Mode II Delamination under Static and Fatigue Loading of Adhesive Joints in Composite Materials Exposed to Saline Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Used
2.1.1. Type of Composite Material Used
2.1.2. Adhesive Characteristics
3. Experimental Methodology
3.1. Surface Conditioning
3.2. Environmental Degradation Processes
3.3. Characterization of Material Behavior against Delamination
3.3.1. Static Characterization
3.3.2. Fatigue Characterization
4. Results and Discussion
4.1. Static Regime
4.2. Dynamic Regime
4.3. Fracture Surface
5. Conclusions
- Characterization under static loading in mode II conditions reveals a notable reduction in the maximum displacement as exposure time to the saline environment increases, with longer exposure periods making the adhesive more brittle.
- The rate of energy release under static conditions shows improved performance of the adhesive joints after 4 weeks of exposure to the saline environment. This suggests that thermal conditions within the chamber enhance substrate adhesion through material post-curing. However, after 12 weeks of exposure, the values achieved are lower than those for the unexposed material.
- In the initiation phase of fatigue behavior, various responses are observed for different exposure levels. Longer exposure periods lead to decreased fatigue limits in comparison to unexposed material. In contrast, intermediate exposure periods of 2 and 4 weeks show improved fatigue behavior compared to the 12-week exposure and unexposed material. This trend aligns with the static loading results and is likely attributed to the adhesive’s post-curing during the initial exposure weeks.
- When considering all the tests as a representative sample of the material’s behavior in a saline environment, fatigue limits for infinite life are approximately 20% of its static load-carrying capacity, highlighting the significant deterioration of adhesive joints due to such aging. This emphasizes the importance of protective measures for joints exposed to saline environments.
- In examining the fracture surfaces, notable distinctions are observed between specimens subjected to prior aging in a salt spray chamber and those that were not. The former show signs of plasticization and abrasion in the adhesive, attributed to the aging and deterioration process of the adhesive, although in both cases the surface shows sanding due to the shear movement.
- The data obtained from this study are applicable to various industrial sectors where composite materials have significant applications. For instance, one application is in the field of offshore wind energy generation, where fatigue in a saline environment is a critical factor in design considerations. While this sector is a primary target for the information provided by this study, it is not the only one. The findings can also be relevant in the aerospace industry due to the diverse operating environments of its products, not to mention the naval sector. In all cases, the results highlight the essential need for industrial design to understand how the material behaves under fatigue in the specific environment it will operate in throughout its service life. This necessitates prior experimental studies to confidently determine the useful energy relaxation rate for the estimated component life. Additionally, the adverse effects of the saline environment can be minimized by applying appropriate surface protection such as a gel coating or specialized coatings. Furthermore, it is recommended to conduct regular inspections of these components during their service life.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Campilho, R.D.S.G.; da Silva, L.F.M. Mode I fatigue and fracture behaviour of adhesively-bonded carbon fibre-reinforced polymer (CFRP) composite joints. In Fatigue and Fracture of Adhesively-Bonded Composite Joints, 2nd ed.; Vassilopoulos, A.P., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 93–120. [Google Scholar]
- Sekiguchi, Y.; Katano, M.; Sato, C. Experimental study of the Mode I adhesive fracture energy in DCB specimens bonded with a polyurethane adhesive. J. Adhes. 2017, 93, 235–255. [Google Scholar] [CrossRef]
- Bechikh, A.; Klinkova, O.; Maalej, Y.; Tawfiq, I.; Nasri, R. Effect of dry abrasion treatments on composite surface quality and bonded joints shear strength. Int. J. Adhes. Adhes. 2022, 113, 103058. [Google Scholar] [CrossRef]
- Martínez-Landeros, V.H.; Vargas-Islas, S.Y.; Cruz-González, C.E.; Barrera, S.; Mourtazov, K.; Ramírez-Bon, R. Studies on the influence of surface treatment type, in the effectiveness of structural adhesive bonding, for carbon fiber reinforced composites. J. Manuf. Process. 2019, 39, 160–166. [Google Scholar] [CrossRef]
