Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds’ Delivery: State-of-the Art and Challenges
Abstract
:1. Introduction
- (1)
- Economic: recycling raw materials greatly reduces production costs.
- (2)
- Ecological: bio-waste is eco-friendly.
- (3)
- Biological: bio-residues are bio-friendly, i.e., compatible with living organisms and are biodegradable and exhibit various bio-activities.
2. Bioactive Compounds
2.1. General Aspects
2.2. Different Types of Bioactive Compounds and Their Relevance to OBNs
- Proteins, including albumin, gelatin, and silk fibroin, are used to construct protein-based nanocarriers [48]. They provide biocompatibility, structural stability, and can be modified for targeted drug delivery.
- Antibodies and Peptides can be incorporated into nanocarriers for targeted drug delivery [53]. They enhance specificity by recognizing and binding to specific cell receptors.
- Enzymes, such as catalase or glucose oxidase, can be used to modify nanocarriers for targeted drug release or for responsive drug delivery systems [54].
- Flavonoids and Polyphenols, extracted from plants, are used as bioactive compounds for their antioxidant properties. They can contribute to the stability and bioactivity of nanocarriers [55].
- Essential oils derived from plants contain bioactive compounds with antimicrobial properties. They can be incorporated into nanocarriers for applications in antimicrobial drug delivery [56].
- Plant extracts contain an enormous variety of bioactive molecules which are valuable from a pharmacological point of view (e.g., essential oils, phenolic compounds, vitamins, alkaloids, etc.) [8].
- Natural pigments (Bio-pigments) originated from microbial, vegetal, or animal sources such as chlorophylls, carotenoids, anthocyanins, and melanin have applications in the food sector [57], or in the biomedical field [58], due to the antioxidant, anti-inflammatory, antimicrobial, radioprotective, and gastrointestinal benefits.
- Vitamins (such as vitamins A, B-complex, C, D, E, etc.) provide health benefits (e.g., antioxidant activity, modulation of the inflammatory response, and osteoporosis prevention, etc.) [59].
3. Polymeric Organic Nanocarriers of Bioactives
4. Drug Delivery Systems Based on Carbon Nanomaterials
4.1. Carbon Nanotubes (CNTs)
4.2. Fullerenes
4.3. Carbon Nano-Onions (CNOs)
4.4. Carbon Nanodots
4.5. Nanodiamonds (NDs)
5. Biogenic Nanocarriers
5.1. Lipid-Based Nanocarriers for Bioactive Compounds
5.1.1. Liposomes
5.1.2. Ufasomes
5.1.3. (Nano-)Phytosomes (Herbosomes)
5.1.4. Terpesomes
5.1.5. Aspasomes
5.1.6. Bilosomes
5.1.7. Quatsomes
5.1.8. Niosomes
5.1.9. Soysomes
5.1.10. Nanoemulsions
5.1.11. Emulsomes
5.1.12. Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs)
5.2. Biopolymer-Based Nanocarriers
5.2.1. Protein and Peptide-Based Nanoformulations
Proteins and Peptides as Bioactives
Proteins and Peptides as Nanocarriers for Bioactives
- Protein-Based Nanocarriers possess many advantages for delivery applications such as biocompatibility, biodegradability, and the ability to functionalize with targeting ligands. They are safe materials and their preparation process occurs under mild conditions [201].
- (i)
- NCs based on animal proteins (e.g., albumin, gelatin, casein, whey, collagen, fibrinogen, silk, and elastin). They possess many advantages:
- The presence of all essential amino acids in their composition;
- Anionic proteins like albumins have low opsonization activity in the blood stream.
- (ii)
- NCs based on plant proteins (e.g., zein, soy protein, gliadin, legumin, and vicilin)
- Plant proteins show many advantages over animal proteins as follows: low cost, high availability, and simple purification steps.
- (i)
- NCs based on animal proteins
- (ii)
- NCs based on plant proteins
Peptide-Based Nanocarriers
5.2.2. Polysaccharides-Based DDS
Chitosan Nanoparticles and Chitosomes
Nano-Starch Particles (NSPs)
Nanocellulose
5.2.3. DNA-Based DDS
5.3. Drug Delivery with Living Cells and Cell Derivatives
6. Other Types of Organic Nanocarriers
7. Green Strategies for (Bio)organic Nanocarriers’ Design
7.1. “Green” Approaches to Design OBNs
7.2. Specific Bio-Wastes and Living Systems for OBNs Development
- (i)
- Plant-derived waste
- Pectin from fruit peels: Extracted from fruit peels, particularly citrus fruits, it can be utilized to form nanocarriers. Pectin has gelling properties and is biodegradable [282].
- Lignin from wood and plant residues: a complex organic polymer found in plant cell walls and can be repurposed from wood and plant residues for nanocarrier development [283].
- Alginate from seaweed waste: Extracted from seaweed waste and is commonly used for the production of nanocarriers. It is biocompatible and suitable for encapsulating various substances [284].
- Cellulose from plant residues: extracted from plant residues, and can be modified to form nanocarriers with controlled release properties [285].
- (ii)
- Animal-derived waste
- Chitosan from shellfish waste: derived from the exoskeletons of shellfish, it is often used to create nanocarriers due to its biocompatibility, biodegradability, and mucoadhesive properties [286].
- Natural fibers: hair wastes, chicken feathers, silk (produced by spiders and worm silk).
- (iii)
- Waste derived from food industry and agriculture:
- Lipids from edible oils, animal fats, and cooking oil waste originated from households, fast-food chains, restaurants, etc. can be a rich source of lipids for the preparation of lipid-based nanocarriers, such as liposomes or other lipid nanoparticles.
- Protein isolates from agro-industrial residues: like leftover parts of crops, can provide protein isolates for developing protein-based nanocarriers [287].
- Gelatin from animal by-products: obtained from animal by-products like bones and skin, they can be employed in the formulation of nanocarriers due to its film-forming and stabilizing properties [288].
- Whey Protein from dairy industry waste: a by-product of the dairy industry, it can be utilized for creating nanocarriers with potential applications in drug delivery and the food industry [289].
- (iv)
- Bioplastic waste: Biodegradable polymers derived from bioplastic waste can be explored for the development of environment-friendly nanocarriers, nanofilms, etc. [290].
- (v)
8. Physico-Chemical and Biological Characterization of Bioactive Nanocarriers
- (i)
- Microscopic techniques: atomic force microscopy (AFM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), which offer relevant insight on the size, morphology, and surface texture;
- (ii)
- Spectroscopic techniques: Ultra-violet visible (UV-Vis) absorption spectroscopy, Fourier-transform infrared spectroscopy (FTIR), fluorescence spectroscopy, dynamic light scattering [DLS, also known as photon correlation spectroscopy (PCS) or quasi-elastic light scattering (QELS)], laser diffraction (LD), zeta potential (ζ), X-ray diffraction (XRD), energy dispersive X-Ray spectrometry (EDS), small-angle X-Ray scattering (SAXS), small-angle neutron scattering (SANS), inductively coupled plasma–optical emission spectrometry (ICP-OES) which offer relevant insight on several physico-chemical properties such as the identification of spectral signatures of the components belonging to nanocarriers, understanding the interaction between components (bioactive compounds, matrix, etc.) of nano-DDS and between entire nano-DDS and the environment, particle size and particle size distribution, polydispersity index, particle charge, aggregation state, physical stability, structural organization and structural changes, degree of crystallinity, and elemental composition;
- (iii)
- Separation techniques: High-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LC-MS), used to separate, identify, and quantify various components, and also for the determination of the released drug content out of nano drug delivery systems, over time, in different physical conditions [294];
- (iv)
- Biochemical and biological techniques: Offer relevant insight on antioxidant activity: the evaluation of the ability to scavenge short-life (by chemiluminescence technique) and long-life [by DPPH (2,2-diphenyl-1-picrylhydrazyl), and ABTS●+ (2,2-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) method] free radicals; ferric reducing antioxidant power (FRAP), and ferrous ions (Fe2+) chelating activity (FIC) assays}, antimicrobial activity [agar well diffusion method; minimum inhibitory concentration (MIC) determination], cytotoxicity tests [using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay], hemocompatibility evaluation [295,296];
- (v)
- Other techniques: for example: thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), provides information about thermal stability, purity, homogeneity, phase transitions of the sample, and the crystalline nature of the nanostructure [260].
9. Fate of Bioactive-Nanocarriers Inside the Body
10. Safety and Toxicity of Organic and Biogenic Nanocarriers
11. Challenges and Opportunities in (Bio)organic Nanocarriers Loaded with Bioactives
11.1. Development of Novel “Green” Strategies
11.2. Limitations and Future Strategies in the Development of OBNs
- Biocompatibility and toxicity concerns: Some organic and biogenic materials may raise concerns related to biocompatibility and potential toxicity, necessitating rigorous testing and evaluation before clinical applications [333].
- Control over physicochemical properties: Achieving precise control over the physicochemical properties of organic and biogenic nanocarriers, such as size, shape, and surface charge, can be challenging compared to synthetic counterparts [334].
- Limited loading capacity: Some organic materials may have limited capacity to encapsulate or carry therapeutic payloads, restricting the amount of drug or bioactive substance that can be delivered [336].
- Biodegradation variability: The biodegradation rates of organic and biogenic nanocarriers may vary, leading to unpredictable release profiles of encapsulated substances [337].
- Low drug loading efficiency: Achieving a high drug loading efficiency in organic and biogenic nanocarriers may be challenging, leading to suboptimal drug delivery efficacy [339].
- Limited targeting efficiency: Achieving targeted delivery to specific tissues or cells may be less efficient compared to synthetic nanocarriers, impacting the therapeutic efficacy [339].
- Lack of standardization: The lack of standardized methods for the production and characterization of organic and biogenic nanocarriers hinders their widespread adoption and comparison between studies [342].
12. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACE | Angiotensin I-converting enzyme |
ADME | Adsorption, distribution, metabolism, and excretion |
ATX | Astaxanthin |
BA | Betulinic acid |
BCs | Bioactive compounds |
BEO | Bergamot essential oil |
BER | Berberine |
BILs | Bilosomes |
BNCs | Biogenic nanocarriers |
BSA | Bovine serum albumin |
CBNs | Carbon-based nanomaterials |
CaCo2 | Colorectal adenocarcinoma cells |
Chl | Chlorophyll |
CMC | Carboxy methyl cellulose |
CNOs | Carbon nano-onions |
CNTs | Carbon nanotubes |
CNT-RSV | Carbon nanotubes loaded with resveratrol |
CQDs | Carbon quantum dots |
CS | Chitosan |
CS-NPs | Chitosan nanoparticles |
CUR | Curcumin |
CUR-mPDA NPs | Curcumin-loaded mesoporous polydopamine nanoparticles |
DDS | Drug delivery system |
DLPLG | Poly (DL-lactide-co-glycolide) |
DNA | Deoxyribonucleic acid |
DNPs | Diatom nanoparticles |
DSS | Dextran sulfate sodium |
DWCNTs | Double walled carbon nanotubes |
EPO | Eosinophil peroxidase |
EUG | Eugenol |
EVs | Extracellular vesicles |
EWPs | Egg white proteins |
FDA | US Food and Drug Administration |
FNPs | Fibrinogen nanoparticles |
GA | Gallic acid |
GIT | Gastrointestinal tract |
GNPs | Gliadin nanoparticles |
HepG2 | Human liver carcinoma cell |
Hes | Hesperidin |
HNK | Honokiol |
HPTX NPs | Disulfide bond bridged paclitaxel-pentadecanoic acid conjugate |
HSA | Human serum albumin |
HT-29 | Human colorectal cancer cell line |
L929 | Mouse fibroblast healthy cells |
α-Lac | α-Lactalbumin |
(LbL) | Layer-by-Layer |
