Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales
Abstract
:1. Introduction
2. Model and Method
2.1. Structural Design of Two-Dimensional Asymmetric Acoustic Metamaterials
2.2. The Simplest Brillouin Zone of Two-Dimensional Asymmetric Acoustic Metamaterials
2.3. Calculation of Effective Parameters
2.4. Calculation of Transmission Properties
3. Experimental Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Palma, G.; Mao, H.N.; Burghignoli, L.; Göransson, P.; Iemma, U. Acoustic Metamaterials in Aeronautics. Appl. Sci. 2018, 8, 971. [Google Scholar] [CrossRef]
- Iannace, G.; Ciaburro, G.; Trematerra, A. Metamaterials acoustic barrier. Appl. Acoust. 2021, 181. [Google Scholar] [CrossRef]
- Ahmed, R.; Banerjee, S. Novel Split Ring Metamaterial for Multiple Band Gaps and Vibration Control. In Proceedings of the Conference on Health Monitoring of Structural and Biological Systems, San Diego, CA, USA, 17 April 2013. [Google Scholar]
- Salama, N.A.; Desouky, M.; Obayya, S.S.A.; Swillam, M.A. Free space super focusing using all dielectric hyperbolic metamaterial. Sci. Rep. 2020, 10, 9. [Google Scholar] [CrossRef]
- Christensen, J.; de Abajo, F.J.G. Negative refraction and backward waves in layered acoustic metamaterials. Phys. Rev. B 2012, 86, 024301. [Google Scholar] [CrossRef]
- Fukaya, K.; Mori, K. Evaluation and Verification of Three Dimensional Acoustic Black Hole Based on Acoustic Metamaterial. In Proceedings of the 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS), Chania, Greece, 19–22 September 2016; pp. 112–114. [Google Scholar]
- Alex-Amor, A.; Palomares-Caballero, A.; Molero, C. 3-D Metamaterials: Trends on Applied Designs, Computational Methods and Fabrication Techniques. Electronics 2022, 11, 410. [Google Scholar] [CrossRef]
- Kumar, S.; Lee, H.P. Recent Advances in Acoustic Metamaterials for Simultaneous Sound Attenuation and Air Ventilation Performances. Crystals 2020, 10, 686. [Google Scholar] [CrossRef]
- Ji, G.S.; Huber, J. Recent progress in acoustic metamaterials and active piezoelectric acoustic metamaterials—A review. Appl. Mater. Today 2022, 26, 18. [Google Scholar] [CrossRef]
- Arjunan, A.; Baroutaji, A.; Robinson, J. Advances in Acoustic Metamaterials. Encycl. Smart Mater. 2021, 3, 10. [Google Scholar] [CrossRef]
- Ma, P.S.; Seo, Y.H.; Lee, H.J. Multiband ventilation barriers enabled by space-coiling acoustic metamaterials. Appl. Acoust. 2023, 211, 10. [Google Scholar] [CrossRef]
- Ko, Y.H.; Magnusson, R. Wideband dielectric metamaterial reflectors: Mie scattering or leaky Bloch mode resonance? Optica 2018, 5, 289–294. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhou, C.; Yuan, B.G.; Wu, D.J.; Wei, Q.; Liu, X.J. Ultra-sparse metasurface for high reflection of low-frequency sound based on artificial Mie resonances. Nat. Mater. 2015, 14, 1013–1019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Bok, E.; Tomoda, M.; Matsuda, O.; Guo, J.Z.; Liu, X.J.; Wright, O.B. Compact acoustic metamaterial based on the 3D Mie resonance of a maze ball with an octahedral structure. Appl. Phys. Lett. 2022, 120, 161701. [Google Scholar] [CrossRef]
- Guimaraes, L.G.; Nussenzveig, H.M. Theory of Mie Resonances and Ripple Fluctuations. Opt. Commun. 1992, 89, 363–369. [Google Scholar] [CrossRef]
- Xiang, L.; Wang, G.X.; Zhu, C. Controlling sound transmission by space-coiling fractal acoustic metamaterials with broadband on the subwavelength scale. Appl. Acoust. 2022, 188, 12. [Google Scholar] [CrossRef]
- Liang, X.; Du, J.B. Concurrent multi-scale and multi-material topological optimization of vibro-acoustic structures. Comput. Meth. Appl. Mech. Eng. 2019, 349, 117–148. [Google Scholar] [CrossRef]
- Zhang, X.P.; Xing, J.; Liu, P.; Luo, Y.J.; Kang, Z. Realization of full and directional band gap design by non-gradient topology optimization in acoustic metamaterials. Extrem. Mech. Lett. 2021, 42, 12. [Google Scholar] [CrossRef]
- Xu, C.; Guo, H.; Chen, Y.H.; Dong, X.R.; Ye, H.L.; Wang, Y.S. Study on broadband low-frequency sound insulation of multi-channel resonator acoustic metamaterials. Aip Adv. 2021, 11, 11. [Google Scholar] [CrossRef]
- Tian, X.Y.; Chen, W.J.; Gao, R.J.; Liu, S.T.; Wang, J.X. Perforation-rotation based approach for band gap creation and enlargement in low porosity architected materials. Compos. Struct. 2020, 245, 6. [Google Scholar] [CrossRef]
- Tian, X.Y.; Chen, W.J.; Gao, R.J.; Liu, S.T. Merging Bragg and Local Resonance Bandgaps in Perforated Elastic Metamaterials with Embedded Spiral Holes. J. Sound Vib. 2021, 500, 10. [Google Scholar] [CrossRef]
