical Phase Control. ACS Appl. Nano Mater. 2021, 4, 297–304. [Google Scholar] [CrossRef]
- Kye, Y.; Kim, C.; Lagerwall, J. Multifunctional Responsive Fibers Produced by Dual Liquid Crystal Core Electrospinning. J. Mater. Chem. C 2015, 3, 8979–8985. [Google Scholar] [CrossRef]
- Zhang, Z.; Bolshakov, A.; Han, J.; Zhu, J.; Yang, K.L. Electrospun Core-Sheath Fibers with a Uniformly Aligned Polymer Network Liquid Crystal (PNLC). ACS Appl. Mater. Interfaces 2022, 15, 14800–14809. [Google Scholar] [CrossRef] [PubMed]
- Fadil, F.; Affandi, N.D.N.; Misnon, M.I.; Bonnia, N.N.; Harun, A.M.; Alam, M.K. Review on Electrospun Nanofiber-Applied Products. Polymers 2021, 13, 2087. [Google Scholar] [CrossRef] [PubMed]
- Vahabi, H.; Wu, H.; Saeb, M.R.; Koo, J.H.; Ramakrishna, S. Electrospinning for Developing Flame Retardant Polymer Materials: Current Status and Future Perspectives. Polymer 2021, 217, 123466. [Google Scholar] [CrossRef]
- Senthil Muthu Kumar, T.; Senthil Kumar, K.; Rajini, N.; Siengchin, S.; Ayrilmis, N.; Varada Rajulu, A. A Comprehensive Review of Electrospun Nanofibers: Food and Packaging Perspective. Compos. Eng. 2019, 175, 107074. [Google Scholar] [CrossRef]
- Renner-Rao, M.; Clark, M.; Harrington, M.J. Fiber Formation from Liquid Crystalline Collagen Vesicles Isolated from Mussels. Langmuir 2019, 35, 15992–16001. [Google Scholar] [CrossRef]
- Yuan, G.; Li, B.; Li, X.; Dong, Z.; Hu, W.; Westwood, A.; Cong, Y.; Zhang, J. Effect of Liquid Crystalline Texture of Mesophase Pitches on the Structure and Property of Large-Diameter Carbon Fibers. ACS Omega 2019, 4, 1095–1102. [Google Scholar] [CrossRef]
- Zhang, J.; Uzun, S.; Seyedin, S.; Lynch, P.A.; Akuzum, B.; Wang, Z.; Qin, S.; Alhabeb, M.; Shuck, C.E.; Lei, W.; et al. Additive-Free MXene Liquid Crystals and Fibers. ACS Cent. Sci. 2020, 6, 254–265. [Google Scholar] [CrossRef] [PubMed]
- Visakh, P.M. Liquid Crystal Polymer Nanocomposites: Challenges and Opportunities; Woodhead Publishing: Sawston, UK, 2022; pp. 1–22. [Google Scholar] [CrossRef]
- Bukowczan, A.; Hebda, E.; Pielichowski, K. The Influence of Nanoparticles on Phase Formation and Stability of Liquid Crystals and Liquid Crystalline Polymers. J. Mol. Liq. 2021, 321, 114849. [Google Scholar] [CrossRef]
- Cicala, G.; Blanco, I.; Latteri, A.; Ognibene, G.; Bottino, F.A.; Fragalà, M.E. PES/POSS Soluble Veils as Advanced Modifiers for Multifunctional Fiber Reinforced Composites. Polymers 2017, 9, 281. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Dumée, L.F. Polyhedral Oligomeric Silsesquioxane (POSS) Nano-Composite Separation Membranes—A Review. Adv. Eng. Mater. 2019, 21, 1800667. [Google Scholar] [CrossRef]
- Zhou, H.; Chua, M.H.; Xu, J. Functionalized POSS-based hybrid composites. In Polymer Composites with Functionalized Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2019; pp. 179–210. [Google Scholar] [CrossRef]
- Kuo, S.-W.; Chang, F.-C. POSS Related Polymer Nanocomposites. Prog. Polym. Sci. 2011, 36, 1649. [Google Scholar] [CrossRef]
- Joshi, M.; Butola, S.B. Polymeric Nanocomposites—Polyhedral Oligomeric Silsesquioxanes (POSS) as Hybrid Nanofiller. J. Macromol. Sci. Polym. Rev. 2004, 44, 389. [Google Scholar] [CrossRef]