Lf | Lactoferrin |
LNCs | Lipid-based nanocarriers |
LT4 | Levothyroxine |
LUT | Luteolin |
LYC | Lycopene |
MCF7 | Human breast cancer cell line |
MEL | Melanin |
MEL-NPs | Melanin nanoparticles |
mPDA-NPs | Mesoporous polydopamine nanoparticles |
MPO | Myeloperoxidase |
MWCNTs | Multi- walled carbon nanotubes |
Nab-technology | Nanoparticle albumin-bound technology |
NRG | Naringenin |
NC | Nanocarrier |
NDs | Nanodiamonds |
NLCs | Nanostructured lipid carriers |
NP | Nanoparticle |
NSPs | Nano-starch particles |
NTs | Nanotubes |
OBNs | Organic and biogenic nanocarriers |
ONs | Oleander (Nerium oleander) niosomes |
OC | Ovarian cancer |
OVA | Ovalbumin |
PAMAM | Poly(amidoamine) |
PC3 | Prostate cancer cell line |
PDA | Polydopamine |
PDA-NPs | Polydopamine nanoparticles |
PDT | Photodynamic therapy |
PEG | Polyethylene glycol |
PEI | Polyethylenimine |
PELGE | Copolymers (monomethyl poly(ethylene glycol)–poly (lactide-co-glycolide)–monomethyl-poly(ethylene-glycol) |
PGA | Polyglycolide |
Pa | Pheophorbide a |
PLA | Polylactide |
PLGA | Copolymer poly (lactide-co-glycolide) |
Pm | Pemetrexed |
poly-UrA | Poly-ursolic acid |
poly-UrA NPs | Poly-ursolic acid nanoparticles |
PPy | Polypyrrole |
PTX | Paclitaxel |
QS | Quatsomes |
QS-UA | Quatsomes loaded with usnic acid |
Que | Quercetin |
RBCs | Red blood cells |
RBCM | Red blood cell membrane |
RSA | Rat serum albumin |
RSV | Resveratrol |
SAPs | Self-assembling peptides |
SCC7 | Squamous cell carcinoma 7 cells |
SLNs | Solid lipid nanoparticles |
SPNs | Self-assembled peptide nanostructures |
Sq | Squalene |
SUVs | Small unilamellar lipid vesicles |
SYL | Silymarin |
SWCNTs | Single-walled carbon nanotubes |
TEBVs | Tissue-engineered blood vessels |
TF | Transferrin |
TPs | Terpesomes |
TPGS | d-alpha-tocopheryl polyethylene glycol 1000 succinate |
UrA | Ursolic acid |
UA | Usnic acid |
ZeinNPs | Zein Nanoparticles |
References
- Martínez-Ballesta, M.; Gil-Izquierdo, Á.; García-Viguera, C.; Domínguez-Perles, R. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health. Foods 2018, 7, 72. [Google Scholar] [CrossRef]
- Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 2012, 64, 302–315. [Google Scholar] [CrossRef]
- Jiang, S.; Ge, Z.; Mou, S.; Yan, H.; Fan, C. Designer DNA nanostructures for therapeutics. Chem 2021, 7, 1156–1179. [Google Scholar] [CrossRef]
- Borel, T.; Sabliov, C.M. Nanodelivery of bioactive components for food applications: Types of delivery systems, properties, and their effect on ADME profiles and toxicity of nanoparticles. Annu. Rev. Food Sci. Technol. 2014, 5, 197–213. [Google Scholar] [CrossRef]
- Chilkawar, R.; Nanjwade, B.; Nwaji, M.; Idris, S.; Mohamied, A. Bilosomes based drug delivery system. J. Chem. Appl. 2015, 2, 1–5. [Google Scholar]
- Rawat, D.M.; Singh, S.S.; Saraf, S. Nanocarriers: Promising vehicle for bioactive drugs. Biol. Pharm. Bull. 2006, 29, 1790–1798. [Google Scholar] [CrossRef] [PubMed]
- Qiao, W.; Wang, B.; Wang, Y.; Yang, L.; Zhang, Y.; Shao, P. Cancer therapy based on nanomaterials and nanocarrier systems. J. Nanomater. 2010, 7, 796303. [Google Scholar] [CrossRef]
- Zorzi, G.K.; Carvalho, E.L.S.; von Poser, G.L.; Teixeira, H.F. On the use of nanotechnology-based strategies for association of complex matrices from plant extracts. Rev. Bras. Farmacogn. 2015, 25, 426–436. [Google Scholar] [CrossRef]
- Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater. 2019, 12, 3702518. [Google Scholar] [CrossRef]
- Nowak, P.M. What does it mean that “something is green”? The fundamentals of a Unified Greenness Theory. Green Chem. 2023, 25, 4625–4640. [Google Scholar] [CrossRef]
- Ahmad, R.; Srivastava, S.; Ghosh, S.; Khare, S.K. Phytochemical delivery through nanocarriers: A review. Colloids Surf. B Biointerfaces 2021, 197, 111389. [Google Scholar] [CrossRef] [PubMed]
- Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What is a bioactive compound? A combined definition for a preliminary consensus. Int. J. Nutr. Food Sci. 2014, 3, 174–179. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Rolf Grossklaus, M.D.; Michael, M.; Dieter, S.; Paul Walter, M.D.; Peter Weber, M.D. Bioactive compounds: Definition and assessment of activity. Nutrition 2009, 25, 1202–1205. [Google Scholar] [CrossRef]
- Biesalski, H.K.; Dragsted, L.O.; Elmadfa, I.; Grossklaus, R.; Müller, M.; Schrenk, D.; Weber, P. Bioactive compounds: Safety and efficacy. Nutrition 2009, 25, 1206–1211. [Google Scholar] [CrossRef]
- Nardini, M.; Garaguso, I. Characterization of bioactive compounds and antioxidant activity of fruit beers. Food Chem. 2020, 305, 125437. [Google Scholar] [CrossRef]
- Serra0no, A.; Ros, G.; Nieto, G. Bioactive compounds and extracts from traditional herbs and their potential anti-inflammatory health effects. Medicines 2018, 5, 76. [Google Scholar] [CrossRef]
- Kyriakoudi, A.; Spanidi, E.; Mourtzinos, I.; Gardikis, K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. Plants 2021, 10, 1238. [Google Scholar] [CrossRef]
- Dehghan-Baniani, D.; Zahedifar, P.; Bagheri, R.; Solouk, A. Curcumin-loaded starch micro/nano particles for biomedical application: The effects of preparation parameters on release profile. Starch-Stärke 2019, 71, 5–6. [Google Scholar] [CrossRef]
- Coc, L.M.C.; Lacatusu, I.; Badea, N.; Penes, O.; Cobelschi, C.P.; Pop, A.; Meghea, A. Cur-cumin co-loaded with a lipid mediator in the same nanostructured lipid delivery system. Farmacia 2023, 70, 932–943. [Google Scholar] [CrossRef]
- Rezaei-Tazangi, F.; Roghani-Shahraki, H.; Khorsand Ghaffari, M.; Abolhasani Zadeh, F.; Boostan, A.; ArefNezhad, R.; Motedayyen, H. The therapeutic potential of common herbal and nano-based herbal formulations against ovarian cancer: New insight into the current evidence. Pharmaceuticals 2021, 14, 1315. [Google Scholar] [CrossRef]
- Salaam, A.; Dean, D.; Thomas, V. Nanodiamonds as “magic bullets” for prostate cancer theranostics. In Drug Delivery Nanosystems for Biomedical Applications; Elsevier: Amsterdam, The Netherlands, 2018; pp. 333–356. [Google Scholar] [CrossRef]
- Averett, C.; Arora, S.; Zubair, H.; Singh, S.; Bhardwaj, A.; Singh, A.P. Molecular Targets of Honokiol. In Natural Products and Cancer Signaling: Isoprenoids, Polyphenols and Flavonoids; Elsevier: Amsterdam, The Netherlands, 2014; pp. 175–193. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, J.; Xing, H.; Liu, C.; Li, X. Redox-responsive paclitaxel-pentadecanoic acid conjugate encapsulated human serum albumin nanoparticles for cancer therapy. Int. J. Pharm. 2023, 635, 122761. [Google Scholar] [CrossRef]
- Bhia, M.; Motallebi, M.; Abadi, B.; Zarepour, A.; Pereira-Silva, M.; Saremnejad, F.; Santos, A.C.; Zarrabi, A.; Melero, A.; Jafari, S.M.; et al. Naringenin Nano-Delivery Systems and Their Therapeutic Applications. Pharmaceutics 2021, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Li, Q.; Hou, Y.; Chen, M.; Xu, X.; Wu, H.; Zhaocui, S.; Guoxu, M. Self-assembled glycyrrhetinic acid derivatives for functional applications: A review. Food Funct. 2022, 13, 12487–12509. [Google Scholar] [CrossRef] [PubMed]
- Ganesan, P.; Choi, D.K. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int. J. Nanomed. 2016, 11, 1987–2007. [Google Scholar] [CrossRef] [PubMed]
- Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng. 2013, 117, 426–436. [Google Scholar] [CrossRef]
- Da Silva, R.P.F.F.; Rocha-Santos, T.A.P.; Duarte, A.C. Supercritical fluid extraction of bioactive compounds. TrAC Trends Anal. Chem. 2016, 76, 40–51. [Google Scholar] [CrossRef]
- Li, Y.; Fabiano-Tixier, A.S.; Vian, M.A.; Chema, F. Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC Trends Anal. Chem. 2013, 47, 1–11. [Google Scholar] [CrossRef]
- Zainal-Abidina, M.H.; Hayyan, M.; Hayyan, A.; Jayakumara, N.S. New horizons in the extraction of bioactive compounds using deep eutectic solvents: A review. Anal. Chim. Acta 2017, 979, 1–23. [Google Scholar] [CrossRef]
- Martins, S.; Mussatto, S.I.; Martínez-Avila, G.; Montañez-Saenz, J.; Aguilar, C.N.; Teixeira, J.A. Bioactive phenolic compounds: Production and extraction by solid-state fermentation. A review. Biotechnol. Adv. 2011, 29, 365–373. [Google Scholar] [CrossRef]
- Petrović, M.S.; Savić, R.S.; Marković, D.; Petronijević, Ž. In vitro studies of temperature and pH influence on chlorophyll degradation by horseradish peroxidase: Spectroscopic and HPLC studies. Chem. Ind. 2014, 68, 233–239. [Google Scholar] [CrossRef]
- Petrović, S.; Zvezdanović, J.; Marković, D. Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study. Radiat. Phys. Chem. 2017, 141, 8–16. [Google Scholar] [CrossRef]
- Petrović, S.; Barbinta-Patrascu, M.; Zvezdanović, J.; Savić, S.; Cvetković, D. In vitro studies on chlorophyll stability in water and nanoliposomes affected by ‘azo’ initiators of free radicals. Rom. J. Phys. 2019, 64, 703. [Google Scholar]
- Badea, G.; Badea, N.; Brasoveanu, L.I.; Mihaila, M.; Stan, R.; Istrati, D.; Balaci, T.; Lacatusu, I. Naringenin improves the sunscreen performance of hydrogel formulations based on vegetable nanocarriers. New Chem. J. 2017, 41, 480–492. [Google Scholar] [CrossRef]
- Guo, W.; Li, A.; Jia, Z.; Yuan, Y.; Dai, H.; Li, H. Transferrin modified PEG-PLA-resveratrol conjugates: In vitro and in vivo studies for glioma. Eur. J. Pharmacol. 2013, 718, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Lacatusu, I.; Iordache, T.A.; Mihaila, M.; Pop, A.L.; Badea, N.; Mihaiescu, D.E. Multifaced role of dual herbal principles loaded-lipid nanocarriers in providing high therapeutic efficacity. Pharmaceutics 2021, 13, 1511. [Google Scholar] [CrossRef] [PubMed]
- Spada, A.; Emami, J.; Tuszynski, J.A.; Lavasanifar, A. The uniqueness of albumin as a carrier in nanodrug delivery. Mol. Pharm. 2021, 18, 5, 1862–1894. [Google Scholar] [CrossRef] [PubMed]
- Rahmanian, M.; Oroojalian, F.; Pishavar, E.; Kesharwani, P.; Sahebkar, A. Nanogels, nanodiscs, yeast cells, and metallo-complexes-based curcumin delivery for therapeutic applications. Eur. Polym. J. 2023, 196, 112215. [Google Scholar] [CrossRef]
- Uslu, M.E.; Bayraktar, O. Development and Characterization of Silk Fibroin-based Oral Films Containing Turmeric Extract as Dietary. Biointerface Res. Appl. Chem. 2022, 13, 226. [Google Scholar] [CrossRef]
- Li, B.; Shao, H.; Gao, L.; Li, H.; Sheng, H.; Zhu, L. Nano-drug co-delivery system of natural active ingredients and chemotherapy drugs for cancer treatment: A review. Drug Deliv. 2022, 29, 2130–2161. [Google Scholar] [CrossRef]
- Huang, M.; Zhai, B.T.; Fan, Y.; Sun, J.; Shi, Y.J.; Zhang, X.F.; Guo, D.Y. Targeted Drug Delivery Systems for Curcumin in Breast Cancer Therapy. Int. J. Nanomed. 2023, 18, 4275–4311. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Liu, D.; Zeng, M.; Chen, J.; Mei, X.; Cao, X.; Liu, J. Milk β-casein as delivery systems for luteolin: Multi-spectroscopic, computer simulations, and biological studies. J. Food Biochem. 2022, 46, e14133. [Google Scholar] [CrossRef]
- Rostamabadi, H.; Falsafi, S.R.; Jafari, S.M. Nanoencapsulation of carotenoids within lipid-based nanocarriers. J. Control. Release 2019, 298, 38–67. [Google Scholar] [CrossRef]
- Manyala, D.L.; Ghosh, M.; Dalai, S. Novel microemulsions formulated from Sodium N-Lauroyl Sarcosinate as nanocarrier for Encapsulation of α-Tocopherol. J. Mol. Liq. 2023, 384, 122323. [Google Scholar] [CrossRef]
- Kumar, R.; Dkhar, D.S.; Kumari, R.; Mahapatra, S.; Dubey, V.K.; Chandra, P. Lipid based nanocarriers: Production techniques, concepts, and commercialization aspect. J. Drug Deliv. Sci. Technol. 2022, 74, 103526. [Google Scholar] [CrossRef]
- Patel, D.; Patel, B.; Thakkar, H. Lipid based nanocarriers: Promising drug delivery system for topical application. Eur. J. Lipid Sci. Technol. 2021, 123, 2000264. [Google Scholar] [CrossRef]