- Shen, L.; Zhang, H.; Mao, F.L.; Luo, Z.T.; Yin, H. Sound transmission induced by tunable asymmetry coupling vibrations in a composite waveguide. Appl. Phys. Express 2020, 13, 4. [Google Scholar] [CrossRef]
- Tong, S.S.; Ren, C.Y.; Tang, W.P. High-transmission negative refraction in the gradient space-coiling metamaterials. Appl. Phys. Lett. 2019, 114, 5. [Google Scholar] [CrossRef]
- Lan, J.; Liu, Y.P.; Wang, T.; Li, Y.F.; Liu, X.Z. Acoustic coding metamaterial based on non-uniform Mie resonators. Appl. Phys. Lett. 2022, 120, 6. [Google Scholar] [CrossRef]
- Rizzi, G.; Collet, M.; Demore, F.; Eidel, B.; Neff, P.; Madeo, A. Exploring Metamaterials’ Structures Through the Relaxed Micromorphic Model: Switching an Acoustic Screen Into an Acoustic Absorber. Front. Mater. 2021, 7, 589701. [Google Scholar] [CrossRef]
- Medhin, Y.; Khan, K.A. Acoustic performance of architected hybrid metamaterials for sound attenuation applications. Proc. Inst. Mech. Eng. Part C-J. Mech. Eng. Sci. 2022, 236, 10554–10562. [Google Scholar] [CrossRef]
- Fokin, V.; Ambati, M.; Sun, C.; Zhang, X. Method for retrieving effective properties of locally resonant acoustic metamaterials. Phys. Rev. B 2007, 76, 5. [Google Scholar] [CrossRef]
- Comandini, G.; Ouisse, M.; Ting, V.P.; Scarpa, F. Acoustic transmission loss in Hilbert fractal metamaterials. Sci. Rep. 2023, 13, 19058. [Google Scholar] [CrossRef] [PubMed]
- de Priester, J.; Aulitto, A.; Arteaga, I.L. Frequency stop-band optimization in micro-slit resonant metamaterials. Appl. Acoust. 2022, 188, 108552. [Google Scholar] [CrossRef]
- Moleron, M.; Serra-Garcia, M.; Daraio, C. Visco-thermal effects in acoustic metamaterials: From total transmission to total reflection and high absorption. New J. Phys. 2016, 18, 8. [Google Scholar] [CrossRef]
- AKrushynska, O.; Bosia, F.; Miniaci, M.; Pugno, N.M. Spider web-structured labyrinthine acoustic metamaterials for low-frequency sound control. New J. Phys. 2017, 19, 12. [Google Scholar]
- Miniaci, M.; Krushynska, A.; Gliozzi, A.S.; Kherraz, N.; Bosia, F.; Pugno, N.M. Design and Fabrication of Bioinspired Hierarchical Dissipative Elastic Metamaterials. Phys. Rev. Appl. 2018, 10, 12. [Google Scholar] [CrossRef]
- Romero-Garcia, V.; Garcia-Raffi, L.M.; Sanchez-Perez, J.V. Evanescent waves and deaf bands in sonic crystals. Aip Adv. 2011, 1, 9. [Google Scholar] [CrossRef]
- Slovick, B.; Krishnamurthy, S. Thermal conductivity reduction by acoustic Mie resonance in nanoparticles. Appl. Phys. Lett. 2018, 113, 223106. [Google Scholar] [CrossRef]
- Krushynska, A.O.; Bosia, F.; Miniaci, M.; Pugno, N.M. Fractal and spider web-inspired labyrinthine acoustic metamaterials. In Proceedings of the 2017 11th International Congress on Engineered Material Platforms for Novel Wave Phenomena (METAMATERIALS), Marseille, France, 27 August–2 September 2017; pp. 187–189. [Google Scholar]
- Maurya, S.K.; Pandey, A.; Shukla, S.; Saxena, S. Predicting double negativity using transmitted phase in space coiling metamaterials. R. Soc. Open Sci. 2018, 5, 7. [Google Scholar] [CrossRef] [PubMed]
- Maurya, S.K.; Pandey, A.; Shukla, S.; Saxena, S. Double Negativity in 3D Space Coiling Metamaterials. Sci. Rep. 2016, 6, 5. [Google Scholar] [CrossRef]
AAMs | Frequency Ranges of Omnidirectional Bandgaps | Proportion of Bandgaps in the Subwavelength Range | ||
---|---|---|---|---|
The first-order AAMs | BG-1 | [0.1470, 0.2097] | 6.27% | 63.6% |
BG-2 | [0.2668, 0.8401] | 57.33% | ||
The second-order AAMs | BG-1 | [0.1190, 0.2483] | 12.93% | 75.96% |
BG-2 | [0.2949, 0.5990] | 30.41% | ||
BG-3 | [0.6443, 0.7737] | 12.94% | ||
BG-4 | [0.8032, 1] | 19.68% | ||
The third-order AAMs | BG-1 | [0.1134, 0.2732] | 15.98% | 76.84% |
BG-2 | [0.3203, 0.5515] | 23.12% | ||
BG-3 | [0.5927, 0.8217] | 22.9% | ||
BG-4 | [0.8516, 1] | 14.84% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Chen, W.; Li, S. Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales. Materials 2023, 16, 7587. https://doi.org/10.3390/ma16247587
Wang X, Chen W, Li S. Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales. Materials. 2023; 16(24):7587. https://doi.org/10.3390/ma16247587
Chicago/Turabian StyleWang, Xiaopeng, Wenjiong Chen, and Sheng Li. 2023. "Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales" Materials 16, no. 24: 7587. https://doi.org/10.3390/ma16247587
APA StyleWang, X., Chen, W., & Li, S. (2023). Multi-Order Asymmetric Acoustic Metamaterials with Broad Bandgaps at Subwavelength Scales. Materials, 16(24), 7587. https://doi.org/10.3390/ma16247587