- Custódio, J.; Broughton, J.; Cruz, H. A review of factors influencing the durability of structural bonded timber joints. Int. J. Adhes. Adhes. 2009, 29, 173–185. [Google Scholar] [CrossRef]
- Azari, S.; Papini, M.; Spelt, J.K. Effect of adhesive thickness on fatigue and fracture of toughened epoxy joints—Part I: Experiments. Eng. Fract. Mech. 2011, 78, 153–162. [Google Scholar] [CrossRef]
- Brito, C.B.G.; De Cássia Mendonça Sales Contini, R.; Gouvêa, R.F.; De Oliveira, A.S.; Arbelo, M.A.; Donadon, M.V. Mode I interlaminar fracture toughness analysis of Co-bonded and secondary bonded carbon fiber reinforced composites joints. Mater. Res. 2017, 20, 873–882. [Google Scholar] [CrossRef]
- Bernasconi, A.; Jamil, A.; Moroni, F.; Pirondi, A. A study on fatigue crack propagation in thick composite adhesively bonded joints. Int. J. Fatigue 2013, 50, 18–25. [Google Scholar] [CrossRef]
- Sekiguchi, Y.; Sato, C. Effect of bond-line thickness on fatigue crack growth of structural acrylic adhesive joints. Materials 2021, 14, 1723. [Google Scholar] [CrossRef]
- Del Real, J.C.; Ballesteros, Y.; Chamochin, R.; Abenojar, J.; Molisani, L. Influence of surface preparation on the fracture behavior of acrylic adhesive/CFRP composite joints. J. Adhes. 2011, 87, 366–381. [Google Scholar] [CrossRef]
- Carvajal, D.R.A.; Correa, R.A.M.; Casas-Rodríguez, J.P. Durability study of adhesive joints used in high-speed crafts manufactured with composite materials subjected to impact fatigue. Eng. Fract. Mech. 2020, 225, 106393. [Google Scholar] [CrossRef]
- Moreno Fernández-Cañadas, L.M. Análisis Experimental y Numérico de Reparaciones Adhesivas de Laminados Delgados. Ph.D. Thesis, University Carlos III, Madrid, Spain, June 2018. [Google Scholar]
- Kotrotsos, A.; Geitona, A.; Kostopoulos, V. On the mode I and mode II fatigue delamination growth of CFRPs modified by electrospun Bis-maleimide resin. Compos. Sci. Technol. 2023, 237, 110000. [Google Scholar] [CrossRef]
- Sánchez-Carmona, S.; Correa, E.; Paris, F.; Barroso, A. Estudio experimental a fatiga de laminados unidireccionales a 90°. In Proceedings of the XXXVII Congreso del Grupo Español de Fractura, Virtual Conference, 8 June 2021. [Google Scholar]
- Argüelles, A.; Viña, I.; Vigón, P.; Viña, J. Study of the fatigue delamination behaviour of adhesive joints in carbon fibre reinforced epoxy composites, influence of the period of exposure to saline environment. Sci. Rep. 2022, 12, 19789. [Google Scholar] [CrossRef]
- Vigón, P.; Argüelles, A.; Mollón, V.; Lozano, M.; Bonhomme, J.; Viña, J. Study of the Influence of the Type of Aging on the Behavior of Delamination of Adhesive Joints in Carbon-Fiber-Reinforced Epoxy Composites. Materials 2022, 15, 3669. [Google Scholar] [CrossRef]
- Mahato, K.K.; Dutta, K.; Ray, B.C. Static and Dynamic Behavior of Fibrous Polymeric Composite Materials at Different Environmental Conditions. J. Polym. Environ. 2018, 26, 1024–1050. [Google Scholar] [CrossRef]
- Kaushik, V.; Bar, H.N.; Ghosh, A. Influence of extremely cold environmental conditions on interfacial fracture phenomenon of aerospace grade unidirectional composites. Thin-Walled Struct. 2021, 161, 107431. [Google Scholar] [CrossRef]
- Coronado, P.; Argüelles, A.; Viña, J.; Viña, I. Influence of low temperatures on the phenomenon of delamination of mode I fracture in carbon-fibre/epoxy composites under fatigue loading. Compos. Struct. 2014, 112, 188–193. [Google Scholar] [CrossRef]
- Katafiasz, T.J.; Greenhalgh, E.S.; Allegri, G.; Pinho, S.T.; Robinson, P. The influence of temperature and moisture on the mode I fracture toughness and associated fracture morphology of a highly toughened aerospace CFRP. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106241. [Google Scholar] [CrossRef]
- Taib, A.A.; Boukhili, R.; Achiou, S.; Gordon, S.; Boukehili, H. Bonded joints with composite adherends. Part I. Effect of specimen configuration, adhesive thickness, spew fillet and adherend stiffness on fracture. Int. J. Adhes. Adhes. 2006, 26, 226–236. [Google Scholar] [CrossRef]
- Shang, X.; Marques, E.A.S.; Machado, J.J.M.; Carbas, R.J.C.; Jiang, D.; Da Silva, L.F.M. A strategy to reduce delamination of adhesive joints with composite substrates. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2019, 233, 521–530. [Google Scholar] [CrossRef]
- Banea, M.D.; Da Silva, L.F.M.; Campilho, R.D.S.G. Mode II fracture toughness of adhesively bonded joints as a function of temperature: Experimental and numerical study. J Adhes. 2012, 88, 534–551. [Google Scholar] [CrossRef]
- Reeder, J.R.; Allen, D.H.; Bradley, W.L. Effect of Elevated Temperature and Loading Rate on Delamination Fracture Toughness. Available online: https://ntrs.nasa.gov/citations/20040000773 (accessed on 10 September 2023).