- Lin, Q.; Ge, S.; McClements, D.J.; Li, X.; Jin, Z.; Jiao, A.; Qiu, C. Advances in preparation, interaction and stimulus responsiveness of protein-based nanodelivery systems. Crit. Rev. Food Sci. Nutr. 2023, 63, 4092–4105. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Bai, L.; Zhang, J.; Li, Z.; Liu, Y.; Tang, X.; Yu, P. Polysaccharides-based nanocarriers enhance the anti-inflammatory effect of curcumin. Carbohydr. Polym. 2023, 311, 120718. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, H.; Wang, X.; Yu, B.; Cong, H.; Shen, Y. Polysaccharide-based nanocarriers for efficient transvascular drug delivery. J. Control. Release 2023, 354, 167–187. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Luo, J.; Ren, K. Nucleic acid-based artificial nanocarriers for gene therapy. J. Mater. Chem. B 2023, 11, 261–279. [Google Scholar] [CrossRef]
- Chen, K.; Zhang, Y.; Zhu, L.; Chu, H.; Shao, X.; Asakiya, C.; Xu, W. Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. J. Control. Release 2022, 341, 869–891. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.B.; Ozguney, B.; Vlachou, A.; Chen, Y.; Gazit, E.; Tamamis, P. Peptide Self-Assembled Nanocarriers for Cancer Drug Delivery. J. Phys. Chem. B 2023, 127, 1857–1871. [Google Scholar] [CrossRef]
- Kapalatiya, H.; Madav, Y.; Tambe, V.S.; Wairkar, S. Enzyme-responsive smart nanocarriers for targeted chemotherapy: An overview. Drug Deliv. Transl. Res. 2022, 12, 1293–1305. [Google Scholar] [CrossRef] [PubMed]
- Dewanjee, S.; Chakraborty, P.; Bhattacharya, H.; Singh, S.K.; Dua, K.; Dey, A.; Jha, N.K. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy. Drug Discov. Today 2023, 28, 103409. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Kanwar, R.; Mehta, S.K. Recent development in essential oil-based nanocarriers for eco-friendly and sustainable agri-food applications: A review. ACS Agric. Sci. Technol. 2023, 2, 823–837. [Google Scholar] [CrossRef]
- Singh, T.; Pandey, V.P.; Dash, K.K.; Zanwar, S.; Singh, R. Natural bio-colorant and pigments: Sources and applications in food processing. J. Agric. Food Res. 2023, 12, 100628. [Google Scholar] [CrossRef]
- Celedón, R.S.; Díaz, L.B. Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications. Microorganisms 2021, 9, 739. [Google Scholar] [CrossRef]
- Pedroza-García, K.A.; Careaga-Cárdenas, G.; Díaz-Galindo, C.; Quintanar, J.L.; Hernández-Jasso, I.; Ramírez-Orozco, R.E. Bioactive role of vitamins as a key modulator of oxidative stress, cellular damage and comorbidities associated with spinal cord injury (SCI). Nutr. Neurosci. 2023, 26, 1120–1137. [Google Scholar] [CrossRef]
- Lademann, J.; Richter, H.; Teichmann, A.; Otberg, N. Nanoparticles–an efficient carrier for drug delivery into the hair follicles. Eur. J. Pharm. Biopharm. 2007, 66, 159–164. [Google Scholar] [CrossRef]
- Rastogi, R.; Anand, S.; Koul, V. Evaluation of pharmacological efficacy of ‘insulin–surfoplex’encapsulated polymer vesicles. Int. J. Pharm. 2009, 373, 107–115. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Y.; Huang, Z.; Guo, Y.; Li, Q. Triggering Immune System With Nanomaterials for Cancer Immunotherapy. Front. Bioeng. Biotechnol. 2022, 14, 878524. [Google Scholar] [CrossRef]
- Esfanjani, A.F.; Jafari, S.M. Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds. Colloids Surf. B Biointerfaces 2016, 146, 532–543. [Google Scholar] [CrossRef] [PubMed]
- González, J.O.W.; Jesser, E.N.; Yeguerman, C.A.; Ferrero, A.A.; Band, B.F. Polymer nanoparticles containing essential oils: New options for mosquito control. Environ. Sci. Pollut. Res. 2017, 24, 17006–17015. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, P.M.; Azevedo, S.G.; de Andrade, C.P.; D’Ambros, N.C.; Pérez, M.T.M.; Manzato, L. Biotechnological Applications of Nanoencapsulated Essential Oils: A Review. Polymers 2022, 14, 5495. [Google Scholar] [CrossRef] [PubMed]
- Rafiee, Z.; Nejatian, M.; Daeihamed, M.; Jafari, S.M. Application of curcumin-loaded nanocarriers for food, drug and cosmetic purposes. Trends Food Sci. Technol. 2019, 88, 445–458. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Zhang, Y. Encapsulation of curcumin within poly (amidoamine) dendrimers for delivery to cancer cells. J. Mater. Sci. Mater. Med. 2013, 24, 2137–2144. [Google Scholar] [CrossRef]
- Sanna, V.; Lubinu, G.; Madau, P.; Pala, N.; Nurra, S.; Mariani, A.; Sechi, M. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. J. Agric. Food Chem. 2015, 63, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.F.; Zandi, M.; Rezaei, M.; Farahmandghavi, F. Two-step method forencapsulation of oregano essential oil in chitosan nanoparticles: Preparation, characterization and in vitro release study. Carbohydr. Polym. 2013, 95, 50–56. [Google Scholar] [CrossRef]
- Yen, F.L.; Wu, T.H.; Lin, L.T.; Cham, T.M.; Lin, C.C. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem. Toxicol. 2008, 46, 1771–1777. [Google Scholar] [CrossRef]
- Han, H.J.; Lee, J.S.; Park, S.A.; Ahn, J.B.; Lee, H.G. Extraction optimization and nanoencapsulation of jujube pulp and seed for enhancing antioxidant activity. Colloids Surf. B Biointerfaces 2015, 130, 93–100. [Google Scholar] [CrossRef]
- Han, L.; Fu, Y.; Cole, A.J.; Liu, J.; Wang, J. Co-encapsulation and sustained-release of four components in ginkgo terpenes from injectable PELGE nanoparticles. Fitoterapia 2012, 83, 721–731. [Google Scholar] [CrossRef]
- Hameed, A.; Rehman, T.U.; Rehan, Z.A.; Noreen, R.; Iqbal, S.; Batool, S.; Farooq, T. Development of polymeric nanofibers blended with extract of neem (Azadirachta indica), for potential biomedical applications. Front. Mater. 2022, 9, 1042304. [Google Scholar] [CrossRef]
- Fathi-Karkan, S.; Zeeshan, M.; Qindeel, M.; Malekshah, R.E.; Rahdar, A.; Ferreira, L.F.R. NPs loaded with zoledronic acid as an advanced tool for cancer therapy. J. Drug Deliv. Sci. Technol. 2023, 87, 104805. [Google Scholar] [CrossRef]
- He, W.; Zhang, J.; Ju, J.; Wu, Y.; Zhang, Y.; Zhan, L.; Wang, Y. Preparation, characterization, and evaluation of the antitumor effect of kaempferol nanosuspensions. Drug Deliv. Transl. Res. 2023, 13, 2885–2902. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.; Bisht, R.; Rupenthal, I.D.; Mitra, A.K. Polymeric micelles for ocular drug delivery: From structural frameworks to recent preclinical studies. J. Control. Release 2017, 248, 96–116. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Xin, M.; Guo, C.; Lin, G.; Wu, X. New nanomicelle curcumin formulation for ocular delivery: Improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev. Ind. Pharm. 2017, 43, 1846–1857. [Google Scholar] [CrossRef]
- Gorantla, S.; Rapalli, V.K.; Waghule, T. Nanocarriers for ocular drug delivery: Current status and translational opportunity. RSC Adv. 2020, 10, 27835–27855. [Google Scholar] [CrossRef]
- Lidich, N.; Ottaviani, M.F.; Hoffman, R.E.; Aserin, A.; Garti, N. Docosahexaenoic acid triglyceride-based microemulsionswith an added dendrimer–structural considerations. J. Colloid Interface Sci. 2016, 483, 374–384. [Google Scholar] [CrossRef]
- Zhu, J.; Zheng, L.; Wen, S. Targeted cancer theranostics using alpha-tocopheryl succinate-conjugated multifunctional dendrimer-entrapped gold nanoparticles. Biomaterials 2014, 35, 7635–7646. [Google Scholar] [CrossRef]
- Yousefi, M.; Narmani, A.; Jafari, S.M. Dendrimers as efficient nanocarriers for the protection and delivery of bioactive phytochemicals. Adv. Colloid Interface Sci. 2020, 278, 102125. [Google Scholar] [CrossRef]
- De Carvalho Lima, E.N.; Barros Martins, G.L.; Diaz, R.S.; Schechter, M.; Piqueira, J.R.C.; Justo, J.F. Effects of Carbon Nanomaterials and Aloe vera on Melanomas—Where Are We? Recent Updates. Pharm. 2022, 14, 2004. [Google Scholar] [CrossRef]
- Babak, B.; Sachin, S.S.; Su, S.L.; Heewon, P.; Zahra, F.R.; Trevaskisc, N.L.; Yeu-Chun, K. Carbon-based nanostructures for cancer therapy and drug delivery applications. J. Mater. Chem. B 2022, 10, 9944–9967. [Google Scholar] [CrossRef]
- Rahmati, M.; Mozafari, M. Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Front. Bioeng. Biotechnol. 2019, 7, 4. [Google Scholar] [CrossRef] [PubMed]
- Barbinta-Patrascu, M.E.; Iordache, S.M.; Iordache, A.M.; Badea, N.; Ungureanu, C. Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes. Beilstein. J. Nanotechnol. 2014, 5, 2316–2325. [Google Scholar] [CrossRef] [PubMed]
- Huang, B. Carbon nanotubes and their polymeric composites: The applications in tissue engineering. Biomanuf. Rev. 2020, 5, 3. [Google Scholar] [CrossRef]
- Adepu, S.; Ramakrishna, S. Controlled Drug Delivery Systems: Current Status and Future Directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef] [PubMed]
- Lanone, S.; Andujar, P.; Kermanizadeh, A.; Boczkowski, J. Determinants of carbon nanotube toxicity. Adv. Drug Deliv. Rev. 2013, 65, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Sireesha, M.; Jagadeesh Babu, V.; Kranthi Kiran, A.S.; Ramakrishna, S. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 2018, 4, 36–57. [Google Scholar] [CrossRef]
- Prajapati, S.K.; Malaiya, A.; Kesharwani, P.; Soni, D.; Jain, A. Biomedical applications and toxicities of carbon nanotubes. Drug Chem. Toxicol. 2020, 45, 435–450. [Google Scholar] [CrossRef]
- Ding, N.; Dou, C.; Wang, Y.; Liu, F.; Guan, G.; Huo, D.; Yanzhao, L.; Jingyuan, Y.; Keyu, W.; Mingcan, Y.; et al. Antishear Stress Bionic Carbon Nanotube Mesh Coating with Intracellular Controlled Drug Delivery Constructing Small-Diameter Tissue-Engineered Vascular Grafts. Adv. Healthc. Mater. 2018, 7, 1800026. [Google Scholar] [CrossRef]
- Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H. Enhancement of curcumin antitumor efficacy and further photothermal ablation of tumor growth by single-walled carbon nanotubes delivery system in vivo. Drug Deliv. 2019, 26, 1017–1026. [Google Scholar] [CrossRef]
- Saheeda, P.; Thasneem, Y.M.; Sabira, K.; Dhaneesha, M.; Sulfikkarali, N.K.; Jayaleksmi, S. Multi-walled carbon nanotubes/polypyrrole nanocomposite, synthesized through an eco-friendly route, as a prospective drug delivery system. Polym. Bull. 2023, 80, 4589–4609. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.E.; Badea, N.; Ungureanu, C.; Pirvu, C.; Iftimie, V.; Antohe, S. Photophysical studies on biocomposites based on carbon nanotubes and chlorophyll-loaded biomimetic membranes, Rom. Rep. Phys. 2017, 69, 604–614. [Google Scholar]
- Baati, T.; Bourasset, F.; Gharbi, N.; Njim, L.; Abderrabba, M.; Kerkeni, A.; Szwarc, H.; Moussa, F. The prolongation of the lifespan of rats by repeated oral administration of fullerene. Biomaterials 2012, 33, 4936–4946. [Google Scholar] [CrossRef] [PubMed]
- Bartkowski, M.; Giordani, S. Carbon nano-onions as potential nanocarriers for drug delivery. Dalton Trans. 2021, 50, 2300–2309. [Google Scholar] [CrossRef] [PubMed]
- Plonska-Brzezinska, M.E.; Brus, D.M.; Breczko, J.; Echegoyen, L. Carbon Nano-Onions and Biocompatible Polymers for Flavonoid Incorporation. Chem. Eur. J. 2013, 19, 5019–5024. [Google Scholar] [CrossRef]
- Zoya, Z.; Niladri, M.; Mohammad, I.A.; Gunjan, S.; Sarmad, M.; Harihara, P.; Balaji, G.L.; Venkatesa, P.S. Fabrication, Characteristics, and Therapeutic Applications of Carbon-Based Nanodots. J. Nanomater. 2022, 2022, 8031495. [Google Scholar] [CrossRef]
- Xiaoyou, X.; Ray, R.; Gu, Y.; Ploehn, H.J.; Gearheart, L.; Raker, K.; Scrivens, W.A. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 2004, 126, 12736–12737. [Google Scholar] [CrossRef]
- Naik, K.; Chaudhary, S.; Ye, L.; Parmar, A.S. A Strategic Review on Carbon Quantum Dots for Cancer-Diagnostics and Treatment. Front. Bioeng. Biotechnol. 2022, 10, 882100. [Google Scholar] [CrossRef]
- Yu-Yu, C.; Wen-Ping, J.; Huan-Luen, C.; Hui-Chi, H.; Guan-Jhong, H.; Hsiu-Mei, C.; Chang-Cheng, C.; Cheng-Liang, H.; Tzong-Yuan, J. Cytotoxicity and cell imaging of six types of carbon nanodots prepared through carbonization and hydrothermal processing of natural plant materials. RSC Adv. 2021, 11, 16661. [Google Scholar] [CrossRef]
- Krystyjan, M.; Khachatryan, G.; Khachatryan, K.; Krzan, M.; Ciesielski, W.; Żarska, S.; Szczepankowska, J. Polysaccharides Composite Materials as Carbon Nanoparticles Carrier. Polymers 2022, 14, 948. [Google Scholar] [CrossRef]
- Libo, G.; Zhigang, X.; Min, Z. A general carbon dot-based platform for intracellular delivery of proteins. Soft Matter 2022, 18, 2776–2781. [Google Scholar] [CrossRef]
- Pitchai, C.; Gandhi, S.; Swetha, R.; Mathur, G.; Sethuraman, N.; Kotla, G.; Rochev, Y. Quercetin conjugated fluorescent nitro-gen-doped carbon dots for targeted cancer therapy application. Soft Matter 2022, 18, 5645–5653. [Google Scholar] [CrossRef]
