Choice of Healing Agent for Self-Healing Asphalt Concrete
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Ogwu, I.; Long, Z.; Lee, D.; Zhang, X.; Zhang, W.; Okonkwo, M. Fundamental Issues in the Qualification of Smart and Intelligence in Building Materials Discourse: A Systematic Review. Buildings 2021, 11, 558. [Google Scholar] [CrossRef]
- Volpe, S.; Sangiorgio, V.; Petrella, A.; Coppola, A.; Notarnicola, V.; Fiorito, F. Building Envelope Prefabricated with 3D Printing Technology. Sustainability 2021, 13, 8923. [Google Scholar] [CrossRef]
- Shilar, F.A.; Ganachari, S.V.; Patil, V.B. Advancement of nano-based construction materials—A review. Constr. Build. Mater. 2022, 359, 129535. [Google Scholar] [CrossRef]
- Inozemtcev, S.; Korolev, E. Review of road materials self-healing: Problems and perspective. IOP Conf. Ser. Mater. Sci. Eng. 2020, 855, 012010. [Google Scholar] [CrossRef]
- Khan, K.; Ahmad, W.; Amin, M.N.; Khan, S.A.; Deifalla, A.F.; Younes, M.Y.M. Research evolution on self-healing asphalt: A scientometric review for knowledge mapping. Rev. Adv. Mater. Sci. 2023, 62, 20220331. [Google Scholar] [CrossRef]
- Xu, S.; García, A.; Su, J.; Liu, Q.; Tabaković, A.; Schlangen, E. Self-Healing Asphalt Review: From Idea to Practice. Adv. Mater. Interfaces 2018, 5, 1800536. [Google Scholar] [CrossRef]
- Sun, D.; Sun, G.; Zhu, X.; Guarin, A.; Li, B.; Dai, Z.; Ling, J. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Adv. Colloid Interface Sci. 2018, 256, 65–93. [Google Scholar] [CrossRef] [PubMed]
- Inozemtcev, S.; Jelagin, D.; Korolev, E.; Fadil, H.; Manfred, P.; Toan Do, T. Experimental and numerical study on SMA modified with an encapsulated polymeric healing agent. Mater. Struct. 2022, 55, 230. [Google Scholar] [CrossRef]
- Li, S.; Shi, X.; Si, C.; Bao, B.; Hu, M. Correlation between the Rheological Properties of Asphalt Mortar and the High-Temperature Performance of Asphalt Mixture. Coatings 2023, 13, 1058. [Google Scholar] [CrossRef]
- Li, J.; Zhu, Y.; Yu, Z. Study on Physical Properties, Rheological Properties, and Self-Healing Properties of Epoxy Resin Modified Asphalt. Sustainability 2023, 15, 6889. [Google Scholar] [CrossRef]
- Reyes, O.J.; Camacho-Tauta, J.; Fredy, R.L. The temperature of compacting and energy influence in dynamics properties of an asphalt mixture. Rev. Fac. Ing. 2006, 36, 121–130. [Google Scholar] [CrossRef]
- Al-Mansoori, T.; Norambuena-Contreras, J.; Garcia, A. Effect of capsule addition and healing temperature on the self-healing potential of asphalt mixtures. Mater. Struct. 2018, 51, 53. [Google Scholar] [CrossRef]
- Xu, S.; Tabakovic, A.; Liu, X.; Palin, D.; Schlangen, E. Optimization of the Calcium Alginate Capsules for Self-Healing Asphalt. Appl. Sci. 2019, 9, 468. [Google Scholar] [CrossRef]
- Al-Mansoori, T.; Norambuena-Contreras, J.; Micaelo, R.; Garciaa, A. Self-healing of asphalt mastic by the action of polymeric capsules containing rejuvenators. Constr. Build. Mater. 2018, 161, 330–339. [Google Scholar] [CrossRef]