- Blanco, I. The Rediscovery of POSS: A Molecule Rather than a Filler. Polymers 2018, 10, 904. [Google Scholar] [CrossRef]
- Niu, W.; Wang, Y.; Wang, M.; Chen, M.; Luo, M.; Xie, C.; Leng, T.; Cheng, W.; Lei, B. POSS nanocomposites for biological applications. In Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 449–470. [Google Scholar] [CrossRef]
- Majka, T.M.; Raftopoulos, K.N.; Pielichowski, K. The Influence of POSS Nanoparticles on Selected Thermal Properties of Polyurethane-Based Hybrids. J. Therm. Anal. Calorim. 2018, 133, 289–301. [Google Scholar] [CrossRef]
- Teng, S.; Qiu, Z. Enhanced Crystallization and Mechanical Properties of Biodegradable Poly(Ethylene Succinate) by Octaisobutyl-Polyhedral Oligomeric Silsesquioxanes in Their Nanocomposites. Thermochim. Acta 2017, 649, 22–30. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, N.; Yan, J.; Kang, W.; Ju, J.; Wang, L.; Li, Z.; Cheng, B. Effect of OctaphenylPolyhedral Oligomeric Silsesquioxane on the Electrospun Poly-m-Phenylene Isophthalamid Separators for Lithium-Ion Batteries with High Safety and Excellent Electrochemical Performance. Chem. Eng. J. 2019, 356, 11–21. [Google Scholar] [CrossRef]
- Chen, H.L.; Jiao, X.N. Preparation and Characterization of Polyvinylidene Fluoride/Octaphenyl-Polyhedral Oligomeric Silsesquioxane Hybrid Lithium-Ion Battery Separators by Electrospinning. Solid State Ionics 2017, 310, 134–142. [Google Scholar] [CrossRef]
- Deng, N.; Wang, L.; Liu, Y.; Zhong, C.; Kang, W.; Cheng, B. Functionalized Polar Octa(γ-Chloropropyl) Polyhedral Oligomeric Silsesquioxane Assisted Polyimide Nanofiber Composite Membrane with Excellent Ionic Conductivity and Wetting Mechanical Strength towards Enhanced Lithium-Ion Battery. Compos. Sci. Technol. 2020, 192, 108080. [Google Scholar] [CrossRef]
- Cozza, E.S.; Bruzzo, V.; Carniato, F.; Marsano, E.; Monticelli, O. On a Novel Catalytic System Based on Electrospun Nanofibers and M-POSS. ACS Appl. Mater. Interfaces 2012, 4, 604–607. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.; Zhao, J.; Leng, Y.; Jiang, P.; Zhang, C. Novel Porous and Hydrophobic POSS-Ionic Liquid Polymeric Hybrid as Highly Efficient Solid Acid Catalyst for Synthesis of Oleate. Catal. Commun. 2016, 83, 27–30. [Google Scholar] [CrossRef]
- Leng, Y.; Liu, J.; Jiang, P.; Wang, J. POSS-Derived Mesostructured Amphiphilic Polyoxometalate-Based Ionic Hybrids as Highly Efficient Epoxidation Catalysts. ACS Sustain. Chem. Eng. 2015, 3, 170–176. [Google Scholar] [CrossRef]
- Yang, K.; Ma, X.; Sun, K.; Liu, Y.; Chen, F. Electrospun Octa(3-Chloropropyl)-Polyhedral Oligomeric Silsesquioxane-Modified Polyvinylidene Fluoride/Poly(Acrylonitrile)/Poly(Methylmethacrylate) Gel Polymer Electrolyte for High-Performance Lithium Ion Battery. J. Solid State Electrochem. 2018, 22, 441–452. [Google Scholar] [CrossRef]
