Preparation and Characterization of Modified ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Modification of ZrO2 Nanoparticles
2.3. Preparation of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating
2.4. Chemical Structure Characterization
2.5. Measure the Contact and Rolling Angles
2.6. Wear Resistance
2.7. Chemical Stability
2.8. Self-Cleaning Performance
2.9. Anti-Icing Performance
2.10. Water Droplet Bouncing, Water Flow Bending and Underwater Silver Light Reflection Performance
3. Results
3.1. Characterization of Modified ZrO2 Nanoparticles
3.1.1. Microstructure
3.1.2. Chemical Composition
3.2. Characterization of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coatings with Different Components
3.2.1. Micromorphology
3.2.2. Hydrophobicity
3.3. Wear Resistance of ZrO2/SiO2/Silicone–Acrylic Acid Modified Emulsion Superhydrophobic Coating
3.4. Corrosion Resistance of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating
3.4.1. Acid and Alkali Corrosion Resistance
3.4.2. Sodium Chloride Corrosion Resistance
3.5. Self-Cleaning Properties of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating
3.6. Anti-Icing Performance of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating
3.7. Water Droplet Bouncing, Water Flow Bending and Underwater Silver Light Reflection Properties of ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marmur, A.; Della Volpe, C.; Siboni, S.; Amirfazli, A.; Drelich, J.W. Contact angles and wettability: Towards common and accurate terminology. Surf. Innov. 2017, 5, 3–8. [Google Scholar] [CrossRef]
- Abu-Thabit, N.Y.; Uwaezuoke, O.J.; Abu Elella, M.H. Superhydrophobic nanohybrid sponges for separation of oil/water mixtures. Chemosphere 2022, 294, 133644. [Google Scholar] [CrossRef]
- Sow, P.K.; Singhal, R.; Sahoo, P.; Radhakanth, S. Fabricating low-cost, robust superhydrophobic coatings with re-entrant topology for self-cleaning, corrosion inhibition, and oil-water separation. J. Colloid. Interf. Sci. 2021, 600, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Lambley, H.; Schutzius, T.M.; Poulikakos, D. Superhydrophobic surfaces for extreme environmental conditions. Proc. Natl. Acad. Sci. USA 2020, 117, 27188–27194. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Vazirinasab, E.; Momen, G.; Jafari, R. Icephobicity and durability assessment of superhydrophobic surfaces: The role of surface roughness and the ice adhesion measurement technique. J. Mater. Proc. Technol. 2021, 288, 116883. [Google Scholar] [CrossRef]
- Stamatopoulos, C.; Milionis, A.; Ackerl, N.; Donati, M.; de la Vallée, P.L.; von Rohr, P.R.; Poulikakos, D. Droplet Self-Propulsion on Superhydrophobic Microtracks. ACS Nano 2020, 14, 12895–12904. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.S.; Chen, K.S.; Yu, H.Z. Superhydrophobic Glass Microfiber Filter as Background-Free Substrate for Quantitative Fluorometric Assays. ACS Appl. Mater. Interfaces 2020, 12, 7665–7672. [Google Scholar] [CrossRef] [PubMed]
- Suryaprabha, T.; Ha, H.; Hwang, B.; Sethuraman, M.G. Self-cleaning, superhydrophobic, and antibacterial cotton fabrics with chitosan-based composite coatings. Int. J. Biol. Macromol. 2023, 250, 126217. [Google Scholar] [CrossRef] [PubMed]