- Norambuena-Contreras, J.; Liu, Q.; Zhang, L.; Wu, S.; Yalcin, E.; Garcia, A. Influence of encapsulated sunflower oil on the mechanical and self-healing properties of dense-graded asphalt mixtures. Mater. Struct. 2019, 52, 78. [Google Scholar] [CrossRef]
- Su, J.F.; Schlangen, E.; Qiu, J. Design and construction of microcapsules containing rejuvenator for asphalt. Powder Technol. 2004, 235, 563–571. [Google Scholar] [CrossRef]
- Shu, B.; Bao, S.; Wu, S.; Dong, L.; Li, C.; Yang, X.; Norambuena-Contreras, J.; Liu, Q.; Wang, Q. Synthesis and effect of encapsulating rejuvenator fiber on the performance of asphalt mixture. Materials 2019, 12, 1266. [Google Scholar] [CrossRef]
- Tabakovic, A.; Dirk, B.; Van Gerwen, M.; Copuroglu, O.; Post, W.; Garcia, S.J.; Schlangen, E. The compartmented alginate fibres optimisationfor bitumen rejuvenator encapsulation. J. Traffic Transp. Eng. 2017, 4, 347–359. [Google Scholar] [CrossRef]
- Inozemtcev, S.; Korolev, E. Active polymeric reducing agent for self-healing asphalt concrete. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1030, 012002. [Google Scholar] [CrossRef]
- Korolev, E.V.; Inozemtcev, S.S.; Smirnov, V.A. Nanomodified bitumen composites: Solvation shells and rheology. In Advanced Materials, Structures and Mechanical Engineering. Proceedings of the International Conference on Advanced Materials, Structures and Mechanical Engineering, Incheon, Republic of Korea, 20–22 May 2016; CRC Press: Boca Raton, FL, USA, 2016; pp. 393–398. [Google Scholar] [CrossRef]
- Kendall, M.; Rehfeldt, F. Phenomenology of Adhesion: From Macro- to Nano-Systems. In Adhesion of Cells, Viruses and Nanoparticles; Springer: Dordrecht, The Netherlands, 2010; pp. 21–43. [Google Scholar] [CrossRef]
- Cappellesso, V.; Summa, D.; Pourhaji, P.; Kannikachalam, N.P.; Dabral, K.; Ferrara, L.; Alonso, M.C.; Camacho, E.; Gruyaert, E.; Belie, N.D. A review of the efficiency of self-healing concrete technologies for durable and sustainable concrete under realistic conditions. Int. Mater. Rev. 2023, 68, 556–603. [Google Scholar] [CrossRef]
- Terziyan, T.V. Physical and Colloidal Chemistry; Ural Publishing House: Yekaterinburg, Russia, 2012; 108p. (In Russian) [Google Scholar]
- Kabanov, V.A. Encyclopedia of Polymers, 1st ed.; Soviet Encyclopedia: Moscow, Russia, 1972; 1224p. (In Russian) [Google Scholar]
- Dimian, A.C.; Bildea, C.S.; Kiss, A.A. Chapter 12—Chemical Product Design. Comput. Aided Chem. Eng. 2014, 35, 489–523. [Google Scholar] [CrossRef]
- Tro, N.J. Chemistry: Structure and Properties, 2nd ed.; Pearson: London, UK, 2017; p. 1157. ISBN 9780134293936. [Google Scholar]
- Korolev, E.V.; Bazhenov, Y.M.; Albakasov, A.I. Radiation-Protective and Chemical-Resistant Sulfur Building Materials, Penza; IPK OGU: Orenburg, Russia, 2010; p. 364. ISBN 978-5-7410-1071-6. [Google Scholar]
- Redelius, P. Bitumen Solubility Model Using Hansen Solubility Parameter. Energy Fuels 2004, 18, 1087–1092. [Google Scholar] [CrossRef]
- GOST ISO 3675-2014; Crude Petroleum and Liquid Petroleum Products—Laboratory Determination of Density—Hydrometer Method. GostPerevod: Moscow, Russia, 2019.