- Yadav, K.; Das, M.; Hassan, N.; Mishra, A.; Lahiri, J.; Dubey, A.K.; Yadav, S.K.; Parmar, A.S. Synthesis and Characterization of Novel Protein Nanodots as Drug Delivery Carriers with an Enhanced Biological Efficacy of Melatonin in Breast Cancer Cells. RSC Adv. 2021, 11, 9076–9085. [Google Scholar] [CrossRef] [PubMed]
- Md Bayazeed, A.; Tarun, M.; Sanjeev, K.; Parmar, A.S. Therapeutic Potential of Chlorophyll Functionalized Carbon Quantum Dots against Cervical Cancer. ChemistrySelect 2022, 7, e202204562. [Google Scholar] [CrossRef]
- Dandan, L.; Sen, Q.; Bingchao, C.; Dongyang, L.; Jisuan, C.; Qingyin, W.; Hao, P.; Weisan, P. Enhanced Oral Delivery of Curcumin via Vitamin E TPGS Modified Nanodiamonds: A Comparative Study on the Efficacy of Non-covalent and Covalent Conjugated Strategies. AAPS PharmSciTech 2020, 21, 187. [Google Scholar] [CrossRef]
- Petrović, S. Stability of Chlorophyll on Oxidative Stress in Water Medium and in Liposomes. Ph.D. Thesis, Faculty of Technology, University of Nis, Niš, Serbia, 2016. [Google Scholar]
- Makwana, S.; Choudhary, R.; Dogra, N.; Kohli, P.; Haddock, J. Nanoencapsulation and immobilization of cinnamaldehyde for developing antimicrobial food packaging material. LWT—Food Sci. Technol. 2014, 57, 470–476. [Google Scholar] [CrossRef]
- Gortzi, O.; Lalas, S.; Chinou, I.; Tsaknis, J. Reevaluation of bioactivity and antioxidant activity of Myrtus communis extract before and after encapsulation in liposomes. Eur. Food Res. Technol. 2008, 226, 583–590. [Google Scholar] [CrossRef]
- Hadavi, R.; Jafari, S.M.; Katouzian, I. Nanoliposomal encapsulation of saffron bioactive compounds; characterization and optimization. Int. J. Biol. Macromol. 2020, 164, 4046–4053. [Google Scholar] [CrossRef]
- Hadian, Z. A review of nanoliposomal delivery system for stabilization of bioactive omega-3 fatty acids. Electron. Physician 2016, 8, 1776–1785. [Google Scholar] [CrossRef]
- Haghighi, M.; Yarmand, M.S.; Emam-Djomeh, Z.; McClements, D.; Saboury, A.A.; Rafiee-Tehrani, M. Design and fabrication of pectin-coated nanoliposomal delivery systems for a bioactive polyphenolic: Phloridzin. Int. J. Biol. Macromol. 2018, 112, 626–637. [Google Scholar] [CrossRef]
- Donsì, F.; Sessa, M.; Mediouni, H.; Mgaidi, A.; Ferrari, G. Encapsulation of bioactive compounds in nanoemulsion-based delivery systems. Procedia Food Sci. 2011, 1, 1666–1671. [Google Scholar] [CrossRef]
- Li, J.Y.; Zheng, H.X.; McClements, D.J. Nanoemulsion-based delivery systems for poorly water-soluble bioactive compounds: Influence of formulation parameters on polymethoxyflavone crystallization. Food Hydrocoll. 2012, 27, 517–528. [Google Scholar] [CrossRef]
- Cenobio-Galindo, A.J.; Ocampo-López, J.; Reyes-Munguía, A.; Carrillo-Inungaray, M.L.; Cawood, M.; Medina-Pérez, G.; Campos-Montiel, R.G. Influence of bioactive compounds incorporated in a nanoemulsion as coating on avocado fruits (Persea americana) during postharvest storage: Antioxidant activity, physicochemical changes and structural evaluation. Antioxidants 2019, 8, 500. [Google Scholar] [CrossRef] [PubMed]
- Aisha, A.F.; Majid, A.M.S.A.; Ismail, Z. Preparation and characterization of nano liposomes of Orthosiphon stamineus ethanolic extract in soybean phospholipids. BMC Biotechnol. 2014, 14, 23. [Google Scholar] [CrossRef] [PubMed]
- Gondim, B.L.; Oshiro-Júnior, J.A.; Fernanandes, F.H.; Nóbrega, F.P.; Castellano, L.R.; Medeiros, A.C. Plant extracts loaded in nanostructured drug delivery systems for treating parasitic and antimicrobial diseases. Curr. Pharm. Des. 2019, 25, 1604–1615. [Google Scholar] [CrossRef]
- Ardestani, S.B.; Sahari, M.A.; Barzegar, M. Encapsulation of barberry fruit extracts by spray drying and liposome entrapment. Acta Aliment. 2020, 49, 125–134. [Google Scholar] [CrossRef]
- Da-Costa-Rocha, I.; Bonnlaender, B.; Sievers, H.; Pischel, I.; Heinrich, M. Hibiscus sabdariffa L.–A phytochemical and pharmacological review. Food Chem. 2014, 65, 424–443. [Google Scholar] [CrossRef]
- Pathania, R.; Najda, A.; Chawla, P.; Kaushik, R.; Khan, M.A. Low-energy assisted sodium alginate stabilized Phyllanthus niruri extract nanoemulsion: Characterization, in vitro antioxidant and antimicrobial application. Biotechnol. Rep. 2022, 33, e00711. [Google Scholar] [CrossRef]
- Liu, G.; He, S.; Ding, Y.; Chen, C.; Cai, Q.; Zhou, W. Multivesicular liposomes for glucose-responsive insulin delivery. Pharmaceutics 2021, 14, 21. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhao, F.; Qi, Q.R.; Yue, B.S.; Zhai, B.T. Targeted drug delivery systems for elemene in cancer therapy: The story thus far. Biomed. Pharmacother. 2023, 166, 115331. [Google Scholar] [CrossRef]
- Wang, J.; Ding, Y.; Zhou, W. Albumin self-modified liposomes for hepatic fibrosis therapy via SPARC-dependent pathways. Int. J. Pharm. 2020, 574, 118940. [Google Scholar] [CrossRef]
- Tincu, R.; Mihaila, M.; Bostan, M.; Teodorescu, F.; Istrati, D.; Badea, N.; Lacatusu, I. Novel Bovine Serum AlbuminDecorated–Nanostructured Lipid Carriers Able to Modulate Apoptosis and Cell-Cycle Response in Ovarian, Breast, and Colon Tumoral Cells. Pharmaceutics 2023, 15, 1125. [Google Scholar] [CrossRef]
- Lúcio, M.; Giannino, N.; Barreira, S.; Catita, J.; Gonçalves, H.; Ribeiro, A.; Lopes, C.M. Nanostructured lipid carriers enriched hydrogels for skin topical administration of quercetin and omega-3 fatty acid. Pharmaceutics 2023, 15, 2078. [Google Scholar] [CrossRef]
- Limongi, T.; Susa, F.; Marini, M.; Allione, M.; Torre, B.; Pisano, R.; di Fabrizio, E. Lipid-based nanovesicular drug delivery systems. Nanomaterials 2021, 11, 3391. [Google Scholar] [CrossRef] [PubMed]
- Gaynanova, G.; Vasileva, L.; Kashapov, R.; Kuznetsova, D.; Kushnazarova, R.; Tyryshkina, A.; Vasilieva, E.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-Assembling Drug Formulations with Tunable Permeability and Biodegradability. Molecules 2021, 26, 6786. [Google Scholar] [CrossRef] [PubMed]
- Neupane, Y.R.; Mahtab, A.; Siddiqui, L.; Singh, A.; Gautam, N.; Rabbani, S.A.; Talegaonkar, S. Biocompatible nanovesicular drug delivery systems with targeting potential for autoimmune diseases. Curr. Pharm. Des. 2020, 26, 5488–5502. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Jing, W.; Baoguo, S. Biopolymer-liposome hybrid systems for controlled delivery of bioactive compounds: Recent advances. Biotechnol. Adv. 2021, 48, 107727. [Google Scholar] [CrossRef]
- Hsiao, Y.P.; Chen, H.T.; Liang, Y.C.; Wang, T.E.; Huang, K.H.; Hsu, C.C.; Liang, H.J.; Huang, C.H.; Jan, T.R. Development of Nanosome-Encapsulated Honokiol for Intravenous Therapy Against Experimental Autoimmune Encephalomyelitis. Int. J. Nanomed. 2020, 15, 17–29. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Muddineti, O.S.; Rompicharla, S.V.K.; Ghanta, P.; BBN, A.K.; Ghosh, B.; Biswas, S. Cholesterol-conjugated poly (D, L-lactide)-based micelles as a nanocarrier system for effective delivery of curcumin in cancer therapy. Drug Deliv. 2017, 24, 209–223. [Google Scholar] [CrossRef]
- Mozafari, M.R. Nanoliposomes: Preparation and analysis. In Liposomes; Humana Press: Totowa, NJ, USA, 2010; pp. 29–50. [Google Scholar]
- Barenholz, Y.; Lasic, D. Handbookof Nonmedical Applications of Liposomes; CRC: Boca Raton, FL, USA, 1996; p. 352. [Google Scholar]
- Petrović, S.; Ilić-Stojanović, S.; Tačić, A.; Nikolić, L.; Nikolić, V. Vesicular Drug Carriers as Delivery Systems. In Nanoconjugate Nanocarriers for Drug Delivery, 1st ed.; Keservani, R., Sharma, A.K., Eds.; Apple Academic Press: Palm Bay, FL, USA, 2018; pp. 141–174. [Google Scholar]
- Milenkovic, S.M.; Barbinta-Patrascu, M.-E.; Baranga, G.; Markovic, D.Z.; Tugulea, L. Comparative spectroscopic studies on liposomes containing chlorophyll a and chlorophyllide a. Gen. Physiol. Biophys. 2013, 32, 559–567. [Google Scholar] [CrossRef]
- Petrović, S.; Tugulea, L.; Marković, D.; Barbinta-Patrascu, M.-E. Chlorophyll A and chlorophyllide A inside liposomes made of saturated and unsaturated lipids: A possible impact of the lipids microenvironment. Acta Period. Technol. 2014, 45, 215–227. [Google Scholar] [CrossRef]
- Petrović, S.; Tačić, A.; Savić, S.; Nikolić, V.; Nikolić, L.; Savić, S. Sulfanilamide in solution and liposome vesicles; in vitro release and UV-stability studies. Saudi Pharm. J. 2017, 25, 1194–1200. [Google Scholar] [CrossRef]
- Petrović, S.M.; Barbinta-Patrascu, M.E.; Savić, S.R.; Zvezdanović, J.B. Chlorophyll A-labelled artificial lipid membranes exposed to photo-oxidative stress. Spectral studies. Rom. Rep. Phys. 2017, 69, 509–612. [Google Scholar]
- Milenković, S.M.; Zvezdanović, J.B.; Anđelković, T.D.; Marković, D.Z. The identification of chlorophyll and its derivatives in the pigment mixtures: HPLC-chromatography, visible and mass spectroscopy studies. Adv. Technol. 2012, 1, 16–24. [Google Scholar]
- Barbinta-Patrascu, M.-E.; Tugulea, L.; Meghea, A. Procaine effects on model membranes with chlorophyll a. Rev. Chim. 2009, 60, 337–341. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.-E.; Tugulea, L.; Meghea, A.; Popescu, A. Oxidative stress on liposomes with chlorophyll a monitored by spectral studies. Optoelectron. Adv. Mater.–Rapid Commun. 2008, 2, 113–116. [Google Scholar]
- Barbinta-Patrascu, M.-E. Biohybrids based on DNA and bio-inspired lipid membranes: Design and characterization. Optoelectron. Adv. Mater.–Rapid Commun. 2019, 13, 546–550. [Google Scholar]
- Zabodalova, L.; Ishchenko, T.; Skvortcova, N.; Baranenko, D.; Chernjavskij, V. Liposomal beta-carotene as a functional additive in dairy products. Agron. Res. 2014, 12, 825–834. [Google Scholar]
- Zarrabi, A.; Abadi, M.A.A.; Khorasani, S.; Mohammadabadi, M.R.; Jamshidi, A.; Torkaman, S.; Rasti, B. Nanoliposomes and Tocosomes as Multifunctional Nanocarriers for the Encapsulation of Nutraceutical and Dietary Molecules. Molecules 2020, 25, 638. [Google Scholar] [CrossRef]
- Marsanasco, M.; Piotrkowski, B.; Calabró, V.; del Valle Alonso, S.; Chiaramoni, N.S. Bioactive constituents in liposomes incorporated in orange juice as new functional food: Thermal stability, rheological and organoleptic properties. J. Food Sci. Technol. 2015, 52, 7828–7838. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.E. Liquid crystal biomimetic nanosystems loaded with vegetal extracts. Mol. Cryst. Liq. Cryst. 2019, 694, 32–39. [Google Scholar] [CrossRef]
- Colas, J.C.; Shi, W.L.; Rao, V.M.; Omri, A.; Mozafari, M.R.; Singh, H. Microscopical investigations of nisin-loaded nanoliposomesprepared by Mozafari method and their bacterialtargeting. Micron 2007, 38, 841–847. [Google Scholar] [CrossRef]
- Han, F.; Luo, D.; Qu, W. Nanoliposomes codelivering bioactive peptides produce enhanced anti-aging effect in human skin. J. Drug Deliv. Sci. Technol. 2020, 57, 101693. [Google Scholar] [CrossRef]
- Pasarin, D.; Ghizdareanu, A.-I.; Enascuta, C.E.; Matei, C.B.; Bilbie, C.; Paraschiv-Palada, L.; Veres, P.-A. Coating Materials to Increase the Stability of Liposomes. Polymers 2023, 15, 782. [Google Scholar] [CrossRef]
- Emami, S.; Azadmard-Damirchi, S.; Peighambardoust, S.H.; Valizadeh, H.; Hesari, J. Liposomes as carrier vehicles for functional compounds in food sector. J. Exp. Nanosci. 2016, 11, 737–759. [Google Scholar] [CrossRef]
- Kheadr, E.; Vuillemard, J.C.; El-Deeb, S.A. Impact of liposome-encapsulated enzyme cocktails on cheddar cheese ripening. Food Res. Int. 2003, 36, 3241–3252. [Google Scholar] [CrossRef]
- Cristiano, M.C.; Froiio, F.; Mancuso, A.; Cosco, D.; Dini, L.; Di Marzio, L.; Fresta, M.; Paolino, D. Oleuropein-Loaded Ufasomes Improve the Nutraceutical Efficacy. Nanomaterials 2021, 11, 105. [Google Scholar] [CrossRef]
- Albash, R.; Badawi, N.M.; Hamed, M.I.; Ragaie, M.H.; Mohammed, S.S.; Elbesh, R.M.; Mosallam, S. Exploring the Synergistic Effect of Bergamot Essential Oil with Spironolactone Loaded Nano-Phytosomes for Treatment of Acne Vulgaris: In Vitro Optimization, In Silico Studies, and Clinical Evaluation. Pharmaceuticals 2023, 16, 128. [Google Scholar] [CrossRef]