- Isakov, K.; Kauppinen, C.; Franssila, S.; Lipsanen, H. Superhydrophobic Antireflection Coating on Glass Using Grass-like Alumina and Fluoropolymer. ACS Appl. Mater. Interfaces 2020, 12, 49957–49962. [Google Scholar] [CrossRef]
- Khaskhoussi, A.; Calabrese, L.; Proverbio, E. Anticorrosion Superhydrophobic Surfaces on AA6082 Aluminum Alloy by HF/HCl Texturing and Self-Assembling of Silane Monolayer. Materials 2022, 15, 8549. [Google Scholar] [CrossRef]
- Arablou, E.; Eshaghi, A.; Bakhshi, S.R. Investigation of chemical etching and surface modification effect on the superhydrophobic, self-cleaning and corrosion behaviour of aluminium substrate. Bull. Mater. Sci. 2022, 45, 176. [Google Scholar] [CrossRef]
- Doskocil, L.; Somanová, P.; Másilko, J.; Buchtík, M.; Hasonová, M.; Kalina, L.; Wasserbauer, J. Characterization of Prepared Superhydrophobic Surfaces on AZ31 and AZ91 Alloys Etched with ZnCl2 and SnCl2. Coatings 2022, 12, 1414. [Google Scholar] [CrossRef]
- Mani, K.A.; Belausov, E.; Zelinger, E.; Mechrez, G. Durable superhydrophobic coating with a self-replacing mechanism of surface roughness based on multiple Pickering emulsion templating. Colloid Surf. A 2022, 652, 129899. [Google Scholar] [CrossRef]
- Yanagishita, T.; Sou, T.; Masuda, H. Micro-nano hierarchical pillar array structures prepared on curved surfaces by nanoimprinting using flexible molds from anodic porous alumina and their application to superhydrophobic surfaces. RSC Adv. 2022, 12, 20340–20347. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhu, X.R.; Liu, Y.J. Fabrication of durable superhydrophobic surface through silica-dissolution-assisted etching template approach. Surf. Eng. 2021, 37, 318–324. [Google Scholar] [CrossRef]
- Ghodrati, M.; Mousavi-Kamazani, M.; Bahrami, Z. Synthesis of superhydrophobic coatings based on silica nanostructure modified with organosilane compounds by sol-gel method for glass surfaces. Sci. Rep. 2023, 13, 548. [Google Scholar] [CrossRef]
- Hu, Y.H.; Ma, X.F.; Bi, H.H.; Sun, J.T. Robust superhydrophobic surfaces fabricated by self-growth of TiO2 particles on cured silicone rubber. Colloids Surf. A 2020, 603, 125227. [Google Scholar] [CrossRef]
- Taurino, R.; Cannio, M.; Boccaccini, D.N.; Messori, M.; Bondioli, F. Preliminary study on the design of superhydrophobic surface by 3D inkjet printing of a sol-gel solution. J. Sol-Gel Sci. Technol. 2023, 108, 368–376. [Google Scholar] [CrossRef]
- Celik, N.; Torun, I.; Ruzi, M.; Esidir, A.; Onses, M.S. Fabrication of robust superhydrophobic surfaces by one-step spray coating: Evaporation driven self-assembly of wax and nanoparticles into hierarchical structures. Chem. Eng. J. 2020, 396, 125230. [Google Scholar] [CrossRef]
- Kim, H.; Nam, K.; Lee, D.Y. Fabrication of Robust Superhydrophobic Surfaces with Dual-Curing Siloxane Resin and Controlled Dispersion of Nanoparticles. Polymers 2020, 12, 1420. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Liu, Y.; Du, F.L. Rational fabrication of fluorine-free, superhydrophobic, durable surface by one-step spray method. Prog. Org. Coat. 2023, 174, 107227. [Google Scholar] [CrossRef]