- ISO 3838:2004; Crude Petroleum and Liquid Or Solid Petroleum Products Determination of Density or Relative Density Capillary-Stoppered Pyknometer and Graduated Bicapillary Pyknometer Methods. International Organization for Standardization ISO Central Secretariat: Geneva, Switzerland, 2004.
- ISO 660:2020; Animal and Vegetable Fats and Oils Determination of Acid Value and Acidity. International Organization for Standardization ISO Central Secretariat: Geneva, Switzerland, 2020.
- ISO 12966-4:2015; Animal and Vegetable Fats and Oils Gas Chromatography of Fatty Acid Methyl Esters Part 4: Determination by Capillary Gas Chromatography. International Organization for Standardization ISO Central Secretariat: Geneva, Switzerland, 2015.
- Wang, H.; Yuan, M.; Wu, J.; Wan, P.; Liu, Q. Self-Healing Properties of Asphalt Concrete with Calcium Alginate Capsules Containing Different Healing Agents. Materials 2022, 15, 5555. [Google Scholar] [CrossRef] [PubMed]
- GOST 22245-90; Viscous Petroleum Road Bitumens. Specifications. GostPerevod: Moscow, Russia, 2000.
- ASTM D5/D5M-20; Standard Test Method for Penetration of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- EN 1426:2015; Bitumen and Bituminous Binders-Determination of Needle Penetration. NSAI: Dublin, Ireland, 2015.
- ASTM D113–99; Standard Test Method for Ductility of Bituminous Materials. ASTM International: West Conshohocken, PA, USA, 2020.
- EN 13589:2018; Bitumen and Bituminous Binders–Determination of the Tensile Properties of Modifi ed Bitumen by the Force Ductility Method. British Standards Institution: London, UK, 2018.
- ASTM D36/D36M-14(2020); Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus). ASTM International: West Conshohocken, PA, USA, 2020.
- EN 1427:2015; Bitumen And Bituminous Binders. Determination of the Softening Point. Ring And Ball Method. British Standards Institution: London, UK, 2018.
- EN 12593-2015; Bitumen and Bituminous Binders-Determination of the Fraass Breaking Point. British Standards Institution: London, UK, 2018.
- GOST 12801-98; Materials on the Basis of Organic Binders for Road and Airfield Construction. Test methods. GostPerevod: Moscow, Russia, 1999.
- GOST 31015-2002; Bituminous Stone Mastic Mixtures and Stone Mastic Asphalt. Specifications. GostPerevod: Moscow, Russia, 2003.
- Prosperi, E.; Bocci, E.; Bocci, M. Effect of Bitumen Production Process and Mix Heating Temperature on the Rheological Properties of Hot Recycled Mix Asphalt. Sustainability 2022, 14, 9677. [Google Scholar] [CrossRef]
- Syzrantsev, V.V.; Arymbaeva, A.T.; Zavjalov, A.P.; Zobov, K.V. The nanofluids’ viscosity prediction through particle-media interaction layer. Mater. Phys. Mech. 2022, 48, 386–396. [Google Scholar] [CrossRef]
- Inozemtcev, S.; Korolev, E. Sodium alginate emulsions for asphalt concrete modifiers encapsulating: Structural rheological properties. Mag. Civ. Eng. 2021, 1, 10104. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Wu, Z.; Sun, B. Influencing Factors and Evaluation of the Self-Healing Behavior of Asphalt Binder Using Molecular Dynamics Simulation Method. Molecules 2023, 28, 2860. [Google Scholar] [CrossRef]