- Ahmed, S.; Amin, M.M.; Sayed, S. A comprehensive review on recent nanosystems for enhancing antifungal activity of fenticonazole nitrate from different routes of administration. Drug Deliv. 2023, 30, 2179129. [Google Scholar] [CrossRef] [PubMed]
- Albash, R.; Abdellatif, M.M.; Hassan, M.; Badawi, N. Tailoring terpesomes and leciplex for the effective ocular conveyance of moxifloxacin hydrochloride (Comparative assessment): In-vitro, ex-vivo, and in-vivo evaluation. Int. J. Nanomed. 2021, 16, 5247–5263. [Google Scholar] [CrossRef]
- Lamie, C.; Elmowafy, E.; Ragaie, M.H.; Attia, D.A.; Mortada, N.D. Assessment of antifungal efficacy of itraconazole loaded aspasomal cream: Comparative clinical study. Drug Deliv. 2022, 29, 1345–1357. [Google Scholar] [CrossRef] [PubMed]
- Gopinath, D.; Ravi, D.; Rao, B.; Apte, S.; Renuka, D.; Rambhau, D. Ascorbyl palmitate vesicles (Aspasomes): Formation, characterization and applications. Int. J. Pharm. 2004, 271, 95–113. [Google Scholar] [CrossRef]
- Amer, S.S.; Nasr, M.; Abdel-Aziz, R.T.; Moftah, N.H.; El Shaer, A.; Polycarpou, E.; Sammour, O. Cosm-nutraceutical nanovesicles for acne treatment: Physicochemical characterization and exploratory clinical experimentation. Int. J. Pharm. 2020, 577, 119092. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Einien, M.H.; Kandil, S.M.; Abdou, E.M.; Diab, H.M.; Zaki, M.S. Ascorbic acid derivative-loaded modified aspasomes: Formulation, in vitro, ex vivo and clinical evaluation for melasma treatment. J. Liposome Res. 2020, 30, 54–67. [Google Scholar] [CrossRef] [PubMed]
- Shinde, G.; Desai, P.; Shelke, S.; Patel, R.; Bangale, G.; Kulkarni, D. Mometasone furoate-loaded aspasomal gel for topical treatment of psoriasis: Formulation, optimization, in vitro and in vivo performance. J. Dermatol. Treat. 2022, 33, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Lamie, C.; Elmowafy, E.; Attia, D.A.; Elmazar, M.M.; Mortada, N.D. Diversifying the skin cancer-fighting worthwhile frontiers: How relevant are the itraconazole/ascorbyl palmitate nanovectors? Nanomed. Nanotechnol. Biol. Med. 2022, 43, 102561. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukherjee, B.; Chaudhuri, S.; Roy, T.; Mukherjee, A.; Sengupta, S. Methotrexate aspasomes against rheumatoid arthritis: Optimized hydrogel loaded liposomal formulation with in vivo evaluation in Wistar rats. Aaps Pharmscitech 2018, 19, 1320–1336. [Google Scholar] [CrossRef] [PubMed]
- Farouk, F.; Khalil, R.M.; Abdelbary, A.; El Arini, S.K.; Basha, M.; El-Hashemy, H.A. Bioanalytical Comparison of Transdermal Delivery of Tizanidine from Different Nanovesicular Carriers. J. Pharm. Innov. 2021, 16, 384–390. [Google Scholar] [CrossRef]
- Hatem, S.; Nasr, M.; Moftah, N.H.; Ragai, M.H.; Geneidi, A.S.; Elkheshen, S.A. Melatonin vitamin C-based nanovesicles for treatment of androgenic alopecia: Design, characterization and clinical appraisal. Eur. J. Pharm. Sci. 2018, 122, 246–253. [Google Scholar] [CrossRef]
- Waglewska, E.; Pucek-Kaczmarek, A.; Bazylinska, U. Self-assembled bilosomes with stimuli-responsive properties as bioinspired dual-tunable nanoplatform for pH/temperature-triggered release of hybrid cargo. Colloids Surf. B-Biointerfaces 2022, 215, 112524. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, Z.; Xu, J.; Zhang, J.; Sun, R.; Zhou, J.; Peng, J. Improving the ameliorative effects of berberine and curcumin combination via dextran-coated bilosomes on non-alcohol fatty liver disease in mice. J. Nanobiotechnol. 2021, 19, 230. [Google Scholar] [CrossRef] [PubMed]
- Parashar, P.; Rana, P.; Dwivedi, M.; Saraf, S.A. Dextrose Modified Bilosomes for Peroral Delivery: Improved therapeutic potential and stability of Silymarin in Diethylnitrosamine-induced hepatic carcinoma in rats. J. Liposome Res. 2019, 29, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Elkomy, M.H.; Alruwaili, N.K.; Elmowafy, M.; Shalaby, K.; Zafar, A.; Ahmad, N.; Eid, H.M. Surface-modified bilosomes nanogel bearing a natural plant alkaloid for safe management of rheumatoid arthritis inflammation. Pharmaceutics 2022, 14, 563. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, H.; Amin, M.M.; Fayad, W.; Zakaria, M.Y. TPGS surface modified bilosomes as boosting cytotoxic oral delivery systems of curcumin against doxorubicin resistant MCF-7 breast cancer cells. Int. J. Pharm. 2022, 619, 121717. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.; Gad, H.A.; Khattab, M.A.; Mansour, M. The tragedy of Alzheimer’s disease: Towards better management via resveratrol-loaded oral bilosomes. Pharmaceutics 2021, 13, 1635. [Google Scholar] [CrossRef] [PubMed]
- Soliman, S.M.; Mosallam, S.; Mamdouh, M.A.; Hussein, M.A.; Abd El-Halim, S. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats. Drug Deliv. 2022, 29, 427–439. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, V.A.; Sharma, A.; Rajesh, K.S.; Arunraj, T.R.; Gururaj, M.P.; Parasuraman, S.; John, A. Bilosomes as a Potential Carrier to Enhance Cognitive Effects of Bacopa monnieri Extract on Oral Administration. J. Health Allied Sci. NU 2023, 13, 421–430. [Google Scholar] [CrossRef]
- Gumi-Audenis, B.; Illa Tuset, S.; Grimaldi, N.; Pasquina, L.; Ferrer-Tasies, L.; Sanz-Carrasco, F.; Giannotti, M.I. Insights into the structure and nanomechanics of the Quatsome membrane by force spectroscopy measurements and molecular simulations. Nanoscale 2018, 10, 23001–23011. [Google Scholar] [CrossRef]
- Ferrer-Tasies, L.; Moreno-Calvo, E.; Cano-Sarabia, M.; Aguilella-Arzo, M.; Angelova, A.; Lesieur, S.; Veciana, J. Quatsomes: Vesicles Formed by Self-Assembly of Sterols and Quaternary Ammonium Surfactants. Langmuir 2013, 29, 6519–6528. [Google Scholar] [CrossRef]
- Battista, S.; Köber, M.; Bellio, P.; Celenza, G.; Galantini, L.; Vargas-Nadal, G.; Giansanti, L. Quatsomes formulated with l-prolinol-derived surfactants as antibacterial nanocarriers of (+)-usnic acid with antioxidant activity. ACS Appl. Nano Mater. 2022, 5, 6140–6148. [Google Scholar] [CrossRef]
- Gunes, A.; Guler, E.; Un, R.N.; Demir, B.; Barlas, F.B.; Yavuz, M.; Coskunol, H.; Timur, S. Niosomes of Nerium oleander extracts: In vitro assessment of bioactive nanovesicular structures. J. Drug Deliv. Sci. Technol. 2017, 37, 158–165. [Google Scholar] [CrossRef]
- Chitemere, R.P.; Stafslien, S.J.; Rasulev, B.; Webster, D.C.; Quadir, M. Soysome: A surfactant-free, fully biobased, self-assembled platform for nanoscale drug delivery applications. ACS Appl. Bio Mater. 2018, 1, 1830–1841. [Google Scholar] [CrossRef] [PubMed]
- Goodarzi, F.; Zendehboudi, S. A Comprehensive Review on Emulsions and Emulsion Stability in Chemical and Energy Industries. Can. J. Chem. Eng. 2019, 97, 281–309. [Google Scholar] [CrossRef]
- Saini, A.; Panesar, P.S.; Bera, M.B. Valorization of fruits and vegetables waste through green extraction of bioactive compounds and their nanoemulsions-based delivery system. Bioresour. Bioprocess. 2019, 6, 26. [Google Scholar] [CrossRef]
- Kumar, D.L.; Sarkar, P. Encapsulation of bioactive compounds using nanoemulsions. Environ. Chem. Lett. 2018, 16, 59–70. [Google Scholar] [CrossRef]
- Leong, T.S.H.; Manickam, S.; Martin, G.J.; Li, W.; Ashokkumar, M. Ultrasonic Production of Nano-Emulsions for Bioactive Delivery in Drug and Food Applications; Springer: Berlin/Heidelberg, Germany, 2018; pp. 23–32. [Google Scholar]
- Klang, V.; Valenta, C. Lecithin–based nanoemulsions. J. Drug Deliv. Sci. Technol. 2011, 21, 55–76. [Google Scholar] [CrossRef]
- McClements, D.J. Nanoemulsion-based oral delivery systems for lipophilic bioactive components: Nutraceuticals and pharmaceuticals. Ther. Deliv. 2013, 4, 841–857. [Google Scholar] [CrossRef]
- Ucisik, M.H.; Küpcü, S.; Breitwieser, A.; Gelbmann, N.; Schuster, B.; Sleytr, U.B. S-layer fusion protein as a tool functionalizing emulsomes and CurcuEmulsomes for antibody binding and targeting. Colloids Surf. B Biointerfaces 2015, 128, 132–139. [Google Scholar] [CrossRef]
- Jagaran, K.; Singh, M. Lipid Nanoparticles: Promising Treatment Approach for Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 9361. [Google Scholar] [CrossRef]
- Satish, R.; Ranendra, N.S. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother. 2018, 103, 598–613. [Google Scholar] [CrossRef]
- Khatamian, N.; Motavalizadehkakhky, A.; Homayouni Tabrizi, M.; Mehrzad, J.; Zhiani, R. Preparation and characterization of the myricetin-loaded solid lipid nanoparticles decorated with folic acid-bound chitosan and evaluation of its antitumor and anti-angiogenic activities in vitro and in vivo in mice bearing tumor models. Cancer Nano 2023, 14, 9. [Google Scholar] [CrossRef]
- Coc, L.M.C.; Lacatusu, I.; Badea, N.; Barbinta-Patrascu, M.E.; Meghea, A. Effective Lipid Nanocarriers Based on Linseed Oil for Delivery of Natural Polyphenolic Active. J. Nanomater. 2021, 2021, 8853941. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Fais, A.; Delogu, G.L.; Kumar, A. Biopolymer: A Sustainable Material for Food and Medical Applications. Polymers 2022, 14, 983. [Google Scholar] [CrossRef] [PubMed]
- Tavakoli, N.; Divsalar, A.; Haertlé, T.; Sawyer, L.; Saboury, A.A.; Muronetz, V. Milk protein-based nanodelivery systems for the cancer treatment. J. Nanostruct. Chem. 2021, 11, 483–500. [Google Scholar] [CrossRef]
- Kianfar, E. Protein nanoparticles in drug delivery: Animal protein, plant proteins and protein cages, albumin nanoparticles. J. Nanobiotechnol. 2021, 19, 159. [Google Scholar] [CrossRef] [PubMed]
- Sorolla, A.; Sorolla, M.A.; Wang, E.; Ceña, V. Peptides, proteins and nanotechnology: A promising synergy for breast cancer targeting and treatment. Expert Opin. Drug Deliv. 2020, 17, 1597–1613. [Google Scholar] [CrossRef]
- Hong, S.; Choi, D.W.; Kim, H.N.; Park, C.G.; Lee, W.; Park, H.H. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020, 12, 604. [Google Scholar] [CrossRef]
- Naqvi, S.; Khanadeev, V.A.; Khlebtsov, B.N.; Khlebtsov, N.G.; Deore, M.S.; Packirisamy, G. Albumin-Based Nanocarriers for the Simultaneous Delivery of Antioxidant Gene and Phytochemical to Combat Oxidative Stress. Front. Cell Dev. Biol. 2022, 10, 846175. [Google Scholar] [CrossRef]
- Li, Q.Z.; Zhou, Z.R.; Hu, C.Y.; Li, X.B.; Chang, Y.Z.; Liu, Y.; Zhou, X.W. Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci. Biotechnol. 2023, 32, 265–282. [Google Scholar] [CrossRef]
- Buey, B.; Layunta, E.; Latorre, E.; Mesonero, J.E. Potential role of milk bioactive peptides on the serotonergic system and the gut-brain axis. Int. Dairy J. 2023, 137, 105534. [Google Scholar] [CrossRef]
- Haschke, F.; Haiden, N.; Thakkar, S.K. Nutritive and Bioactive Proteins in Breastmilk. Ann. Nutr. Metab. 2016, 69, 16–26. [Google Scholar] [CrossRef]
- Salami, M.; Niasari-Naslaji, A.; Moosavi-Movahedi, A.A. Camel milk proteins, bioactive peptides and casein micelles. J. Camel Pract. Res. 2017, 24, 181–182. [Google Scholar] [CrossRef]
- Liu, Y.F.; Oey, I.; Bremer, P.; Carne, A.; Silcock, P. Bioactive peptides derived from egg proteins: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 2508–2530. [Google Scholar] [CrossRef] [PubMed]
- Salatin, S.; Jelvehgari, M.; Maleki-Dizaj, S.; Adibkia, K. A sight on protein-based nanoparticles as drug/gene delivery systems. Ther. Deliv. 2015, 6, 1017–1029. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv. 2016, 13, 1609–1623. [Google Scholar] [CrossRef] [PubMed]
- Visentini, F.F.; Perez, A.A.; Santiago, L.G. Bioactive compounds: Application of albumin nanocarriers as delivery systems. Crit. Rev. Food Sci. Nutr. 2022, 63, 7238–7268. [Google Scholar] [CrossRef] [PubMed]
- Cazacu, N.; Chilom, C.G.; David, M.; Florescu, M. Conformational Changes in the BSA-LT4 Complex Induced by the Presence of Vitamins: Spectroscopic Approach and Molecular Docking. Int. J. Mol. Sci. 2022, 23, 4215. [Google Scholar] [CrossRef] [PubMed]
- De Jesús Valle, M.J.; Maderuelo Martín, C.; Zarzuelo Castañeda, A.; Sánchez Navarro, A. Albumin micro/nanoparticles entrapping liposomes for itraconazole green formulation. Eur. J. Pharm. Sci. 2017, 106, 159–165. [Google Scholar] [CrossRef]
- Taguchi, K.; Okamoto, Y.; Matsumoto, K.; Otagiri, M.; Chuang, V.T.G. When Albumin Meets Liposomes: A Feasible Drug Carrier for Biomedical Applications. Pharmaceuticals 2021, 14, 296. [Google Scholar] [CrossRef]