- Song, X.; Wang, Z.; Zhao, F.; Sun, Y.; Cheng, B.; Xing, J. A Separator with a Novel Thermal Crosslinking Structure Based on Electrospun PI/A-POSS for Lithium-Ion Battery with High Safety and Outstanding Electrochemical Performance. Adv. Mater. Interfaces 2021, 8, 2100458. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Sun, K.; Yang, K.; Chen, F. Preparation and Characterization of Gel Polymer Electrolyte Based on Electrospun Polyhedral Oligomeric Silsesquioxane-Poly(Methyl Methacrylate)8/Polyvinylidene Fluoride Hybrid Nanofiber Membranes for Lithium-Ion Batteries. J. Solid State Electrochem. 2018, 22, 581–590. [Google Scholar] [CrossRef]
- Choi, J.; Lee, K.M.; Wycisk, R.; Pintauro, P.N.; Mather, P.T. Sulfonated Polysulfone/POSS Nanofiber Composite Membranes for PEM Fuel Cells. J. Electrochem. Soc. 2010, 157, B914. [Google Scholar] [CrossRef]
- Władyczyn, A.; Simiczyjew, A.; Nowak, D.; Wądzyńska, J.; John, Ł. Novel Hybrid Composites Based on Double-Decker Silsesquioxanes Functionalized by Methacrylate Derivatives and Polyvinyl Alcohol as Potential Materials Utilized in Biomedical Applications. Biomater. Adv. 2023, 146, 213290. [Google Scholar] [CrossRef] [PubMed]
- Monticelli, O.; Putti, M.; Gardella, L.; Cavallo, D.; Basso, A.; Prato, M.; Nitti, S. New Stereocomplex PLA-Based Fibers: Effect of POSS on Polymer Functionalization and Properties. Macromolecules 2014, 47, 4718–4727. [Google Scholar] [CrossRef]
- Kim, K.O.; Kim, B.S.; Lee, K.H.; Park, Y.H.; Kim, I.S. Osteoblastic Cells Culture on Electrospun Poly(ε-Caprolacton) Scaffolds Incorporating Amphiphilic PEG-POSS Telechelic. J. Mater. Sci. Mater. Med. 2013, 24, 2029–2036. [Google Scholar] [CrossRef] [PubMed]
- Ha, Y.M.; Amna, T.; Kim, M.H.; Kim, H.C.; Hassan, S.S.M.; Khil, M.S. Novel Silicificated PVAc/POSS Composite Nanofibrous Mat via Facile Electrospinning Technique: Potential Scaffold for Hard Tissue Engineering. Colloids Surfaces B Biointerfaces 2013, 102, 795–802. [Google Scholar] [CrossRef]
- Bauer, A.J.P.; Wu, Y.; Li, B. Electrospun Poly(ϵ-Caprolactone)/Polyhedral Oligomeric Silsesquioxane-Based Copolymer Blends: Evolution of Fiber Internal Structures. Macromol. Biosci. 2016, 16, 705–716. [Google Scholar] [CrossRef]
- Hao, W.; Fang, C.; Yu, J.; Zhang, L.; Xue, T.; Yang, W. Polyurethane Electrospun Mats Strengthened and Toughened by Physically Blended Polyhedral Oligomeric Silsesquioxane. J. Appl. Polym. Sci. 2014, 131, 40902. [Google Scholar] [CrossRef]
- Song, X.; Li, T.; Cheng, B.; Xing, J. POSS-PU Electrospinning Nanofibers Membrane with Enhanced Blood Compatibility. RSC Adv. 2016, 6, 65756–65762. [Google Scholar] [CrossRef]
- Bukowczan, A.; Hebda, E.; Czajkowski, M.; Pielichowski, K. The Synthesis and Properties of Liquid Crystalline Polyurethanes, Chemically Modified by Polyhedral Oligomericsilsesquioxanes. Molecules 2019, 24, 4013. [Google Scholar] [CrossRef]
- Bukowczan, A.; Raftopoulos, K.N.; Czajkowski, M.; Szefer, E.; Hebda, E.; Pielichowski, K. Liquid Crystalline Polyurethanes Modified by Trisilanolisobutyl-POSS. J. Mol. Liq. 2022, 348, 118069. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- ISO 527-3; Plastics Determination of Tensile Properties Part 3: Test Conditions for Films and Sheets. International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/70307.html (accessed on 2 November 2023).