- Li, C.; Wu, S.; Tao, G.; Xiao, Y. Initial Self-Healing Temperatures of Asphalt Mastics Based on Flow Behavior Index. Materials 2018, 11, 917. [Google Scholar] [CrossRef]
- Inozemtcev, S.; Korolev, E.; Do, T. Intrinsic self-healing potential of asphalt concrete. Mag. Civ. Eng. 2023, 7, 10104. [Google Scholar] [CrossRef]
- Qiu, J.; Van de Ven, M.F.C.; Wu, S.; Yu, J.; Molenaar, A.A.A. Investigating the Self Healing Capability of Bituminous Binders. Road Mater. Pavement Des. 2009, 10, 81–94. [Google Scholar] [CrossRef]
- Kim, Y.R.; Little, D.N.; Benson, F.C. Chemical and mechanical evaluation of healing mechanism of asphalt concrete. J. Assoc. Asph. Paving Technol. 1990, 59, 240–275. [Google Scholar]
- Ayupov, D.; Makarov, D.; Murafa, A.; Khozin, V.; Khakimullin, Y.; Sundukov, V.; Khakimov, A.; Gizatullin, B. Modular mobility investigation of polymer binder bitumen. IOP Conf. Ser. Mater. Sci. Eng. 2015, 71, 012003. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Lin, P.; Gao, Y.; Erkens, S. Molecular dynamics simulation on bulk bitumen systems and its potential connections to macroscale performance: Review and discussion. Fuel 2022, 328, 125382. [Google Scholar] [CrossRef]
- Ren, S.; Liu, X.; Lin, P.; Gao, Y.; Erkens, S. Review on the diffusive and interfacial performance of bituminous materials: From a perspective of molecular dynamics simulation. J. Mol. Liq. 2022, 366, 120363. [Google Scholar] [CrossRef]
- Concha, J.L.; Delgadillo, R.; Arteaga-Pérez, L.E.; Segura, C.; Norambuena-Contreras, J. Optimised Sunflower Oil Content for Encapsulation by Vibrating Technology as a Rejuvenating Solution for Asphalt Self-Healing. Polymers 2023, 15, 1578. [Google Scholar] [CrossRef]
- Garcia, A.; Austin, C.J.; Jelfs, J. Mechanical properties of asphalt mixture containing sunflower oil capsules. J. Clean. Prod. 2016, 118, 124–132. [Google Scholar] [CrossRef]
- Zhang, L.; Hoff, I.; Zhang, X.; Yang, C. Investigation of the self-healing and rejuvenating properties of aged asphalt mixture containing multi-cavity Ca-alginate capsules. Constr. Build. Mater. 2022, 361, 129685. [Google Scholar] [CrossRef]
- Micaelo, R.; Freire, A.C.; Pereira, G. Asphalt self-healing with encapsulated rejuvenators: Effect of calcium-alginate capsules on stiffness, fatigue and rutting properties. Mater. Struct. 2020, 53, 20. [Google Scholar] [CrossRef]
- Zhang, L.; Hussain, B.; Tan, Y.; Cheng, L. Effects of refined waste and bio-based oil modifiers on rheological properties of asphalt binders. Constr. Build. Mater. 2017, 148, 504–511. [Google Scholar] [CrossRef]
- Wu, Y.; Hu, M.; Chen, F.; Zhang, C.; Gao, Z.; Xu, L.; Cui, S. Oil-in-water emulsions stabilized by sodium alginate microgels. Int. J. Food Eng. 2021, 17, 633–641. [Google Scholar] [CrossRef]
- Porto, M.; Angelico, R.; Caputo, P.; Abe, A.A.; Teltayev, B.; Rossi, C.O. The Structure of Bitumen: Conceptual Models and Experimental Evidences. Materials 2022, 15, 905. [Google Scholar] [CrossRef] [PubMed]
Formula | Number | Notes | References |
---|---|---|---|
(5) | ΔHv is the heat of evaporation of a substance; R is the gas constant; T is the absolute temperature; Vm is the molar volume | [25] | |