- Argüelles, A.; Viña, J.; Canteli, A.F.; Coronado, P.; Mollón, V. Influence of temperature on the delamination process under mode I fracture and dynamic loading of two carbon–epoxy composites. Compos. Part B Eng. 2015, 68, 207–214. [Google Scholar] [CrossRef]
- Ghabezi, P.; Farahani, M. Effects of nanoparticles on nanocomposites mode I and II fracture: A critical review. Rev. Adhes. Adhes. 2017, 5, 414–435. [Google Scholar] [CrossRef]
- Gojny, F.H.; Wichmann, M.H.G.; Fiedler, B.; Schulte, K. Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—A comparative study. Compos. Sci. Technol. 2005, 65, 2300–2313. [Google Scholar] [CrossRef]
- Sam-Daliri, O.; Faller, L.M.; Farahani, M.; Zangl, H. Structural health monitoring of adhesive joints under pure mode I loading using the electrical impedance measurement. Eng. Fract. Mech. 2021, 245, 107585. [Google Scholar] [CrossRef]
- De Cássia Mendonça Sales, R.; Rossi Dias Endo, B.L.; Donadon, M.V. Influence of Temperature on Interlaminar Fracture Toughness of a Carbon Fiber-Epoxy Composite Material. Adv. Mater. Res. 2016, 1135, 35–51. [Google Scholar] [CrossRef]
- Tauheed, M.; Datla, N.V. Mode I fracture R-curve and cohesive law of CFRP composite adhesive joints. Int. J. Adhes. Adhes. 2022, 114, 103102. [Google Scholar] [CrossRef]
- Blondeau, C.; Pappas, G.A.; Botsis, J. Crack propagation in CFRP laminates under mode I monotonic and fatigue loads: A methodological study. Compos. Struct. 2021, 256, 113002. [Google Scholar] [CrossRef]
- Rao, Q.; Ouyang, Z.; Guo, Z.; Peng, X. Experimental and numerical analysis on mode II fracture toughness of CFRP adhesive joints using a nonlinear cohesive/friction coupled model. Int. J. Adhes. 2022, 114, 103100. [Google Scholar] [CrossRef]
- Orell, O.; Jokinen, J.; Kanerva, M. Use of DIC in the characterization of mode II crack propagation in adhesive fatigue testing. Int. J. Adhes. Adhes. 2023, 122, 103332. [Google Scholar] [CrossRef]
- Akhavan-Safar, A.; Jalali, S.; da Silva, L.F.M.; Ayatollahi, M.R. Effects of low cycle impact fatigue on the residual mode II fracture energy of adhesively bonded joints. Int. J. Adhes. Adhes. 2023, 126, 103455. [Google Scholar] [CrossRef]
- ASTM D7905/D7905M-14; Standard Test Method for Determination of the Mode II Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer. ASTM International: West Conshohocken, PA, USA, 2014.