- ISO 37:2017; Rubber, Vulcanized or Thermoplastic Determination of Tensile Stress-Strain Properties. International Organization for Standardization: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/68116.html (accessed on 2 November 2023).
- Zhang, Q.; Liu, Y.; Ma, J.; Zhang, M.; Ma, X.; Chen, F. Preparation and Characterization of Polypropylene Supported Electrospun POSS-(C3H6Cl)8/PVDF Gel Polymer Electrolytes for Lithium-Ion Batteries. Colloids Surfaces A Physicochem. Eng. Asp. 2019, 580, 123750. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Cheng, H.; Li, G.; Cho, H.; Jiang, M.; Gao, Q.; Zhang, X. Developments of Advanced Electrospinning Techniques: A Critical Review. Adv. Mater. Technol. 2021, 6, 100410. [Google Scholar] [CrossRef]
- Cozza, E.S.; Monticelli, O.; Cavalleri, O.; Marsano, E. Preparation, Characterization, and Properties of Nanofibers Based on Poly(Vinylidene Fluoride) and Polyhedral Oligomeric Silsesquioxane. Polym. Adv. Technol. 2012, 23, 1252–1257. [Google Scholar] [CrossRef]
- Ganesh, V.A.; Nair, A.S.; Raut, H.K.; Yuan Tan, T.T.; He, C.; Ramakrishna, S.; Xu, J. Superhydrophobic Fluorinated POSS-PVDF-HFP Nanocomposite Coating on Glass by Electrospinning. J. Mater. Chem. 2012, 22, 18479–18485. [Google Scholar] [CrossRef]
- Bukowczan, A.; Raftopoulos, K.N.; Nizioł, J.; Pielichowski, K. Molecular Mobility of Liquid Crystalline Polyurethanes Modified by Polyhedral Oligomeric Silsesquioxanes. Polymer 2023, 277, 125981. [Google Scholar] [CrossRef]
- Prevost, S.; Lopian, T.; Pleines, M.; Diat, O.; Zemb, T. Small-Angle Scattering and Morphologies of Ultraflexible Microemulsions. J. Appl. Crystallogr. 2016, 49, 2063–2072. [Google Scholar] [CrossRef]
- Hammouda, B. A New Guinier–Porod Model. J. Appl. Crystallogr. 2010, 43, 716–719. [Google Scholar] [CrossRef]
- Ballard, D.A.; Qiao, P.; Cattoz, B.; Dowding, P.J.; Prevost, S.; Alshamsi, M.; Charpentier, T.; Roberts, K.J.; Xu, Z.; Harbottle, D. Aggregation Behavior of E-SARA Asphaltene Fractions Studied by Small-Angle Neutron Scattering. Energy Fuels 2020, 34, 6894–6903. [Google Scholar] [CrossRef]
- Wu, X.F.; Salkovskiy, Y.; Dzenis, Y.A. Modeling of Solvent Evaporation from Polymer Jets in Electrospinning. Appl. Phys. Lett. 2011, 98, 121783. [Google Scholar] [CrossRef]
- Pan, H.; Qiu, Z. Biodegradable Poly(L-Lactide)/Polyhedral Oligomeric Silsesquioxanes Nanocomposites: Enhanced Crystallization, Mechanical Properties, and Hydrolytic Degradation. Macromolecules 2010, 43, 1499–1506. [Google Scholar] [CrossRef]
- Koberstein, J.T.; Galembos, A.F.; Leung, L.M. Microdomain Morphology and Thermomechanical Properties. Macromolecules 1992, 25, 6195–6204. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, S. Polyurethane Networks Nanoreinforced by Polyhedral Oligomeric Silsesquioxane. Macromol. Rapid Commun. 2005, 26, 196–200. [Google Scholar] [CrossRef]