(6) | vi is the molar volume of the substance; σi is the surface tension of the substance | [26] | |
(7) | γ is the density of matter; M is the molecular weight of the substance (unitary polymer unit); ΣG is the sum of the attraction constants of individual atomic groups of a substance (an elementary unit of a polymer) | [27] |
Parameter | Unit | Value |
---|---|---|
Dynamic viscosity at 25 °C | Pa·s | 9.7 |
SH-group content | % | 1.5–2.5 |
Tensile strength after curing | MPa | 1.0 |
Elongation at break | % | 100 |
Permanent deformations | % | until 6 |
Parameter | Unit | Value | Method |
---|---|---|---|
Viscosity at 25 °C | Pa·s | 0.05 | – |
Density at 25 °C | g/cm3 | 0.918 ± 0.05 | [29] [30] |
Acid value | mg KOH/g | 0.025 ± 0.01 | [31] |
Fractional composition: | |||
palmitic acid | % | 6.61 | [32] |
stearic acid | % | 3.61 | |
oleic acid | % | 30.91 | |
linoleic acid | % | 57.13 | |
other | % | 1.74 |
Parameter | Value | ||||||||
---|---|---|---|---|---|---|---|---|---|
Sieve size, mm | 15 | 10 | 5 | 2.5 | 1.25 | 0.63 | 0.315 | 0.16 | 0.071 |
Passing, % | 92.3 | 58.8 | 33.0 | 21.7 | 18.4 | 16.5 | 14.7 | 12.7 | 10.6 |
Parameters | Unit | Value | Method |
---|---|---|---|
Penetration at temperature 25 °C | 0.1 mm | 67 | [35] [36] |
Penetration at temperature 0 °C | 0.1 mm | 36 | |
Ductility at temperature 25 °C | mm | 85.2 | [37] [38] |
Ductility at temperature 0 °C | mm | 3.6 | |
Softening point | °C | 51 | [39] [40] |
Fraass breaking point | °C | −20 | [41] |
Component | ρ, g/cm3 | M, g/mol | δ, (J/cm3)0.5 | Δδ, (J/cm3)0.5 |
---|---|---|---|---|
Bitumen | 0.986 | 1050 | 2.7 | – |
AR-polymer | 1.070 | 3200–3400 | 2.1 | −0.6 |
Sunflower oil | 0.918 | 879 | 3.9 | 1.2 |
Parameter | Unit | Standard Limits | Value |
---|---|---|---|
Density | g/cm3 | – | 2.43 |
Mineral framework porosity | % | 15–19 | 18 |
Air voids content | % | 1.5–4.5 | 3.0 |
Water saturation | % | 1.0–4.0 | 1.9 |
Compressive strength at 20 °C | MPa | at least 2.2 | 3.0 |
Compressive strength at 50 °C | MPa | at least 0.65 | 1.10 |
Shear resistance: internal friction coefficient | – | at least 0.93 | 0.94 |
Shear resistance: shear grip at 50 °C | MPa | at least 0.18 | 0.56 |
Breaking tensile strength at 0 °C | MPa | 2.5–6.0 | 2.6 |
Splitting strength at −20 °C | MPa | – | 1.9 |
Water resistance | – | at least 0.85 | 0.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inozemtcev, S.S.; Korolev, E.V.; Do, T.T. Choice of Healing Agent for Self-Healing Asphalt Concrete. Materials 2023, 16, 7542. https://doi.org/10.3390/ma16247542
Inozemtcev SS, Korolev EV, Do TT. Choice of Healing Agent for Self-Healing Asphalt Concrete. Materials. 2023; 16(24):7542. https://doi.org/10.3390/ma16247542
Chicago/Turabian StyleInozemtcev, Sergei Sergeevich, Evgeniy Valerievich Korolev, and Trong Toan Do. 2023. "Choice of Healing Agent for Self-Healing Asphalt Concrete" Materials 16, no. 24: 7542. https://doi.org/10.3390/ma16247542
APA StyleInozemtcev, S. S., Korolev, E. V., & Do, T. T. (2023). Choice of Healing Agent for Self-Healing Asphalt Concrete. Materials, 16(24), 7542. https://doi.org/10.3390/ma16247542