- Ghasemlou, M.; Le, P.H.; Daver, F.; Murdoch, B.J.; Ivanova, E.P.; Adhikari, B. Robust and Eco-Friendly Superhydrophobic Starch Nanohybrid Materials with Engineered Lotus Leaf Mimetic Multiscale Hierarchical Structures. ACS Appl. Mater. Interfaces 2021, 13, 36558–36573. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.K.; Kadian, S.; Gogoi, R.; Manik, G. Layer-by-layer fabrication of self-cleaning superhydrophobic surface made from Carboxymethylcellulose and ZnO quantum dots: A combined experimental and computational study. Surf. Interfaces 2023, 37, 102752. [Google Scholar] [CrossRef]
- Zhou, Y.Q.; Liu, E.H.; Kang, J.H.; Zhao, S.; Wang, L.P.; Yan, H.Y.; Hu, C.X.; Han, J.H. A universal synthetic methodology of superhydrophobic protective film on various substrates with convenient and stable precursor. Vacuum 2023, 210, 111847. [Google Scholar] [CrossRef]
- Ahmad, A.; Albargi, H.; Ali, M.; Batool, M.; Nazir, A.; Qadir, M.B.; Khaliq, Z.; Arshad, S.N.; Jalalah, M.; Harraz, F.A. Differential carbonization-shrinkage induced hierarchically rough PAN/PDMS nanofiber composite membrane for robust multimodal superhydrophobic applications. J. Sci. Adv. Mater. Devic. 2023, 8, 100536. [Google Scholar] [CrossRef]
- Juybari, H.F.; Karimi, M.; Srivastava, R.; Swaminathan, J.; Warsinger, D.M. Superhydrophobic composite asymmetric electrospun membrane for sustainable vacuum assisted air gap membrane distillation. Desalination 2023, 553, 116411. [Google Scholar] [CrossRef]
- Kianfar, P.; Bongiovanni, R.; Ameduri, B.; Vitale, A. Electrospinning of Fluorinated Polymers: Current State of the Art on Processes and Applications. Polym. Rev. 2022, 63, 127–199. [Google Scholar] [CrossRef]
- Lafraya, A.; Prieto, C.; Pardo-Figuerez, M.; Chiva, A.; Lagaron, J.M. Super-Repellent Paper Coated with Electrospun BioPolymers and Electrosprayed Silica of Interest in Food Packaging Applications. Nanomaterials 2021, 11, 3354. [Google Scholar] [CrossRef]
- Qi, Y.L.; Yang, Z.B.; Huang, W.X.; Zhang, J. Robust superhydrophobic surface for anti-icing and cooling performance: Application of fluorine-modified TiO2 and fumed SiO2. Appl. Surf. Sci. 2021, 538, 148131. [Google Scholar] [CrossRef]
- Ahmad, N.; Rasheed, S.; Ahmed, K.; Musharraf, S.G.; Najam-ul-Haq, M.; Hussain, D. Facile two-step functionalization of multifunctional superhydrophobic cotton fabric for UV-blocking, self cleaning, antibacterial, and oil-water separation. Separ. Purif. Technol. 2023, 306, 122626. [Google Scholar] [CrossRef]
- Sumithraarachchi, S.; Thilakarathna, B.; Bandara, J. TiO2 encapsulated cross-linked polystyrene-polyacrylic acid membranes for waste oil-water separation. J. Environ. Chem. Eng. 2021, 9, 105394. [Google Scholar] [CrossRef]
- Yap, S.W.; Johari, N.; Mazlan, S.A.; Ahmad, S.; Arifin, R.; Hassan, N.A.; Johari, M.A.F. Superhydrophobic zinc oxide/epoxy coating prepared by a one-step approach for corrosion protection of carbon steel. J. Mater. Res. Technol. 2023, 25, 5751–5766. [Google Scholar] [CrossRef]
- Selvaraj, V.; Karthika, T.S.; Mansiya, C.; Alagar, M. ZnO nano grafted chitin-chitosan based hybrid composite coated super hydrophobic filter paper for water flow cleaning and oil-water separation applications. New J. Chem. 2023, 47, 13397–13408. [Google Scholar] [CrossRef]
- Huang, J.D.; Li, M.M.; Ren, C.Y.; Huang, W.T.; Miao, Y.; Wu, Q.; Wang, S.Q. Construction of HLNPs/Fe3O4 based superhydrophobic coating with excellent abrasion resistance, UV resistance, flame retardation and oil absorbency. J. Environ. Chem. Eng. 2023, 11, 109046. [Google Scholar] [CrossRef]