- Mohammad-Beigi, H.; Shojaosadati, S.A.; Morshedi, D.; Arpanaei, A.; Marvian, A.T. Preparation and in vitro characterization of gallic acid-loaded human serum albumin nanoparticles. J. Nanoparticle Res. 2015, 17, 167. [Google Scholar] [CrossRef]
- Rejinold, N.S.; Muthunarayanan, M.; Chennazhi, K.P.; Nair, S.V.; Jayakumar, R. Curcumin Loaded Fibrinogen Nanoparticles for Cancer Drug Delivery. J. Biomed. Nanotechnol. 2011, 7, 521–534. [Google Scholar] [CrossRef]
- Chang, R.X.; Liu, B.; Wang, Q.M.; Zhang, J.P.; Yuan, F.; Zhang, H.J.; Chen, S.A.; Liang, S.; Li, Y. The encapsulation of lycopene with α-lactalbumin nanotubes to enhance their anti-oxidant activity, viscosity and colloidal stability in dairy drink. Food Hydrocoll. 2022, 131, 107792. [Google Scholar] [CrossRef]
- Cao, X.; Ren, Y.; Lu, Q.; Wang, K.; Wu, Y.; Wang, Y.; Zhang, Y.; Cui, X.S.; Yang, Z.; Chen, Z. Lactoferrin: A glycoprotein that plays an active role in human health. Front. Nutr. 2023, 9, 1018336. [Google Scholar] [CrossRef] [PubMed]
- Elzoghby, A.O.; Abdelmoneem, M.A.; Hassanin, I.A.; Abd Elwakil, M.M.; Elnaggar, M.A.; Mokhtar, S.; Fang, J.Y.; Elkhodairy, K.A. Lactoferrin, a multi-functional glycoprotein: Active therapeutic, drug nanocarrier & targeting ligand. Biomaterials 2020, 263, 120355. [Google Scholar] [CrossRef]
- Atallah, M.A.; Sallam, M.A.; Abdelmoneem, M.A.; Teleb, M.; Elkhodairy, K.A.; Bekhit, A.A.; Khafaga, A.F.; Noreldin, A.E.; Elzoghby, A.O.; Khattab, S.N. Green self-assembled lactoferrin carboxymethyl cellulose nanogels for synergistic chemo/herbal breast cancer therapy. Colloids Surf. B-Biointerfaces 2022, 217, 112657. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, W.; Jiang, Y.; McClements, D.J.; Liu, F.; Liu, X. Self-assembled nano-micelles of lactoferrin peptides: Structure, physicochemical properties, and application for encapsulating and delivering curcumin. Food Chem. 2022, 387, 132790. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.T.; Zhao, Y.; Wu, N.; Chen, S.P.; Xu, M.S.; Du, H.Y.; Yao, Y.; Tu, Y.G. Egg white protein-based delivery system for bioactive substances: A review. Crit. Rev. Food Sci. Nutr. 2022, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Hu, D.; Li, T.; Wang, Y.; Feng, M.; Sun, J. Silk sericin as building blocks of bioactive materials for advanced therapeutics. J. Control. Release Off. J. Control. Release Soc. 2022, 353, 303–316. [Google Scholar] [CrossRef]
- Aghaz, F.; Asadi, Z.; Sajadimajd, S.; Kashfi, K.; Arkan, E.; Rahimi, Z. Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH. Sci. Rep. 2023, 13, 11090. [Google Scholar] [CrossRef]
- Bayraktar, O.; Oder, G.; Erdem, C.; Kose, M.D.; Cheaburu-Yilmaz, C.N. Selective Encapsulation of the Polyphenols on Silk Fibroin Nanoparticles: Optimization Approaches. Int. J. Mol. Sci. 2023, 24, 9327. [Google Scholar] [CrossRef]
- Abhinav, M.; Akankshika, P.; Kumar, R.R.; Behera, R.K.F. A Promising Nanoreactor and Nanocarrier for Bionanotechnology. ACS Bio Med. Chem. Au 2022, 2, 258–281. [Google Scholar] [CrossRef]
- Chen, H.; Tan, X.Y.; Han, X.E.; Ma, L.; Dai, H.J.; Fu, Y.; Zhang, Y.H. Ferritin nanocage based delivery vehicles: From single-, co- to compartmentalized- encapsulation of bioactive or nutraceutical compounds. Biotechnol. Adv. 2022, 61, 108037. [Google Scholar] [CrossRef] [PubMed]
- Safdarpour, S.; Eftekhari, Z.; Eidi, A.; Doroud, D. Encapsulated saponin by ferritin nanoparticles attenuates the murine pneumococcal pneumonia. Microb. Pathog. 2022, 172, 105731. [Google Scholar] [CrossRef] [PubMed]
- Mehanna, M.; Mneimneh, A. Updated but not outdated “Gliadin”: A plant protein in advanced pharmaceutical nanotechnologies. Int. J. Pharm. 2020, 587, 119672. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Li, M.; Xu, X.; Liu, X.; Liu, F. Zein-based nano-delivery systems for encapsulation and protection of hydrophobic bioactives: A review. Front. Nutr. 2022, 9, 999373. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.K.; Ma, M.J.; Wang, D.F.; Xu, Y. A review of factors affecting the stability of zein-based nanoparticles loaded with bioactive compounds: From construction to application. Crit. Rev. Food Sci. Nutr. 2022, 23, 7529–7545. [Google Scholar] [CrossRef]
- Wang, T.X.; Li, X.X.; Chen, L.; Li, L.; Janaswamy, S. Carriers based on zein-dextran sulfate sodium binary complex for the sustained delivery of quercetin. Front. Chem. 2020, 8, 662. [Google Scholar] [CrossRef] [PubMed]
- Voci, S.; Fresta, M.; Cosco, D. Gliadins as versatile biomaterials for drug delivery applications. J. Control. Release 2021, 329, 385–400. [Google Scholar] [CrossRef]
- Davidov-Pardo, G.; Joye, I.J.; McClements, D.J. Encapsulation of resveratrol in biopolymer particles produced using liquid antisolvent precipitation. Part 1: Preparation and characterization. Food Hydrocoll. 2015, 45, 309–316. [Google Scholar] [CrossRef]
- Kwon, S.; Lee, D.; Kim, H.; Jung, Y.J.; Koo, H.; Lim, Y.B. Structural control of self-assembled peptide nanostructures to develop peptide vesicles for photodynamic therapy of cancer. Mater. Today Bio 2022, 16, 100337. [Google Scholar] [CrossRef]
- Zhao, C.; Chen, H.; Wang, F.; Zhang, X. Amphiphilic self-assembly peptides: Rational strategies to design and delivery for drugs in biomedical applications. Colloids Surf. B Biointerfaces 2021, 208, 112040. [Google Scholar] [CrossRef]
- Wang, X.J.; Cheng, J.; Zhang, L.Y.; Zhang, J.G. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: Recent developments, challenges, and future perspectives. Drug Deliv. 2022, 29, 1184–1200. [Google Scholar] [CrossRef] [PubMed]
- Yermak, I.M.; Davydova, V.N.; Volod’ko, A.V. Mucoadhesive Marine Polysaccharides. Mar. Drugs 2022, 20, 522. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Guillén, M.C.; Montero, M.P. Enhancement of oral bioavailability of natural compounds and probiotics by mucoadhesive tailored biopolymer-based nanoparticles: A review. Food Hydrocoll. 2021, 118, 106772. [Google Scholar] [CrossRef]
- Kurczewska, J. Recent Reports on Polysaccharide-Based Materials for Drug Delivery. Polymers 2022, 14, 4189. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.M.; Le, T.T.N.; Nguyen, A.T.; Le, H.N.T.; Pham, T.T. Biomedical materials for wound dressing: Recent advances and applications. RSC Adv. 2023, 13, 5509–5528. [Google Scholar] [CrossRef] [PubMed]
- Al-Rooqi, M.M.; Hassan, M.M.; Moussa, Z.; Obaid, R.J.; Suman, N.H.; Wagner, M.H.; Natto, S.S.; Ahmed, S.A. Advancement of chitin and chitosan as promising Biomaterials. J. Saudi Chem. Soc. 2022, 26, 101561. [Google Scholar] [CrossRef]
- Chuah, L.H.; Roberts, C.J.; Billa, N.; Abdullah, S.; Rosli, R. Cellular uptake and anticancer effects of mucoadhesive curcumin-containing chitosan NPs. Colloids Surf. B Biointerfaces 2014, 116, 228–236. [Google Scholar] [CrossRef]
- El-Sherbiny, M.M.; Elekhtiar, R.S.; El-Hefnawy, M.E.; Mahrous, H.; Alhayyani, S.; Al-Goul, S.T.; Orif, M.I.; Tayel, A.A. Fabrication and assessment of potent anticancer nanoconjugates from chitosan nanoparticles, curcumin, and eugenol. Front. Bioeng. Biotechnol. 2022, 10, 1030936. [Google Scholar] [CrossRef]
- Nalini, T.; Basha, S.K.; Sadiq, A.M.; Kumari, V.S. Pectin/Chitosan Nanoparticle Beads as Potential Carriers for Quercetin Release. Mater. Today Commun. 2022, 33, 104172. [Google Scholar] [CrossRef]
- Di Martino, A.; Trusova, M.E.; Postnikov, P.S.; Sedlarik, V. Enhancement of the antioxidant activity and stability of β-carotene using amphiphilic chitosan/nucleic acid polyplexes. Int. J. Biol. Macromol. 2018, 117, 773–780. [Google Scholar] [CrossRef] [PubMed]
- Esposto, B.S.; Jauregi, P.; Tapia-Blácido, D.R.; Martelli-Tosi, M. Liposomes vs. chitosomes: Encapsulating food bioactives. Trends Food Sci. Technol. 2020, 108, 40–48. [Google Scholar] [CrossRef]
- Hassan, N.A.; Darwesh, O.M.; Smuda, S.S.; Altemimi, A.B.; Hu, A.; Cacciola, F.; Haoujar, I.; Abedelmaksoud, T.G. Recent Trends in the Preparation of Nano-Starch Particles. Molecules 2022, 27, 5497. [Google Scholar] [CrossRef] [PubMed]
- Jiang, F.; Du, C.; Zhao, N.; Jiang, W.; Yu, X.; Du, S.K. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chem. 2022, 369, 130895. [Google Scholar] [CrossRef] [PubMed]
- Khojastehfar, A.; Mahjoub, S. Application of Nanocellulose Derivatives as Drug Carriers; A Novel Approach in Drug Delivery. Anti-Cancer Agents Med. Chem. 2021, 21, 692–702. [Google Scholar] [CrossRef] [PubMed]
- Huo, Y.; Liu, Y.; Xia, M.; Du, H.; Lin, Z.; Li, B.; Liu, H. Nanocellulose-Based Composite Materials Used in Drug Delivery Systems. Polymers 2022, 14, 2648. [Google Scholar] [CrossRef]
- Tong, W.Y.; Bin Abdullah, A.Y.K.; Binti Rozman, N.A.S.; Bin Wahid, M.I.A.; Hossain, M.S.; Ring, L.C.; Tan, W.N. Antimicrobial wound dressing film utilizing cellulose nanocrystal as drug delivery system for curcumin. Cellulose 2018, 25, 631–638. [Google Scholar] [CrossRef]
- Munawaroh, H.S.H.; Anwar, B.; Yuliani, G.; Murni, I.C.; Arindita, N.P.Y.; Maulidah, G.S.; Martha, L.; Hidayati, N.A.; Chew, K.W.; Show, P.L. Bacterial cellulose nanocrystal as drug delivery system for overcoming the biological barrier of cyano-phycocyanin: A biomedical application of microbial product. Bioengineered 2023, 14, 2252226. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.E.; Iordache, S.M. DNA–the fascinating biomacromolecule in optoelectronics and photonics applications. J. Optoelectron. Adv. Mater. 2022, 24, 563–575. [Google Scholar]
- He, S.; Fan, T.; Wang, Y.; Wei, C.; Hu, J. Recent Advances in DNA Nanostructure-enabled Drug Delivery. ChemNanoMat 2023, 9, e202200459. [Google Scholar] [CrossRef]
- Guo, Y.; Cao, X.; Zheng, X.; Abbas, S.J.; Li, J.; Tan, W. Construction of nanocarriers based on nucleic acids and their applications in nanobiology delivery systems. Natl. Sci. Rev. 2022, 9, nwac006. [Google Scholar] [CrossRef]
- Yuan, Y.K.; Xu, W.Y.; Ma, M.J.; Zhang, S.Z.; Wang, D.F.; Xu, Y. Effect of fish sperm deoxyribonucleic acid encapsulation on stability, bioaccessibility, redispersibility, and solubilization of curcumin. Food Biosci. 2022, 48, 101746. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, Y.; Guan, L.; Zhang, Y.; Dang, Q.; Dong, P.; Liang, X. Preparation of astaxanthin-loaded DNA/chitosan nanoparticles for improved cellular uptake and antioxidation capability. Food Chem. 2017, 227, 9–15. [Google Scholar] [CrossRef]
- Baldassari, S.; Balboni, A.; Drava, G.; Donghia, D.; Canepa, P.; Ailuno, G.; Caviglioli, G. Phytochemicals and Cancer Treatment: Cell-Derived and Biomimetic Vesicles as Promising Carriers. Pharmaceutics 2023, 15, 1445. [Google Scholar] [CrossRef]
- Jia, L.; Zhang, P.; Sun, H.; Dai, Y.; Liang, S.; Bai, X.; Feng, L. Optimization of Nanoparticles for Smart Drug Delivery: A Review. Nanomaterials 2021, 11, 2790. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Yan, D.; Hou, W.; Jiang, H.; Wu, M.; Wang, Y.; Chen, G.; Tang, C.; Wang, Y.; Xu, H. Biomimetic Red Blood Cell Membrane-Mediated Nanodrugs Loading Ursolic Acid for Targeting NSCLC Therapy. Cancers 2022, 14, 4520. [Google Scholar] [CrossRef] [PubMed]
- Fliervoet, L.A.; Mastrobattista, E. Drug delivery with living cells. Adv. Drug Deliv. Rev. 2016, 106, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Xie, Z.; Kim, G.B.; Dong, C.; Yang, J. Design strategies and applications of circulating cell-mediated drug delivery systems. ACS Biomater. Sci. Eng. 2015, 1, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Leng, Y.; He, C.; Li, X.; Zhao, L.; Qu, Y.; Wu, Y. Red blood cells: A potential delivery system. J. Nanobiotechnol. 2023, 21, 288. [Google Scholar] [CrossRef]
- Lu, Q.; Liu, T.; Han, Z.; Zhao, J.; Fan, X.; Wang, H.; Sun, J. Revolutionizing cancer treatment: The power of cell-based drug delivery systems. J. Control. Release 2023, 361, 604–620. [Google Scholar] [CrossRef]
- Montes, C.; Villaseñor, M.J.; Ríos, Á. Analytical control of nanodelivery lipid-based systems for encapsulation of nutraceuticals: Achievements and challenges. Trends Food Sci. Technol. 2019, 90, 47–62. [Google Scholar] [CrossRef]