- Charalambous, G.; Allegri, G.; Hallett, S.R. Temperature effects on mixed mode I/II delamination under quasi-static and fatigue loading of a carbon/epoxy composite. Compos. Part A Appl. Sci. Manuf. 2015, 77, 75–86. [Google Scholar] [CrossRef]
- Floreani, C.; Robert, C.; Alam, P.; Davies, P.; Brádaigh, C.M.Ó. Mixed-mode interlaminar fracture toughness of glass and carbon fibre powder epoxy composites—For design of wind and tidal turbine blades. Materials 2021, 14, 2103. [Google Scholar] [CrossRef] [PubMed]
- Kouno, Y.; Imanaka, M.; Hino, R.; Omiya, M.; Yoshida, F. R-curve behavior of adhesively bonded composite joints with highly toughened epoxy adhesive under mixed mode conditions. Int. J. Adhes. Adhes. 2021, 105, 102762. [Google Scholar] [CrossRef]
- Rubiera, S.; Argüelles, A.; Viña, J.; Rocandio, C. Study of the phenomenon of fatigue delamination in a carbon-epoxy composite under mixed mode I/II fracture employing an asymmetric specimen. Int. J. Fatigue 2018, 114, 74–80. [Google Scholar] [CrossRef]
- Yao, Y.; Shi, P.; Chen, M.; Chen, G.; Gao, C.; Boisse, P.; Zhu, Y. Experimental and numerical study on Mode I and Mode II interfacial fracture toughness of co-cured steel-CFRP hybrid composites. Int. J. Adhes. Adhes. 2022, 112, 103030. [Google Scholar] [CrossRef]
- Cao, J.; Meng, X.; Gu, J.; Zhang, C. Temperature-dependent interlaminar behavior of unidirectional composite laminates: Property determination and mechanism analysis. Polym. Compos. 2021, 42, 3746–3757. [Google Scholar] [CrossRef]
- Fernandes, R.L.; De Moura, M.F.S.F.; Moreira, R.D.F. Effect of temperature on pure modes I and II fracture behavior of composite bonded joints. Compos. Part B Eng. 2016, 96, 35–44. [Google Scholar] [CrossRef]
- Castillo, E.; Fernández-Canteli, A.; Pinto, H.; López-Aenlle, M. A general regression model for statistical analysis of strain life fatigue data. Mater. Lett. 2008, 62, 3639–3642. [Google Scholar] [CrossRef]
- ASTM D3039M-17; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2002.
- ASTM D3518M-18; Standard Test Method for In-Plane Shear Response of Polymer Matrix Composite Materials by Tensile Test of a ±45° Laminate. ASTM International: West Conshohocken, PA, USA, 2018.
- Bellini, C.; Parodo, G.; Polini, W.; Sorrentino, L. Influence of hydrothermal ageing on single lap bonded CFRP joints. Frat. Ed Integrità Strutt. 2018, 45, 173–182. [Google Scholar] [CrossRef]
Elastic Modulus a | Tensile Strength a | Shear Modulus b | Shear Stress b | |||
---|---|---|---|---|---|---|
Material | E11 (GPa) | E22 (GPa) | σ11 (MPa) | σ22 (MPa) | G12 (GPa) | Τ12 (MPa) |
3MTM DP8810NS | 122 | 8.5 | 1156 | 28 | 5.2 | 37 |
CV | 8.5% | 8% | 12.5% | 11.8% | 9.8% | 2% |
Base | Viscosity [mPa·s] (cP) | Elastic Modulus [GPa] | Tensile Strength [MPa] | Shear Strength [MPa] | |
---|---|---|---|---|---|
Loctite® EA 9461TM | Epoxy | 150,000 a 250,000 | 2.758 | 30.3 | 13.8 |
Aging Time | GIIC [J/m2] | Pmed (N) | δmed (mm) |
---|---|---|---|
Without aging | 2096.55 | 1945.36 | 3.7 |
1 week | 2226.03 | 1821.92 | 3.67 |
2 weeks | 2630.67 | 1906.54 | 3.40 |
4 weeks | 3359.29 | 2090.10 | 3.26 |
12 weeks | 1917.64 | 2022.60 | 2.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vigón, P.; Argüelles, A.; Lozano, M.; Viña, J. Mode II Delamination under Static and Fatigue Loading of Adhesive Joints in Composite Materials Exposed to Saline Environment. Materials 2023, 16, 7606. https://doi.org/10.3390/ma16247606
Vigón P, Argüelles A, Lozano M, Viña J. Mode II Delamination under Static and Fatigue Loading of Adhesive Joints in Composite Materials Exposed to Saline Environment. Materials. 2023; 16(24):7606. https://doi.org/10.3390/ma16247606
Chicago/Turabian StyleVigón, Paula, Antonio Argüelles, Miguel Lozano, and Jaime Viña. 2023. "Mode II Delamination under Static and Fatigue Loading of Adhesive Joints in Composite Materials Exposed to Saline Environment" Materials 16, no. 24: 7606. https://doi.org/10.3390/ma16247606
APA StyleVigón, P., Argüelles, A., Lozano, M., & Viña, J. (2023). Mode II Delamination under Static and Fatigue Loading of Adhesive Joints in Composite Materials Exposed to Saline Environment. Materials, 16(24), 7606. https://doi.org/10.3390/ma16247606