- Dong, H.Y.; Zhan, Y.Q.; Sun, A.; Chen, Y.W.; Chen, X.M. Magnetically responsive and durable super-hydrophobic melamine material. Colloids Surf. A 2023, 662, 130933. [Google Scholar] [CrossRef]
- Hassan, N.; Fadhali, M.M.; Al-Sulaimi, S.; Al-Buriahi, M.S.; Katubi, K.M.; Alrowaili, Z.A.; Khan, M.A.; Shoukat, R.; Ajmal, Z.; Abbas, F.; et al. Development of sustainable superhydrophobic coatings on aluminum substrate using magnesium nanoparticles for enhanced catalytic activity, self-cleaning, and corrosion resistance. J. Mol. Liq. 2023, 383, 122085. [Google Scholar] [CrossRef]
- Ribeiro, A.C.; Soares, B.G.; Furtado, J.G.M.; Silva, A.A.; Couto, N. Superhydrophobic nanocomposite coatings based on different polysiloxane matrices designed for electrical insulators. Prog. Org. Coat. 2022, 168, 106867. [Google Scholar] [CrossRef]
- Yang, J.L.; Chen, A.Y.; Liu, F.; Gu, L.J.; Xie, X.F.; Ding, Z.Y. Hybrid coating of polydimethylsiloxane with nano-ZrO2 on magnesium alloy for superior corrosion resistance. Ceram. Int. 2022, 48, 35280–35289. [Google Scholar] [CrossRef]
- Celik, N.; Sezen, B.; Sahin, F.; Ceylan, A.; Ruzi, M.; Onses, M.S. Mechanochemical Coupling of Alkylsilanes to Nanoparticles for Solvent-Free and Rapid Fabrication of Superhydrophobic Materials. ACS Appl. Nano Mater. 2023, 6, 14921–14930. [Google Scholar] [CrossRef]
- Qi, Y.L.; Yang, Z.B.; Chen, T.T.; Xi, Y.L.; Zhang, J. Fabrication of superhydrophobic surface with desirable anti-icing performance based on micro/nano-structures and organosilane groups. Appl. Surf. Sci 2020, 501, 144165. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, X.Y.; Ju, G.N. Functionally Integrated Device with Robust and Durable Superhydrophobic Surface for Efficient, Continuous, and Recyclable Oil-Water Separation. Adv. Mater. Interfaces 2022, 9, 2101449. [Google Scholar] [CrossRef]
- Yu, T.; Zhao, Y.P.; Zheng, P.; Wang, L.Y.; Yan, Z.H.; Ge, D.T.; Yang, L.L. Ultra-durable superhydrophobic surfaces from 3D self-similar network via co-spraying of polymer microspheres and nanoparticles. Chem. Eng. J. 2021, 410, 128314. [Google Scholar] [CrossRef]
- Mallakpour, S.; Mani, L. The Special Modifiers Containing N-Trimellitylimido-L-Amino Acids for the Surface Modification of Nano ZrO2. Synth. React. Inorg. Met 2016, 46, 394–399. [Google Scholar] [CrossRef]
- Huang, J.C.; Liu, Y.; Cao, Y.Y.; Liu, Q.; Shen, J.; Wang, X.D. Durable silica antireflective coating prepared by combined treatment of ammonia and KH570 vapor. J. Coat. Technol. Res. 2019, 16, 615–622. [Google Scholar] [CrossRef]
- Li, C.L.; Sun, Y.C.; Cheng, M.; Sun, S.Q.; Hu, S.Q. Fabrication and characterization of a TiO2/polysiloxane resin composite coating with full-thickness super-hydrophobicity. Chem. Eng. J. 2018, 333, 361–369. [Google Scholar] [CrossRef]
- Emarati, S.M.; Mozammel, M. Efficient one-step fabrication of superhydrophobic nano-TiO2/TMPSi ceramic composite coating with enhanced corrosion resistance on 316L. Ceram. Int. 2020, 46, 1652–1661. [Google Scholar] [CrossRef]