- Madbouly, S.A.; Otaigbe, J.U. Recent Advances in Synthesis, Characterization and Rheological Properties of Polyurethanes and POSS/Polyurethane Nanocomposites Dispersions and Films. Prog. Polym. Sci. 2009, 34, 1283–1332. [Google Scholar] [CrossRef]
- Mishra, K.; Pandey, G.; Singh, R.P. Enhancing the Mechanical Properties of an Epoxy Resin Using Polyhedral Oligomeric Silsesquioxane (POSS) as Nano-Reinforcement. Polym. Test. 2017, 62, 210–218. [Google Scholar] [CrossRef]
- Raftopoulos, K.N.; Pielichowski, K. Segmental Dynamics in Hybrid Polymer/POSS Nanomaterials. Prog. Polym. Sci. 2016, 52, 136–187. [Google Scholar] [CrossRef]
- Kanehashi, S.; Tomita, Y.; Obokata, K.; Kidesaki, T.; Sato, S.; Miyakoshi, T.; Nagai, K. Effect of Substituted Groups on Characterization and Water Vapor Sorption Property of Polyhedral Oligomeric Silsesquioxane (POSS)-Containing Methacryl Polymer Membranes. Polymer 2013, 54, 2315–2323. [Google Scholar] [CrossRef]
- Park, J.H.; Rutledge, G.C. Ultrafine High Performance Polyethylene Fibers. J. Mater. Sci. 2018, 53, 3049–3063. [Google Scholar] [CrossRef]
- Liu, C.; Dai, Y.; Wang, C.; Xie, H.; Zhou, Y.; Lin, X.; Zhang, L. Phase-Separation Dominating Mechanical Properties of a Novel Tung-Oil-Based Thermosetting Polymer. Ind. Crop. Prod. 2013, 43, 677–683. [Google Scholar] [CrossRef]
Sample | m | [Å−1] | [Å] | [Å] | n |
---|---|---|---|---|---|
Matrix | 2.47 ± 0.19 | 0.0458 ± 0.0027 | 26.2 ± 1.6 | 137 ± 8 | 3.185 ± 0.029 |
2% TSP | 2.68 ± 0.09 | 0.0516 ± 0.0004 | 37.7 ± 0.7 | 122 ± 1 | 3.066 ± 0.010 |
6% TSP | 2.29 ± 0.19 | 0.0542 ± 0.0009 | 35.4 ± 1.7 | 116 ± 2 | 2.982 ± 0.013 |
2% TSI | 3.54 ± 0.42 | 0.0341 ± 0.0049 | 26.6 ± 3.2 | 184 ± 27 | 3.289 ± 0.014 |
6% TSI | 3.25 ± 0.57 | 0.0340 ± 0.0080 | 23.1 ± 3.9 | 184 ± 44 | 2.950 ± 0.047 |
Sample | E’ [MPa] (at −60 °C) Glassy State | E’ [MPa] (at 25 °C) Rubbery State | ||
---|---|---|---|---|
Matrix | 0.24 | −20 | 29.3 | 0.6 |
2% TSP | 0.26 | −12 | 61.9 | 1.5 |
6% TSP | 0.23 | −9 | 74.8 | 2.4 |
2% TSI | 0.25 | −21 | 146.0 | 3.0 |
6% TSI | 0.24 | −11 | 45.3 | 1.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukowczan, A.; Raftopoulos, K.N.; Pielichowski, K. Fabrication of Liquid Crystalline Polyurethane/Polyhedral Oligomeric Silsesquioxane Nanofibers via Electrospinning. Materials 2023, 16, 7476. https://doi.org/10.3390/ma16237476
Bukowczan A, Raftopoulos KN, Pielichowski K. Fabrication of Liquid Crystalline Polyurethane/Polyhedral Oligomeric Silsesquioxane Nanofibers via Electrospinning. Materials. 2023; 16(23):7476. https://doi.org/10.3390/ma16237476
Chicago/Turabian StyleBukowczan, Artur, Konstantinos N. Raftopoulos, and Krzysztof Pielichowski. 2023. "Fabrication of Liquid Crystalline Polyurethane/Polyhedral Oligomeric Silsesquioxane Nanofibers via Electrospinning" Materials 16, no. 23: 7476. https://doi.org/10.3390/ma16237476
APA StyleBukowczan, A., Raftopoulos, K. N., & Pielichowski, K. (2023). Fabrication of Liquid Crystalline Polyurethane/Polyhedral Oligomeric Silsesquioxane Nanofibers via Electrospinning. Materials, 16(23), 7476. https://doi.org/10.3390/ma16237476