- Tan, C.; Huang, M.; McClements, D.J.; Sun, B.; Wang, J. Yeast cell-derived delivery systems for bioactives. Trends Food Sci. Technol. 2021, 118, 362–373. [Google Scholar] [CrossRef]
- Hu, X.; Yang, G.; Chen, S.; Luo, S.; Zhang, J. Biomimetic and bioinspired strategies for oral drug delivery. Biomater. Sci. 2020, 8, 1020–1044. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; Nazir, M.S.; Azra, N.; Qamar, Z.; Seeni, A.; Tengku Din, T.A.D.A.-A.; Abdullah, M.A. Novel Drug and Gene Delivery System and Imaging Agent Based on Marine Diatom Biosilica Nanoparticles. Mar. Drugs 2022, 20, 480. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, M.; De Stefano, L.; Rea, I. Diatoms Green Nanotechnology for Biosilica-Based Drug Delivery Systems. Pharmaceutics 2018, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Hassanzadeh, P.; Arbabi, E.; Rostami, F. Development of a novel nanoformulation against the colorectal cancer. Life Sci. 2021, 281, 119772. [Google Scholar] [CrossRef]
- Marcovici, I.; Coricovac, D.; Pinzaru, I.; Macasoi, I.G.; Popescu, R.; Chioibas, R.; Zupko, I.; Dehelean, C.A. Melanin and Melanin-Functionalized Nanoparticles as Promising Tools in Cancer Research—A Review. Cancers 2022, 14, 1838. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Zou, Q.; Tang, H.; Liu, J.; Zhang, S.; Fan, C.; Shen, Y. Melanin nanoparticles alleviate sepsis-induced myocardial injury by suppressing ferroptosis and inflammation. Bioact. Mater. 2022, 27, 313–321. [Google Scholar] [CrossRef]
- Bedhiafi, T.; Idoudi, S.; Alhams, A.A.; Fernandes, Q.; Iqbal, H.; Basineni, R.; Billa, N. Applications of polydopaminic nanomaterials in mucosal drug delivery. J. Control. Release 2023, 353, 842–849. [Google Scholar] [CrossRef]
- Chen, T.; Zhuang, B.; Huang, Y.; Liu, Y.; Yuan, B.; Wang, W.; Jin, Y. Inhaled curcumin mesoporous polydopamine nanoparticles against radiation pneumonitis. Acta Pharm. Sin. B 2022, 12, 2522–2532. [Google Scholar] [CrossRef]
- Thombare, N.; Kumar, S.; Kumari, U.; Sakare, P.; Yogi, R.K.; Prasad, N.; Sharma, K.K. Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. Int. J. Biol. Macromol. 2022, 215, 203–223. [Google Scholar] [CrossRef]
- Sun, X.; Jiao, X.; Wang, Z.; Ma, J.; Wang, T.; Zhu, D.; Jin, W. Polydopamine-coated 3D-printed β-tricalcium phosphate scaffolds to promote the adhesion and osteogenesis of BMSCs for bone-defect repair: mRNA transcriptomic sequencing analysis. J. Mater. Chem. B 2023, 11, 1725–1738. [Google Scholar] [CrossRef]
- Ren, H.; Wu, L.; Tan, L.; Bao, Y.; Ma, Y.; Jin, Y.; Zou, Q. Self-assembly of amino acids toward functional biomaterials. Beilstein J. Nanotechnol. 2021, 12, 1140–1150. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.-E.; Iftimie, S.; Cazacu, N.; Stan, D.L.; Costas, A.; Balan, A.E.; Chilom, C.G. Bio-Entities Based on Albumin Nanoparticles and Biomimetic Cell Membranes: Design, Characterization and Biophysical Evaluation. Coatings 2023, 13, 671. [Google Scholar] [CrossRef]
- Santos, A.C.; Sequeira, J.A.D.; Pereira, I.; Cabral, C.; Gonzallez, M.C.; Fontes-Ribeiro, C.; Ribeiro, A.J.; Lvov, Y.M.; Veiga, F.J. Sonication-assisted Layer-by-Layer self-assembly nanoparticles for resveratrol delivery. Mater. Sci. Eng. C 2019, 105, 110022. [Google Scholar] [CrossRef] [PubMed]
- Pineda-Reyes, A.M.; Delgado, M.H.; de la Luz Zambrano-Zaragoza, M.; Leyva-Gómez, G.; Mendoza-Munoz, N.; Quintanar-Guerrero, D. Implementation of the emulsification-diffusion method by solvent displacement for polystyrene nanoparticles prepared from recycled material. RSC Adv. 2021, 11, 2226–2234. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, H.A.; Sulaiman, G.M.; Anwar, S.S.; Tawfeeq, A.T.; Khan, R.A.; Mohammed, S.A.; Al-Amiery, A.A. Quercetin against MCF7 and CAL51 breast cancer cell lines: Apoptosis, gene expression and cytotoxicity of nano-quercetin. Nanomedicine 2021, 16, 1937–1961. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.L.; Kok, S.L.; Gambari, R.; Kok, T.W.; Leung, H.Y.; Choi, K.L.; Chui, C.H. Evaluation of berberine/bovine serum albumin nanoparticles for liver fibrosis therapy. Green Chem. 2015, 17, 1640–1646. [Google Scholar] [CrossRef]
- Song, D.; Hao, J.; Fan, D. Biological properties and clinical applications of berberine. Front. Med. 2020, 14, 564–582. [Google Scholar] [CrossRef] [PubMed]
- Bilge, S.; Topal, B.D.; Caglayan, M.G.; Unal, M.A.; Nazır, H.; Atici, E.B.; Ozkan, S.A. Human hair rich in pyridinic nitrogen-base DNA biosensor for direct electrochemical monitoring of palbociclib-DNA interaction. Bioelectrochemistry 2022, 148, 108264. [Google Scholar] [CrossRef] [PubMed]
- De Padova, P.; Generosi, A.; Paci, B.; Olivieri, B.; Ottaviani, C.; Quaresima, C.; Hegde, G. Cu nano-roses self-assembly from Allium cepa L., pyrolysis by green synthesis of C nanostructures. Appl. Sci. 2020, 10, 3819. [Google Scholar] [CrossRef]
- Beda, A.; Rabuel, F.; Rahmouni, O.; Morcrette, M.; Ghimbeu, C.M. Optimization of tannin-derived hard carbon spheres for high-performance sodium-ion batteries. J. Mater. Chem. A 2023, 11, 4365–4383. [Google Scholar] [CrossRef]
- Adorinni, S.; Cringoli, M.C.; Perathoner, S.; Fornasiero, P.; Marchesan, S. Green Approaches to Carbon Nanostructure-Based Biomaterials. Appl. Sci. 2021, 11, 2490. [Google Scholar] [CrossRef]
- Gowda, B.J.; Ahmed, M.G.; Chinnam, S.; Paul, K.; Ashrafuzzaman, M.; Chavali, M.; Gupta, P.K. Current trends in bio-waste mediated metal/metal oxide nanoparticles for drug delivery. J. Drug Deliv. Sci. Technol. 2022, 71, 103305. [Google Scholar] [CrossRef]
- Zong, H.; Zhang, S.; Zangeneh, M.M.; Hemmati, S.; Zangeneh, A.; Saremi, S.G.; Pirhayati, M. Synthesis of Fe3O4 nanoparticles encapsulated with orange pectin for the treatment of gastrointestinal cancers. Mater. Express 2022, 12, 1455–1464. [Google Scholar] [CrossRef]
- Verdini, F.; Gaudino, E.C.; Canova, E.; Tabasso, S.; Behbahani, P.J.; Cravotto, G. Lignin as a natural carrier for the efficient delivery of bioactive compounds: From waste to health. Molecules 2022, 27, 3598. [Google Scholar] [CrossRef]
- Berglund, L.; Nissila, T.; Sivaraman, D.; Komulainen, S.; Telkki, V.V.; Oksman, K. Seaweed-derived alginate–cellulose nanofiber aerogel for insulation applications. ACS Appl. Mater. Interfaces 2021, 13, 34899–34909. [Google Scholar] [CrossRef]
- Kassab, Z.; Kassem, I.; Hannache, H.; Bouhfid, R.; Qaiss, A.E.K.; El Achaby, M. Tomato plant residue as new renewable source for cellulose production: Extraction of cellulose nanocrystals with different surface functionalities. Cellulose 2020, 27, 4287–4303. [Google Scholar] [CrossRef]
- Trung, T.S.; Minh, N.C.; Cuong, H.N.; Phuong, P.T.D.; Dat, P.A.; Nam, P.V.; Van Hoa, N. Valorization of fish and shrimp wastes to nano-hydroxyapatite/chitosan biocomposite for wastewater treatment. J. Sci. Adv. Mater. Devices 2022, 7, 100485. [Google Scholar] [CrossRef]
- Ortega, F.; Versino, F.; López, O.V.; García, M.A. Biobased composites from agro-industrial wastes and by-products. Emergent Mater. 2022, 5, 873–921. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Al-Kahtani, H.A.; Jaswir, I.; AbuTarboush, H.; Ismail, E.A. Extraction and characterization of gelatin from camel skin (potential halal gelatin) and production of gelatin nanoparticles. Saudi J. Biol. Sci. 2020, 27, 1596–1601. [Google Scholar] [CrossRef] [PubMed]
- Neculai Văleanu, A.S. Elaboration of Biodegradable Whey Isolate Film Incorporated with Green Synthesized Silver Nanoparticles. 2021. Available online: https://repository.uaiasi.ro/xmlui/handle/20.500.12811/3098 (accessed on 3 September 2023).
- Maraveas, C. Production of sustainable and biodegradable polymers from agricultural waste. Polymers 2020, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Lutz, H.; Hu, S.; Dinh, P.U.; Cheng, K. Cells and cell derivatives as drug carriers for targeted delivery. Med. Drug Discov. 2019, 3, 100014. [Google Scholar] [CrossRef]
- Ashique, S.; Afzal, O.; Khalid, M.; Ahmad, M.F.; Upadhyay, A.; Kumar, S.; Khanam, A. Biogenic nanoparticles from waste fruit peels: Synthesis, applications, challenges and future perspectives. Int. J. Pharm. 2023, 643, 123223. [Google Scholar] [CrossRef]
- Qin, P.; Song, H.; Ruan, Q.; Huang, Z.; Xu, Y.; Huang, C. Direct observation of dynamic surface reconstruction and active phases on honeycomb Ni3N–Co3N/CC for oxygen evolution reaction. Sci. China Mater. 2022, 65, 2445–2452. [Google Scholar] [CrossRef]
- Evrim Kepekci Tekkeli, S.; Volkan Kiziltas, M. Current HPLC methods for assay of nano drug delivery systems. Curr. Top. Med. Chem. 2017, 17, 1588–1594. [Google Scholar] [CrossRef] [PubMed]
- Barbinta-Patrascu, M.E.; Gorshkova, Y.; Ungureanu, C.; Badea, N.; Bokuchava, G.; Lazea-Stoyanova, A.; Petrovic, S. Characterization and antitumoral activity of biohybrids based on Turmeric and silver/silver chloride nanoparticles. Materials 2021, 14, 4726. [Google Scholar] [CrossRef] [PubMed]
- Barbinta-Patrascu, M.E.; Ungureanu, C.; Badea, N.; Bacalum, M.; Lazea-Stoyanova, A.; Zgura, I.; Burnei, C. Novel ecogenic plasmonic biohybrids as multifunctional bioactive coatings. Coatings 2020, 10, 659. [Google Scholar] [CrossRef]
- Horszwald, A.; Andlauer, W. Characterisation of bioactive compounds in berry juices by traditional photometric and modern microplate methods. J. Berry Res. 2011, 1, 189–199. [Google Scholar] [CrossRef]
- Oldoni, T.L.C.; Merlin, N.; Karling, M.; Carpes, S.T.; de Alencar, S.M.; Morales, R.G.F.; Pilau, E.J. Bioguided extraction of phenolic compounds and UHPLC-ESI-Q-TOF-MS/MS characterization of extracts of Moringa oleifera leaves collected in Brazil. Food Res. Int. 2019, 125, 108647. [Google Scholar] [CrossRef]
- Simão, D.O.; Honorato, T.D.; Gobo, G.G.; Piva, H.L.; Goto, P.L.; Rolim, L.A.; Siqueira-Moura, M.P. Preparation and cytotoxicity of lipid nanocarriers containing a hydrophobic flavanone. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124982. [Google Scholar] [CrossRef]
- Lacatusu, I.; Badea, N.; Udeanu, D.; Coc, L.; Pop, A.; Cioates Negut, C.; Tanase, C.; Stan, R.; Meghe, A. Improved anti-obesity effect of herbal active and endogenous lipids co-loaded lipid nanocarriers: Preparation, in vitro and in vivo evaluation. Mater. Sci. Eng. C 2019, 99, 12–24. [Google Scholar] [CrossRef]
- Krambeck, K.; Santos, D.; Otero-Espinar, F.; Lobo, J.S.; Amaral, M.H. Lipid nanocarriers containing Passiflora edulis seeds oil intended for skin application. Colloids Surf. B Biointerfaces 2020, 193, 111057. [Google Scholar] [CrossRef] [PubMed]
- Silva, H.D.; Cerqueira, M.Â.; Vicente, A.A. Nanoemulsions for food applications: Development and characterization. Food Bioprocess Technol. 2012, 5, 854–867. [Google Scholar] [CrossRef]
- Dadwal, A.; Mishra, N.; Rawal, R.K.; Narang, R.K. Development and characterisation of clobetasol propionate loaded Squarticles as a lipid nanocarrier for treatment of plaque psoriasis. J. Microencapsul. 2020, 37, 341–354. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhang, C.; Yuan, J.; Wu, Y.; Li, F.; Li, D.; Huang, Q. Effects of pectin polydispersity on zein/pectin composite nanoparticles (ZAPs) as high internal-phase Pickering emulsion stabilizers. Carbohydr. Polym. 2019, 219, 77–86. [Google Scholar] [CrossRef]
- Müller-Goymann, C.C. Physicochemical characterization of colloidal drug delivery systems such as reverse micelles, vesicles, liquid crystals and nanoparticles for topical administration. Eur. J. Pharm. Biopharm. 2004, 58, 343–356. [Google Scholar] [CrossRef]
- Klang, V.; Matsko, N.B.; Valenta, C.; Hofer, F. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 2012, 43, 85–103. [Google Scholar] [CrossRef]
- Carissimi, G.; Baronio, C.M.; Montalbán, M.G.; Víllora, G.; Barth, A. On the secondary structure of silk fibroin nanoparticles obtained using ionic liquids: An infrared spectroscopy study. Polymers 2020, 12, 1294. [Google Scholar] [CrossRef]
- Manaia, E.B.; Abuçafy, M.P.; Chiari-Andréo, B.G.; Silva, B.L.; Oshiro Junior, J.A.; Chiavacci, L.A. Physicochemical characterization of drug nanocarriers. Int. J. Nanomed. 2017, 12, 4991–5011. [Google Scholar] [CrossRef]