- Sutar, R.S.; Latthe, S.S.; Gharge, N.B.; Gaikwad, P.P.; Jundle, A.R.; Ingole, S.S.; Ekunde, R.A.; Nagappan, S.; Park, K.H.; Bhosale, A.K.; et al. Facile approach to fabricate a high-performance superhydrophobic PS/OTS modified SS mesh for oil-water separation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130561. [Google Scholar] [CrossRef]
- Mahadik, S.A.; Mahadik, S.S. Surface morphological and topographical analysis of multifunctional superhydrophobic sol-gel coatings. Ceram. Int. 2021, 47, 29475–29482. [Google Scholar] [CrossRef]
- Jumrus, N.; Suttanon, N.; Sroila, W.; Tippo, P.; Panthawan, A.; Thongpan, W.; Kumpika, T.; Sroila, W.; Rianyoi, R.; Singjai, P.; et al. Durability and photocatalytic activity of superhydrophobic gypsum boards coated with PDMS/MTCS-modified SiO2-TiO2 NPs. Mater. Lett. 2023, 330, 133342. [Google Scholar] [CrossRef]
- Wu, T.; Xu, W.H.; Guo, K.; Xie, H.; Qu, J.P. Efficient fabrication of lightweight polyethylene foam with robust and durable superhydrophobicity for self-cleaning and anti-icing applications. Chem. Eng. J. 2021, 407, 127100. [Google Scholar] [CrossRef]
- Li, W.; Zhan, Y.L.; Yu, S.R. Applications of superhydrophobic coatings in anti-icing: Theory, mechanisms, impact factors, challenges and perspectives. Prog. Org. Coat. 2021, 152, 106117. [Google Scholar] [CrossRef]
- Li, A.L.; Wang, G.F.; Ma, Y.W.; Zhao, C.Y.; Zhang, F.Y.; He, Q.; Zhang, F.W. Study on preparation and properties of superhydrophobic surface of RTV silicone rubber. J. Mater. Res. Technol. 2021, 11, 135–143. [Google Scholar] [CrossRef]
- Liu, M.L.; Luo, Y.F.; Jia, D.M. Robust and repairable bulk polymeric coatings with continuous superhydrophobicity for design control and underwater display. Compos. Part B Eng. 2020, 186, 107799. [Google Scholar] [CrossRef]
- Wang, G.F.; Li, A.L.; Li, K.S.; Zhao, Y.H.; Ma, Y.W.; He, Q. A fluorine-free superhydrophobic silicone rubber surface has excellent self-cleaning and bouncing properties. J. Colloid Interface Sci. 2021, 588, 175–183. [Google Scholar] [CrossRef]
Coating Composition | Preparation Process | Contact Angle (CA) | Rolling Angle (RA) | Ref. |
---|---|---|---|---|
316L/nano-TiO2/TMPSi | one-step EPD | 168° | 3.1° | [46] |
PS/OTS/SS | Sol-gel | 157.5° | 6° | [47] |
MTES/SiO2/MOH | Sol-gel | 153° | 9° | [48] |
PDMS/MTCS/SiO2/TiO2 | Spray | 151° | 9° | [49] |
F-PE/SiO2 | Template | 158° | 4° | [50] |
ZrO2/SiO2/siloxane-modified acrylic emulsion | Spray | 158.5° | 1.85° | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben, J.; Wu, P.; Wang, Y.; Liu, J.; Luo, Y. Preparation and Characterization of Modified ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating. Materials 2023, 16, 7621. https://doi.org/10.3390/ma16247621
Ben J, Wu P, Wang Y, Liu J, Luo Y. Preparation and Characterization of Modified ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating. Materials. 2023; 16(24):7621. https://doi.org/10.3390/ma16247621
Chicago/Turabian StyleBen, Jiaxin, Peipei Wu, Yancheng Wang, Jie Liu, and Yali Luo. 2023. "Preparation and Characterization of Modified ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating" Materials 16, no. 24: 7621. https://doi.org/10.3390/ma16247621
APA StyleBen, J., Wu, P., Wang, Y., Liu, J., & Luo, Y. (2023). Preparation and Characterization of Modified ZrO2/SiO2/Silicone-Modified Acrylic Emulsion Superhydrophobic Coating. Materials, 16(24), 7621. https://doi.org/10.3390/ma16247621