- Welin-Berger, K.; Bergenståhl, B. Inhibition of Ostwald ripening in local anesthetic emulsions by using hydrophobic excipients in the disperse phase. Int. J. Pharm. 2000, 200, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol. 2019, 47, 524–539. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Burgess, D.J. Accelerated in-vitro release testing methods for extended-release parenteral dosage forms. J. Pharm. Pharmacol. 2012, 64, 986–996. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Zhang, S.; Yang, Q.; Zhang, T.; Wei, X.Q.; Jiang, L.; Lin, Y.F. Preformed albumin corona, a protective coating for nanoparticles based drug delivery system. Biomaterials 2013, 34, 8521–8530. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.E., III; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Umapathi, A.; Kumawat, M.; Daima, H.K. Engineered nanomaterials for biomedical applications and their toxicity: A review. Environ. Chem. Lett. 2022, 20, 445–468. [Google Scholar] [CrossRef]
- Sharifi, S.; Fathi, N.; Memar, M.Y.; Hosseiniyan Khatibi, S.M.; Khalilov, R.; Negahdari, R.; Maleki Dizaj, S. Anti-microbial activity of curcumin nanoformulations: New trends and future perspectives. Phytother. Res. 2020, 34, 1926–1946. [Google Scholar] [CrossRef]
- Bromma, K.; Rieck, K.; Kulkarni, J.; O’Sullivan, C.; Sung, W.; Cullis, P.; Chithrani, D.B. Use of a lipid nanoparticle system as a Trojan horse in delivery of gold nanoparticles to human breast cancer cells for improved outcomes in radiation therapy. Cancer Nanotechnol. 2019, 10, 1. [Google Scholar] [CrossRef]
- Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res. 2019, 15, 1–18. [Google Scholar] [CrossRef]
- Li, Z.; Shan, X.; Chen, Z.; Gao, N.; Zeng, W.; Zeng, X.; Mei, L. Applications of Surface Modification Technologies in Nanomedicine for Deep Tumor Penetration. Adv. Sci. 2021, 8, 2002589. [Google Scholar] [CrossRef]
- Hueppe, N.; Wurm, F.R.; Landfester, K. Nanocarriers with Multiple Cargo Load—A Comprehensive Preparation Guideline Using Orthogonal Strategies. Macromol. Rapid Commun. 2022, 44, 2200611. [Google Scholar] [CrossRef]
- Ott, C.; Lacatusu, I.; Badea, G.; Grafu, I.A.; Istrati, D.; Babeanu, N.; Stan, R.; Badea, N.; Meghea, A. Exploitation of amaranth oil fractions enriched in squalene for dualdelivery of hydrophilic and lipophilic actives. Ind. Crops Prod. 2015, 77, 342–352. [Google Scholar] [CrossRef]
- Meng, Z.; Liu, Y.; Xu, K.; Sun, X.; Yu, Q.; Wu, Z.; Zhao, Z. Biomimetic Polydopamine-Modified Silk Fibroin/Curcumin Nanofibrous Scaffolds for Chemo-photothermal Therapy of Bone Tumor. ACS Omega 2021, 6, 22213–22223. [Google Scholar] [CrossRef]
- Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Zafar, A.; Alsaidan, O.A.; Alruwaili, N.K.; Gilani, S.J.; Rizwanullah, M. Recent Advancement in Chitosan-Based Nanoparticles for Improved Oral Bioavailability and Bioactivity of Phytochemicals: Challenges and perspectives. Polymers 2021, 13, 4036. [Google Scholar] [CrossRef]
- Milović, M.; Simović, S.; Lošić, D.; Dashevskiy, A.; Ibrić, S. Solid self-emulsifying phospholipid suspension (SSEPS) with diatom as a drug carrier. Eur. J. Pharm. Sci. 2014, 63, 226–232. [Google Scholar] [CrossRef]
- Muhlberg, E.; Burtscher, M.; Uhl, P. Trends in liposomal nanocarrier strategies for the oral delivery of biologics. Nanomedicine 2021, 16, 1813–1832. [Google Scholar] [CrossRef] [PubMed]
- Sabu, C.; Rejo, C.; Kotta, S.; Pramod, K. Bioinspired and biomimetic systems for advanced drug and gene delivery. J. Control. Release 2018, 287, 142–155. [Google Scholar] [CrossRef] [PubMed]
- Aixue, L.; Yunan, Z.; Yixiu, L.; Liangdi, J.; Yongwei, G.; Jiyong, L. Cell-derived biomimetic nanocarriers for targeted cancer therapy: Cell membranes and extracellular vesicles. Drug Deliv. 2021, 28, 1237–1255. [Google Scholar] [CrossRef]
- Harish, V.; Tewari, D.; Gaur, M.; Yadav, A.B.; Swaroop, S.; Bechelany, M.; Barhoum, A. Review on nanoparticles and nanostructured materials: Bioimaging, biosensing, drug delivery, tissue engineering, antimicrobial, and agro-food applications. Nanomaterials 2022, 12, 457. [Google Scholar] [CrossRef]
- Patil, S.; Chandrasekaran, R. Biogenic nanoparticles: A comprehensive perspective in synthesis, characterization, application and its challenges. J. Genet. Eng. Biotechnol. 2020, 18, 67. [Google Scholar] [CrossRef] [PubMed]
- Milewska, S.; Niemirowicz-Laskowska, K.; Siemiaszko, G.; Nowicki, P.; Wilczewska, A.Z.; Car, H. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment. Int. J. Nanomed. 2021, 16, 6593–6644. [Google Scholar] [CrossRef] [PubMed]
- Kumari, S.; Verma, R.; Chauhan, A.; Raja, V.; Kumari, S.; Kulshrestha, S. Biogenic approach for synthesis of nanoparticles via plants for biomedical applications: A review. Mater. Today Proc. 2023, in press. [CrossRef]
- Giri, R.; Sharma, D.; Ledwani, L. Biogenic Synthesis of Metallic Nanomaterials and Its Antimicrobial and Cytotoxic Potential: A Review. NanoWorld J. 2022, 8, S168–S175. [Google Scholar] [CrossRef]
- Gacem, M.A.; Abd-Elsalam, K.A. Strategies for scaling up of green-synthesized nanomaterials: Challenges and future trends. In Green Synthesis of Silver Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 669–698. [Google Scholar] [CrossRef]
- Alam, M. Analyses of biosynthesized silver nanoparticles produced from strawberry fruit pomace extracts in terms of biocompatibility, cytotoxicity, antioxidant ability, photodegradation, and in-silico studies. J. King Saud Univ.-Sci. 2022, 34, 102327. [Google Scholar] [CrossRef]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2020, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Nagati, V.; Tenugu, S.; Pasupulati, A.K. Stability of therapeutic nano-drugs during storage and transportation as well as after ingestion in the human body. In Advances in Nanotechnology-Based Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2022; pp. 83–102. [Google Scholar] [CrossRef]
- Wang, N.; Cheng, X.; Li, N.; Wang, H.; Chen, H. Nanocarriers and their loading strategies. Adv. Healthc. Mater. 2019, 8, 1801002. [Google Scholar] [CrossRef]
- Perrigue, P.M.; Murray, R.A.; Mielcarek, A.; Henschke, A.; Moya, S.E. Degradation of drug delivery nanocarriers and payload release: A review of physical methods for tracing nanocarrier biological fate. Pharmaceutics 2021, 13, 770. [Google Scholar] [CrossRef]
- Kashapov, R.; Ibragimova, A.; Pavlov, R.; Gabdrakhmanov, D.; Kashapova, N.; Burilova, E.; Sinyashin, O. Nanocarriers for biomedicine: From lipid formulations to inorganic and hybrid nanoparticles. International. J. Mol. Sci. 2021, 22, 7055. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.X. Development of high-drug-loading nanoparticles. ChemPlusChem 2020, 85, 2143–2157. [Google Scholar] [CrossRef]
- Dri, D.A.; Rinaldi, F.; Carafa, M.; Marianecci, C. Nanomedicines and nanocarriers in clinical trials: Surfing through regulatory requirements and physico-chemical critical quality attributes. Drug Deliv. Transl. Res. 2023, 13, 757–769. [Google Scholar] [CrossRef]
- Oliveira, C.; Coelho, C.; Teixeira, J.A.; Ferreira-Santos, P.; Botelho, C.M. Nanocarriers as active ingredients enhancers in the cosmetic industry—The European and North America regulation challenges. Molecules 2022, 27, 1669. [Google Scholar] [CrossRef] [PubMed]
- Alshawwa, S.Z.; Kassem, A.A.; Farid, R.M.; Mostafa, S.K.; Labib, G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022, 14, 883. [Google Scholar] [CrossRef] [PubMed]
Natural Bioactive Compound | Nanocarrier | Source | Ref. |
---|---|---|---|
Naringenin | Polymeric nanoparticles, micelles, liposomes, solid lipid nanoparticles (SLNs), nanostructured lipid carriers (NLCs), nanosuspensions, nanoemulsions | Fruits, tomato, cherries, cocoa | [25,35] |
Honokiol | Nanoliposomes (nanosomes) | Magnolia | [22] |
Resveratrol | Liposomes, polymeric nanoparticles, SLNs, lipospheres, dendrimers | Red grapes, peanuts | [21,36] |
Glycyrrhetinic acid | Micelles, liposomes | Licorice root | [25,37] |
Rutin | BSA nanoparticles | Plants, Ruta graveolens | [38] |
Curcumin | Micelles, liposomes nanogels, nanodiscs | Curcuma longa species Turmeric extract. | [39,40,41,42] |
Quercetin | Micelles, liposomes | Plants, guava leaves, Lagerstroemia speciosa, grapes | [41] |
Luteolin | Nanoemulsions, liposomes, SLNs, dendrimers | Herbs, fruits and vegetables | [43] |
Carotene | Nanoemulsions, liposomes, SLNs, dendrimers | Carrots, tomatoes | [44] |
α-Tocopherol | Nanoemulsions | Herbs, herbal mineral oils | [45] |
Encapsulated Extract/Compound | Nanocarrier | Field of Use | Activity | Ref. |
---|---|---|---|---|
Essential oils (geranium, Geranium maculatum, and bergamot, Citrus bergamia) | Polyethylene glycol (PEG) NPs; Chitosan NPs | Cosmetics | Repellent | [64,65] |
Curcumin extract | Polymer NPs | Food, pharmaceutical, and cosmetic use | Coloring and antioxidant agent, food additive, anticancer | [66,67] |
Catechins from white tea extract | Polymer NPs | Food | Antioxidant | [68] |
Oregano essential oil | Chitosan NPs | Pharmacy | Antioxidant and antifungal | [69] |
Cuscuta chinensis seed extract | Polymer NPs | Medicine | Hepatotoxicity | [70] |
Ziziphus jujuba extract | Chitosan NPs | Pharmacy | Antioxidant | [71] |
Ginkgo biloba extract | PELGE NPs | Medicine | Antioxidant | [72] |
Extract of neem (Azadirachta indica) | Polymeric nanofibers | Biomedicine | Wound dressing, transdermal carriers | [73] |
Zoledronic acid | Polymer NPs | Medicine | Cancer therapy | [74] |
Kaempferol | PEG 1000 succinate nanosuspensions | Medicine | Antitumor activity | [75] |
Encapsulated Bioactive Compound/Extract | Nanocarrier | Field of Use | Activity | Reference |
---|---|---|---|---|
Spinacia oleracea L. extract | Liposomes | Cosmetics | Antioxidant | [108] |
M. communis extract | Liposomes | Food preservatives | Antioxidant and antimicrobial activity | [109] |
Oryza sativa L. extract | Niosomes | Cosmetics | Anti-age | [110] |
Saffron extract | Liposomes | Medicine, food, textiles | Food additive; memory enhancing; anticonvulsant, antidepressant, antioxidant, antitumor | [111] |
Omega-3 fatty acids | Liposomes | Food | Nutritional quality | [112] |
Phloridzin | Liposomes | Food industry, pharmaceutics | Functional food and pharmaceutical applications | [113] |
Curcumin | Nanoemulsions | Food industry | Antioxidant | [114] |
Polymethoxyflavones | Nanoemulsions | Pharmaceutics | Anticancer | [115] |
Opuntia oligacantha extract | Nanoemulsions | Food industry | Improving the postharvest life of food | [116] |
O. stamineus ethanolic extract | Nanoliposomes | Cosmetics | Antioxidant and antimicrobial effect | [117] |
M. communis extract | Nanoliposomes | Pharmacy | Treatment of parasitic and antimicrobial diseases | [118] |
B. vulgaris and B. integerrima extract | Liposomes | Food | Antioxidant activity | [119] |
Hibiscus sabdariffa L. flower extract | Liposomes | Food | Antioxidant | [120] |
Phyllanthus niruri extract | Nanoemulsions | Cosmetics | Antibacterial activity | [121] |
Insulin | Nanoliposomes | Medicine | Regulate blood glucose levels | [122] |
Elemene | Liposomes, SLNs | Medicine | Cancer therapy | [123] |
Albumin | Liposomes | Medicine | Hepatic fibrosis therapy, ovarian, breast, and colon therapy | [124] [125] |
Omega-3 fatty acid and quercetin | NLCs | Cosmetics | Antioxidant and photoprotective activities | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrovic, S.M.; Barbinta-Patrascu, M.-E. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds’ Delivery: State-of-the Art and Challenges. Materials 2023, 16, 7550. https://doi.org/10.3390/ma16247550
Petrovic SM, Barbinta-Patrascu M-E. Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds’ Delivery: State-of-the Art and Challenges. Materials. 2023; 16(24):7550. https://doi.org/10.3390/ma16247550
Chicago/Turabian StylePetrovic, Sanja M., and Marcela-Elisabeta Barbinta-Patrascu. 2023. "Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds’ Delivery: State-of-the Art and Challenges" Materials 16, no. 24: 7550. https://doi.org/10.3390/ma16247550
APA StylePetrovic, S. M., & Barbinta-Patrascu, M. -E. (2023). Organic and Biogenic Nanocarriers as Bio-Friendly Systems for Bioactive Compounds’ Delivery: State-of-the Art and Challenges. Materials, 16(24), 7550. https://doi.org/10.3390/ma16247550